
 



l ALGEBRAIC OPERATIONS FOR VECTORS AND 
TENSORS IN CARTESIAN COORDINATES 

(s is a scalar; v and w are vectors; T is a tensor; dot or cross operations enclosed 
within parentheses are scalars, those enclosed in brackets are vectors) 

Note: The above operations may be generalized to cylindrical coordinates by replacing 
(x,  y, z )  by (r, 6, z), and to spherical coordinates by replacing (x, y, z) by ( r ,  6, 4). 
Descriptions of curvilinear coordinates are given in Figures 1.2-2, A.6-1, A.8-1, and 
A.8-2. 

**.DIFFERENTIAL OPERATIONS FOR SCALARS, VECTORS, AND 
TENSORS IN CARTESIAN COORDINATES 

dv, dvy dv, dvZ dvy dux 
[V x v], = - - - [ V x v ]  =---  

Y d z  dx 
[V x v], = ax - - 

d y  d z  aY 
dv, dvy dv, 

( V . v ) = - + - + -  
dx d y  d z  



d2vz d2v, d2vZ 
[V2v], = [V Vv],  = - +- 

ax2 + 3 az2 
dvx dvx dvx [v Vv],  = vx - + v - + v, -- dx Y dy dz 

dvz dv, dvz [v ' Vv],  = vx - + v - + v, - dx Y dy dz 

~(v,v,) a(vyvx) d(v,vX) 
[V vv] ,  = - + ------ + - dx dy dz 

a(vXvy) a(vYvy) ~(v,v,) 
[V . vv], = - +-+- dx dy dz 

a(vXvz) d(vyvz) ~(v,v,) 
[V vv], = ---- +-+- dx d y  d z  

dvx dux dux 
(T : V v )  = rxx - + r - + rxz - dx dy dz 

Note: the differential operations may not be simply generalized to curvilinear coordi- 
nates; see Tables A.7-2 and A.7-3. 
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Preface 

W h i l e  momentum, heat, and mass transfer developed independently as branches of 
classical physics long ago, their unified study has found its place as one of the funda- 
mental engineering sciences. This development, in turn, less than half a century old, con- 
tinues to grow and to find applications in new fields such as biotechnology, 
microelectronics, nanotechnology, and polymer science. 

Evolution of transport phenomena has been so rapid and extensive that complete 
coverage is not possible. While we have included many representative examples, our 
main emphasis has, of necessity, been on the fundamental aspects of this field. More- 
over, we have found in discussions with colleagues that transport phenomena is taught 
in a variety of ways and at several different levels. Enough material has been included 
for two courses, one introductory and one advanced. The elementary course, in turn, can 
be divided into one course on momentum transfer, and another on heat and mass trans- 
fer, thus providing more opportunity to demonstrate the utility of this material in practi- 
cal applications. Designation of some sections as optional (0) and other as advanced (a) 
may be helpful to students and instructors. 

Long regarded as a rather mathematical subject, transport phenomena is most impor- 
tant for its physical significance. The essence of this subject is the careful and compact 
statement of the conservation principles, along with the flux expressions, with emphasis 
on the similarities and differences among the three transport processes considered. Often, 
specialization to the boundary conditions and the physical properties in a specific prob- 
lem can provide useful insight with minimal effort. Nevertheless, the language of trans- 
port phenomena is mathematics, and in this textbook we have assumed familiarity with 
ordinary differential equations and elementary vector analysis. We introduce the use of 
partial differential equations with sufficient explanation that the interested student can 
master the material presented. Numerical techniques are deferred, in spite of their obvi- 
ous importance, in order to concentrate on fundamental understanding. 

Citations to the published literature are emphasized throughout, both to place trans- 
port phenomena in its proper historical context and to lead the reader into further exten- 
sions of fundamentals and to applications. We have been particularly anxious to 
introduce the pioneers to whom we owe so much, and from whom we can still draw 
useful inspiration. These were human beings not so different from ourselves, and per- 
haps some of our readers will be inspired to make similar contributions. 

Obviously both the needs of our readers and the tools available to them have 
changed greatly since the first edition was written over forty years ago. We have made a 
serious effort to bring our text up to date, within the limits of space and our abilities, and 
we have tried to anticipate further developments. Major changes from the first edition 
include: 

transport properties of two-phase systems 

use of "combined fluxes" to set up shell balances and equations of change 

angular momentum conservation and its consequences 

complete derivation of the mechanical energy balance 

expanded treatment of boundary-layer theory 

Taylor dispersion 

improved discussions of turbulent transport 

iii 



iv Preface 

Fourier analysis of turbulent transport at high Pr or Sc 

more on heat and mass transfer coefficients 

enlarged discussions of dimensional analysis and scaling 

matrix methods for multicomponent mass transfer 

ionic systems, membrane separations, and porous media 

the relation between the Boltzmann equation and the continuum equations 

use of the "Q+W convention in energy discussions, in conformity with the lead- 
ing textbooks in physics and physical chemistry 

However, it is always the youngest generation of professionals who see the future most 
clearly, and who must build on their imperfect inheritance. 

Much remains to be done, but the utility of transport phenomena can be expected to 
increase rather than diminish. Each of the exciting new technologies blossoming around 
us is governed, at the detailed level of interest, by the conservation laws and flux expres- 
sions, together with information on the transport coefficients. Adapting the problem for- 
mulations and solution techniques for these new areas will undoubtedly keep engineers 
busy for a long time, and we can only hope that we have provided a useful base from 
which to start. 

Each new book depends for its success on many more individuals than those whose 
names appear on the title page. The most obvious debt is certainly to the hard-working 
and gifted students who have collectively taught us much more than we have taught 
them. In addition, the professors who reviewed the manuscript deserve special thanks 
for their numerous corrections and insightful comments: Yu-Ling Cheng (University of 
Toronto), Michael D. Graham (University of Wisconsin), Susan J. Muller (University of 
California-Berkeley), William B. Russel (Princeton University), Jay D. Schieber (Illinois 
Institute of Technology), and John F. Wendt (Von Kdrm6n Institute for Fluid Dynamics). 
However, at a deeper level, we have benefited from the departmental structure and tra- 
ditions provided by our elders here in Madison. Foremost among these was Olaf An- 
dreas Hougen, and it is to his memory that this edition is dedicated. 

Madison, Wisconsin 
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Chapter 0 

The Subject of Transport 
Phenomena 
90.1 What are the transport phenomena? 

50.2 Three levels at which transport phenomena can be studied 

50.3 The conservation laws: an example 

50.4 Concluding comments 

The purpose of this introductory chapter is to describe the scope, aims, and methods of 
the subject of transport phenomena. It is important to have some idea about the struc- 
ture of the field before plunging into the details; without this perspective it is not possi- 
ble to appreciate the unifying principles of the subject and the interrelation of the 
various individual topics. A good grasp of transport phenomena is essential for under- 
standing many processes in engineering, agriculture, meteorology, physiology, biology, 
analytical chemistry, materials science, pharmacy, and other areas. Transport phenom- 
ena is a well-developed and eminently useful branch of physics that pervades many 
areas of applied science. 

0 .  WHAT ARE THE TRANSPORT PHENOMENA? 

The subject of transport phenomena includes three closely related topics: fluid dynam- 
ics, heat transfer, and mass transfer. Fluid dynamics involves the transport of momenfum, 
heat transfer deals with the transport of energy, and mass transfer is concerned with the 
transport of mass of various chemical species. These three transport phenomena should, 
at the introductory level, be studied together for the following reasons: 

They frequently occur simultaneously in industrial, biological, agricultural, and 
meteorological problems; in fact, the occurrence of any one transport process by it- 
self is the exception rather than the rule. 

The basic equations that describe the three transport phenomena are closely re- 
lated. The similarity of the equations under simple conditions is the basis for solv- 
ing problems "by analogy." 

The mathematical tools needed for describing these phenomena are very similar. 
Although it is not the aim of this book to teach mathematics, the student will be re- 
quired to review various mathematical topics as the development unfolds. Learn- 
ing how to use mathematics may be a very valuable by-product of studying 
transport phenomena. 

The molecular mechanisms underlying the various transport phenomena are very 
closely related. All materials are made up of molecules, and the same molecular 
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motions and interactions are responsible for viscosity, thermal conductivity, and 
diffusion. 

The main aim of this book is to give a balanced overview of the field of transport phe- 
nomena, present the fundamental equations of the subject, and illustrate how to use 
them to solve problems. 

There are many excellent treatises on fluid dynamics, heat transfer, and mass trans- 
fer. In addition, there are many research and review journals devoted to these individual 
subjects and even to specialized subfields. The reader who has mastered the contents of 
this book should find it possible to consult the treatises and journals and go more deeply 
into other aspects of the theory, experimental techniques, empirical correlations, design 
methods, and applications. That is, this book should not be regarded as the complete 
presentation of the subject, but rather as a stepping stone to a wealth of knowledge that 
lies beyond. 

50.2 THREE LEVELS AT WHICH TRANSPORT 
PHENOMENA CAN BE STUDIED 

In Fig. 0.2-1 we show a schematic diagram of a large system-for example, a large piece 
of equipment through which a fluid mixture is flowing. We can describe the transport of 
mass, momentum, energy, and angular momentum at three different levels. 

At the macroscopic level (Fig. 0.2-la) we write down a set of equations called the 
"macroscopic balances," which describe how the mass, momentum, energy, and angular 
momentum in the system change because of the introduction and removal of these enti- 
ties via the entering and leaving streams, and because of various other inputs to the sys- 
tem from the surroundings. No attempt is made to understand all the details of the 
system. In studying an engineering or biological system it is a good idea to start with 
this macroscopic description in order to make a global assessment of the problem; in 
some instances it is only this overall view that is needed. 

At the microscopic level (Fig. 0.2-lb) we examine what is happening to the fluid mix- 
ture in a small region within the equipment. We write down a set of equations called the 
"equations of change," which describe how the mass, momentum, energy, and angular 
momentum change within this small region. The aim here is to get information about ve- 
locity, temperature, pressure, and concentration profiles within the system. This more 
detailed information may be required for the understanding of some processes. 

At the molecular level (Fig. 0.2-lc) we seek a fundamental understanding of the mech- 
anisms of mass, momentum, energy, and angular momentum transport in terms of mol- 

1 Q = heat added to syst 

-- 

W,,, = Work done on the system by 
the surroundings by means 
of moving parts 

Fig. 0.2-1 (a) A macro- 
scopic flow system contain- 
ing N2 and 0,; (b)  a 
microscopic region within 
the macroscopic system 
containing N, and 02, 
which are in a state of flow; 
(c) a collision between a 
molecule of N, and a mole- 
cule of 0,. 
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ecular structure and intermolecular forces. Generally this is the realm of the theoretical 
physicist or physical chemist, but occasionally engineers and applied scientists have to 
get involved at this level. This is particularly true if the processes being studied involve 
complex molecules, extreme ranges of temperature and pressure, or chemically reacting 
systems. 

It should be evident that these three levels of description involve different "length 
scales": for example, in a typical industrial problem, at the macroscopic level the dimen- 
sions of the flow systems may be of the order of centimeters or meters; the microscopic 
level involves what is happening in the micron to the centimeter range; and molecular- 
level problems involve ranges of about 1 to 1000 nanometers. 

This book is divided into three parts dealing with 

Flow of pure fluids at constant temperature (with emphasis on viscous and con- 
vective momentum transport)--Chapters 1-8 

Flow of pure fluids with varying temperature (with emphasis on conductive, con- 
vective, and radiative energy transport)-Chapters 9-16 

Flow of fluid mixtures with varying composition (with emphasis on diffusive and 
convective mass transport)-Chapters 17-24 

That is, we build from the simpler to the more difficult problems. Within each of these 
parts, we start with an initial chapter dealing with some results of the molecular theory 
of the transport properties (viscosity, thermal conductivity, and diffusivity). Then we 
proceed to the microscopic level and learn how to determine the velocity, temperature, 
and concentration profiles in various kinds of systems. The discussion concludes with 
the macroscopic level and the description of large systems. 

As the discussion unfolds, the reader will appreciate that there are many connec- 
tions between the levels of description. The transport properties that are described by 
molecular theory are used at the microscopic level. Furthermore, the equations devel- 
oped at the microscopic level are needed in order to provide some input into problem 
solving at the macroscopic level. 

There are also many connections between the three areas of momentum, energy, 
and mass transport. By learning how to solve problems in one area, one also learns the 
techniques for solving problems in another area. The similarities of the equations in the 
three areas mean that in many instances one can solve a problem "by analogy"-that is, 
by taking over a solution directly from one area and, then changing the symbols in the 
equations, write down the solution to a problem in another area. 

The student will find that these connections-among levels, and among the various 
transport phenomena-reinforce the learning process. As one goes from the first part of 
the book (momentum transport) to the second part (energy transport) and then on to the 
third part (mass transport) the story will be very similar but the "names of the players" 
will change. 

Table 0.2-1 shows the arrangement of the chapters in the form of a 3 x 8 "matrix." 
Just a brief glance at the matrix will make it abundantly clear what kinds of interconnec- 
tions can be expected in the course of the study of the book. We recommend that the 
book be studied by columns, particularly in undergraduate courses. For graduate stu- 
dents, on the other hand, studying the topics by rows may provide a chance to reinforce 
the connections between the three areas of transport phenomena. 

At all three levels of description-molecular, microscopic, and macroscopic-the 
conservation laws play a key role. The derivation of the conservation laws for molecu- 
lar systems is straightforward and instructive. With elementary physics and a mini- 
mum of mathematics we can illustrate the main concepts and review key physical 
quantities that will be encountered throughout this book. That is the topic of the next 
section. 
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Table 0.2-1 Organization of the Topics in This Book 

Type of transport Momentum Energy Mass 

Transport by 1 Viscosity 9 Thermal 17 Diffusivity 
molecular motion and the stress conductivity and the 

(momentum flux) and the heat-flux mass-flux 
tensor vector vectors 

Transport in one 2 Shell momentum 10 Shell energy 18 Shell mass 
dimension (shell- balances and balances and balances and 
balance methods) velocity temperature concentration 

distributions distributions distributions 

Transport in 3 Equations of 11 Equations of 19 Equations of 
arbitrary continua change and their change and change and 
(use of general use their use their use 
transport equations) [isothermal] [nonisothermall [mixtures] 

Transport with two 4 Momentum 12 Energy transport 20 Mass transport 
independent transport with with two with two 
variables (special two independent independent independent 
methods) variables variables variables 

Transport in 5 Turbulent 13 Turbulent 21 Turbulent 
turbulent flow, and momentum energy transport; mass transport; 
eddy transport transport; eddy eddy thermal eddy 
properties viscosity conductivity diffusivity 

Transport across 6 Friction factors; 14 Heat-transfer 22 Mass-transfer 
phase boundaries use of empirical coefficients; use coefficients; use 

correlations of empirical of empirical 
correlations correlations 

Transport in large 7 Macroscopic 15 Macroscopic 23 Macroscopic 
systems, such as balances balances balances 
pieces of equipment [isothermal] [nonisothermall [mixtures] 
or parts thereof 

Transport by other 8 Momentum 16 Energy 24 Mass transport 
mechanisms transport in transport by in multi- 

polymeric radiation component 
liquids systems; cross 

effects 

50.3 THE CONSERVATION LAWS: AN EXAMPLE 

The system we consider is that of two colliding diatomic molecules. For simplicity we as- 
sume that the molecules do not interact chemically and that each molecule is homonu- 
clear-that is, that its atomic nuclei are identical. The molecules are in a low-density gas, 
so that we need not consider interactions with other molecules in' the neighborhood. In 
Fig. 0.3-1 we show the collision between the two homonuclear diatomic molecules, A 
and B, and in Fig. 0.3-2 we show the notation for specifying the locations of the two 
atoms of one molecule by means of position vectors drawn from an arbitrary origin. 

Actually the description of events at the atomic and molecular level should be made 
by using quantum mechanics. However, except for the lightest molecules (H, and He) at 
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Molecule A before collision I 
I 

Fig. 0.3-1 A collision 
between homonuclear 
diatomic molecules, 

/ such as N, and 02. 
/ 

/ Molecule A is made up 
/ Molecule B before collision of two atoms A1 and 
\ A2. Molecule B is made 
\ 
\ up of two atoms B1 

'b and B2. 

Molecule B after collision 

Molecule A after collision 

temperatures lower than 50 K, the kinetic theory of gases can be developed quite satis- 
factorily by use of classical mechanics. 

Several relations must hold between quantities before and after a collision. Both be- 
fore and after the collision the molecules are presumed to be sufficiently far apart that 
the two molecules cannot "feel" the intermolecular force between them; beyond a dis- 
tance of about 5 molecular diameters the intermolecular force is known to be negligible. 
Quantities after the collision are indicated with primes. 

(a) According to the law of conservation of mass, the total mass of the molecules enter- 
ing and leaving the collision must be equal: 

Here m, and mB are the masses of molecules A and B. Since there are no chemical reac- 
tions, the masses of the individual species will also be conserved, so that 

m, = m i  and rn, = mf, (0.3-2) 

(b) According to the law of conservation of momentum the sum of the momenta of all 
the atoms before the collision must equal that after the collision, so that 

in which r,, is the position vector for atom 1 of molecule A, and i,, is its velocity. We 
now write r,, = r, + RA, so that r,, is written as the sum of the position vector for the 

of molecule A 

0 
Arbitrary origin 
fixed in space 

Fig. 0.3-2 Position vectors for the atoms 
A1 and A2 in molecule A. 
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center of mass and the position vector of the atom with respect to the center of mass, and 
we recognize that RA2 = -RA,; we also write the same relations for the velocity vectors. 
Then we can rewrite Eq. 0.3-3 as 

That is, the conservation statement can be written in terms of the molecular masses and 
velocities, and the corresponding atomic quantities have been eliminated. In getting 
Eq. 0.3-4 we have used Eq. 0.3-2 and the fact that for homonuclear diatomic molecules 

1 mAl = mA2 = 5 mA. 

(c) According to the law of conservation of energy, the energy of the colliding pair of 
molecules must be the same before and after the collision. The energy of an isolated mol- 
ecule is the sum of the kinetic energies of the two atoms and the interatomic potential en- 
ergy, +,, which describes the force of the chemical bond joining the two atoms 1 and 2 of 
molecule A, and is a function of the interatomic distance lrA2 - rA,l. Therefore, energy 
conservation leads to 

Note that we use the standard abbreviated notation that el = (fAl . iAl). We now write 
the velocity of atom 1 of molecule A as the sum of the velocity of the center of mass of A 
and the velocity of 1 with respect to the center of mass; that is, r,, = iA + RA,. Then Eq. 
0.3-5 becomes 

in which MA = $mA1~il + $nA2~;, + 4, is the sum of the kinetic energies of the atoms, re- 
ferred to the center of mass of molecule A, and the interatomic potential of molecule A. 
That is, we split up the energy of each molecule into its kinetic energy with respect to 
fixed coordinates, and the internal energy of the molecule (which includes its vibra- 
tional, rotational, and potential energies). Equation 0.3-6 makes it clear that the kinetic 
energies of the colliding molecules can be converted into internal energy or vice versa. 
This idea of an interchange between kinetic and internal energy will arise again when 
we discuss the energy relations at the microscopic and macroscopic levels. 

(dl Finally, the law of conservation of angular momentum can be applied to a collision 
to give 

in which X is used to indicate the cross product of two vectors. Next we introduce the 
center-of-mass and relative position vectors and velocity vectors as before and obtain 

in which 1, = [R,, x m , , ~ ~ , ]  + [ R ~ ~  x mA2~A2] is the sum of the angular momenta of the 
atoms referred to an origin of coordinates at the center of mass of the molecule-that is, 
the "internal angular momentum." The important point is that there is the possibility for 
interchange between the angular momentum of the molecules (with respect to the origin 
of coordinates) and their internal angular momentum (with respect to the center of mass 
of the molecule). This will be referred to later in connection with the equation of change 
for angular momentum. 
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The conservation laws as applied to collisions of monatomic molecules can be ob- 
tained from the results above as follows: Eqs. 0.3-1, 0.3-2, and 0.3-4 are directly applica- 
ble; Eq. 0.3-6 is applicable if the internal energy contributions are omitted; and Eq. 0.3-8 
may be used if the internal angular momentum terms are discarded. 

Much of this book will be concerned with setting up the conservation laws at the mi- 
croscopic and macroscopic levels and applying them to problems of interest in engineer- 
ing and science. The above discussion should provide a good background for this 
adventure. For a glimpse of the conservation laws for species mass, momentum, and en- 
ergy at the microscopic and macroscopic levels, see Tables 19.2-1 and 23.5-1. 

50.4 CONCLUDING COMMENTS 

To use the macroscopic balances intelligently, it is necessary to use information about in- 
terphase transport that comes from the equations of change. To use the equations of 
change, we need the transport properties, which are described by various molecular the- 
ories. Therefore, from a teaching point of view, it seems best to start at the molecular 
level and work upward toward the larger systems. 

All the discussions of theory are accompanied by examples to illustrate how the the- 
ory is applied to problem solving, Then at the end of each chapter there are problems to 
provide extra experience in using the ideas given in the chapter. The problems are 
grouped into four classes: 

Class A: Numerical problems, which are designed to highlight important equa- 
tions in the text and to give a feeling for the orders of magnitude. 

Class B: Analytical problems that require doing elementary derivations using 
ideas mainly from the chapter. 

Class C: More advanced analytical problems that may bring ideas from other chap- 
ters or from other books. 

Class D: Problems in which intermediate mathematical skills are required. 

Many of the problems and illustrative examples are rather elementary in that they in- 
volve oversimplified systems or very idealized models. It is, however, necessary to start 
with these elementary problems in order to understand how the theory works and to de- 
velop confidence in using it. In addition, some of these elementary examples can be very 
useful in making order-of-magnitude estimates in complex problems. 

Here are a few suggestions for studying the subject of transport phenomena: 

Always read the text with pencil and paper in hand; work through the details of 
the mathematical developments and supply any missing steps. 

Whenever necessary, go back to the mathematics textbooks to brush up on calculus, 
differential equations, vectors, etc. This is an excellent time to review the mathemat- 
ics that was learned earlier (but possibly not as carefully as it should have been). 

Make it a point to give a physical interpretation of key results; that is, get in the 
habit of relating the physical ideas to the equations. 

Always ask whether the results seem reasonable. If the results do not agree with 
intuition, it is important to find out which is incorrect. 

Make it a habit to check the dimensions of all results. This is one very good way of 
locating errors in derivations. 

We hope that the reader will share our enthusiasm for the subject of transport phe- 
nomena. It will take some effort to learn the material, but the rewards will be worth the 
time and energy required. 
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QUESTIONS FOR DISCUSSION 

What are the definitions of momentum, angular momentum, and kinetic energy for a single 
particle? What are the dimensions of these quantities? 
What are the dimensions of velocity, angular velocity, pressure, density, force, work, and 
torque? What are some common units used for these quantities? 
Verify that it is possible to go from Eq. 0.3-3 to Eq. 0.3-4. 
Go through all the details needed to get Eq. 0.3-6 from Eq. 0.3-5. 
Suppose that the origin of coordinates is shifted to a new position. What effect would that 
have on Eq. 0.3-7? Is the equation changed? 
Compare and contrast angular velocity and angular momentum. 
What is meant by internal energy? Potential energy? 
Is the law of conservation of mass always valid? What are the limitations? 
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Chapter 1 

Viscosity and the Mechanisms 
of Momentum Transport 
51.1 Newton's law of viscosity (molecular momentum transport) 

2 Generalization of Newton's law of viscosity 

1 . 3  Pressure and temperature dependence of viscosity 

~1.4' Molecular theory of the viscosity of gases at low density 

51.5' Molecular theory of the viscosity of liquids 

51.6' Viscosity of suspensions and emulsions 

1 . 7  Convective momentum transport 

The first part of this book deals with the flow of viscous fluids. For fluids of low molecu- 
lar weight, the physical property that characterizes the resistance to flow is the viscosity. 
Anyone who has bought motor oil is aware of the fact that some oils are more "viscous" 
than others and that viscosity is a function of the temperature. 

We begin in 31.1 with the simple shear flow between parallel plates and discuss how 
momentum is transferred through the fluid by viscous action. This is an elementary ex- 
ample of molecular momentum transport and it serves to introduce "Newton's law of vis- 
cosity" along with the definition of viscosity p. Next in 31.2 we show how Newton's law 
can be generalized for arbitrary flow patterns. The effects of temperature and pressure 
on the viscosities of gases and liquids are summarized in 51.3 by means of a dimension- 
less plot. Then 51.4 tells how the viscosities of gases can be calculated from the kinetic 
theory of gases, and in 51.5 a similar discussion is given for liquids. In 51.6 we make a 
few comments about the viscosity of suspensions and emulsions. 

Finally, we show in 31.7 that momentum can also be transferred by the bulk fluid 
motion and that such convective momentum transport is proportional to the fluid density p. 

51.1 NEWTON'S LAW OF VISCOSITY (MOLECULAR 
TRANSPORT OF MOMENTUM) 

In Fig. 1.1-1 we show a pair of large parallel plates, each one with area A, separated by a 
distance Y. In the space between them is a fluid-either a gas or a liquid. This system is 
initially at rest, but at time t = 0 the lower plate is set in motion in the positive x direc- 
tion at a constant velocity V. As time proceeds, the fluid gains momentum, and ulti- 
mately the linear steady-state velocity profile shown in the figure is established. We 
require that the flow be laminar ("laminar" flow is the orderly type of flow that one usu- 
ally observes when syrup is poured, in contrast to "turbulent" flow, which is the irregu- 
lar, chaotic flow one sees in a high-speed mixer). When the final state of steady motion 
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Fluid initially 
< O at rest 

Lower plate 
f = O  set in motion 

Velocity buildup 
in unsteady flow 

v I 

Fig. 1.1-1 The buildup to 
the steady, laminar velocity 
profile for a fluid contained 
between two plates. The 
flow is called "laminar" be- 
cause the adjacent layers of 
fluid ("laminae") slide past 
one another in an orderly 
fashion. 

Final velocity 
Large t distribution in 

Yt steady flow 

has been attained, a constant force F is required to maintain the motion of the lower 
plate. Common sense suggests that this force may be expressed as follows: 

That is, the force should be proportional to the area and to the velocity, and inversely 
proportional to the distance between the plates. The constant of proportionality p is a 
property of the fluid, defined to be the viscosity. 

We now switch to the notation that will be used throughout the book. First we re- 
place F/A by the symbol T,,, which is the force in the x direction on a unit area perpen- 
dicular to the y direction. It is understood that this is the force exerted by the fluid of 
lesser y on the fluid of greater y. Furthermore, we replace V/Y by -dvx/dy. Then, in 
terms of these symbols, Eq. 1.1-1 becomes 

This equation, which states that the shearing force per unit area is proportional to the 
negative of the velocity gradient, is often called Newton's law of visco~ity.~ Actually we 

Some authors write Eq. 1.1-2 in the form 

in which ryx [=] lbf/ft2, v, [=] ft/s, y [=I  ft, and p [=] lb,/ft. s; the quantityg, is the "gravitational 
conversion factor" with the value of 32.174 poundals/lbf. In this book we will always use Eq. 1.1-2 rather 
than Eq. 1.1-2a. 

Sir Isaac Newton (1643-1727), a professor at Cambridge University and later Master of the Mint, 
was the founder of classical mechanics and contributed to other fields of physics as well. Actually Eq. 
1.1-2 does not appear in Sir Isaac Newton's Philosophiae Naturalis Principia Mathematics, but the germ of 
the idea is there. For illuminating comments, see D. J. Acheson, Elementary Fluid Dynamics, Oxford 
University Press, 1990,§6.1. 
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should not refer to Eq. 1.1-2 as a "law," since Newton suggested it as an empiricism3- 
the simplest proposal that could be made for relating the stress and the velocity gradi- 
ent. However, it has been found that the resistance to flow of all gases and all liquids 
with molecular weight of less than about 5000 is described by Eq. 1.1-2, and such fluids 
are referred to as Newtonian fluids. Polymeric liquids, suspensions, pastes, slurries, and 
other complex fluids are not described by Eq. 1.1-2 and are referred to as non-Newtonian 
fluids. Polymeric liquids are discussed in Chapter 8. 

Equation 1.1-2 may be interpreted in another fashion. In the neighborhood of the 
moving solid surface at y = 0 the fluid acquires a certain amount of x-momentum. This 
fluid, in turn, imparts momentum to the adjacent layer of liquid, causing it to remain in 
motion in the x direction. Hence x-momentum is being transmitted through the fluid in 
the positive y direction. Therefore r,, may also be interpreted as the flux of x-momentum 
in the positive y direction, where the term "flux" means "flow per unit area." This interpre- 
tation is consistent with the molecular picture of momentum transport and the kinetic 
theories of gases and liquids. It also is in harmony with the analogous treatment given 
later for heat and mass transport. 

The idea in the preceding paragraph may be paraphrased by saying that momentum 
goes "downhill" from a region of high velocity to a region of low velocity-just as a sled 
goes downhill from a region of high elevation to a region of low elevation, or the way 
heat flows from a region of high temperature to a region of low temperature. The veloc- 
ity gradient can therefore be thought of as a "driving force" for momentum transport. 

In what follows we shall sometimes refer to Newton's law in Eq. 1.1-2 in terms of 
forces (which emphasizes the mechanical nature of the subject) and sometimes in terms 
of momentum transport (which emphasizes the analogies with heat and mass transport). 
This dual viewpoint should prove helpful in physical interpretations. 

Often fluid dynamicists use the symbol v to represent the viscosity divided by the 
density (mass per unit volume) of the fluid, thus: 

This quantity is called the kinematic viscosity. 
Next we make a few comments about the units of the quantities we have defined. If 

we use the symbol [ = I  to mean "has units of," then in the SI system r,, [=I  N/m2 = Pa, 
v, [= J m/s, and y [=I m, so that 

since the units on both sides of Eq. 1.1-2 must agree. We summarize the above and also 
give the units for the c.g.s. system and the British system in Table 1.1-1. The conversion 
tables in Appendix F will prove to be very useful for solving numerical problems involv- 
ing diverse systems of units. 

The viscosities of fluids vary over many orders of magnitude, with the viscosity of 
air at 20°C being 1.8 x Pa . s and that of glycerol being about 1 Pa . s, with some sili- 
cone oils being even more viscous. In Tables 1.1-2,l. 1-3, and 1.1-4 experimental data4 are 

A relation of the form of Eq. 1.1-2 does come out of the simple kinetic theory of gases (Eq. 1.4-7). 
However, a rigorous theory for gases sketched in Appendix D makes it clear that Eq. 1.1-2 arises as the 
first term in an expansion, and that additional (higher-order) terms are to be expected. Also, even an 
elementary kinetic theory of liquids predicts non-Newtonian behavior (Eq. 1.5-6). 

A comprehensive presentation of experimental techniques for measuring transport properties can be 
found in W. A. Wakeham, A. Nagashima, and J. V. Sengers, Measurement of the Transporf Properties offluids, 
CRC Press, Boca Raton, Fla. (1991). Sources for experimental data are: Landolt-Bornstein, Zahlenwerte und 
Funktionen, Vol. II,5, Springer (1968-1969); International Critical Tables, McGraw-Hill, New York (1926); 
Y. S. Touloukian, P. E. Liley, and S. C. Saxena, Tkermopkysical Properties of Matter, Plenum Press, New York 
(1970); and also numerous handbooks of chemistry, physics, fluid dynamics, and heat transfer. 
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Table 1.1-1 Summary of Units for Quantities 
Related to Eq. 1 .l-2 

-- 

SI c.g.s. British 

Note: The pascal, Pa, is the same as N/m2, and the newton, 
N, is the same as kg - m/s2. The abbreviation for "centipoise" 
is "cp." 

Table 1.1-2 Viscosity of Water and Air at 1 atm Pressure 

Water (liq.)" 

Temperature 
T ("C) 

Viscosity 
p (mPa s) 

1.787 
1.0019 
0.6530 
0.4665 
0.3548 
0.2821 

Kinematic viscosity 
v (cm2/s) 

0.01 787 
0.010037 
0.006581 
0.004744 
0.003651 
0.002944 

Viscosity 
p (mPa. s) 

Kinematic viscosity 
v (cm2/s) 

Talculated from the results of R. C. Hardy and R. L. Cottington, J. Research Nut. Bur. Standards, 42, 
573-578 (1949); and J. F. Swidells, J. R. Coe, Jr., and T. B. Godfrey, J. Research Naf .  Bur. Standards, 48,l-31 
(1952). 
Calculated from "Tables of Thermal Properties of Gases," National Bureau of Standards Circular 464 

(1955), Chapter 2. 

Table 1.1-3 Viscosities of Some Gases and Liquids at Atmospheric Pressurea 
- - -- 

Temperature Viscosity Temperature Viscosity 
Gases T CC) p (mPa s) Liquids T rC) p (mPa. s) 

(C&&,O O 
25 

C6H6 20 
Br2 25 
Hg 20 
C2H50H 0 

25 
50 

H2S0, 25 
Glycerol 25 

Talues  taken from N. A. Lange, Handbook of Chemistry, McGraw-Hill, New York, 15th edition 
(1999), Tables 5.16 and 5.18. 
H. L. Johnston and K. E. McKloskey, J. Phys. Chern., 44,1038-1058 (1940). 

CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Fla. (1999). 
Landolt-Bornstein Zahlenwerfe und Funktionen, Springer (1969). 
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Table 1.1-4 Viscosities of Some Liquid Metals 

Temperature Viscosity 
Metal T ("(3 p (mPa s) 

-- - -- 

Data taken from The Reactor Handbook, Vol. 2, Atomic 
Energy Commission AECD-3646, U.S. Government 
Printing Office, Washington, D.C. (May 1955), pp. 258 
et seq. 

given for pure fluids at 1 atm pressure. Note that for gases at low density, the viscosity 
increases with increasing temperature, whereas for liquids the viscosity usually decreases 
with increasing temperature. In gases the momentum is transported by the molecules in 
free flight between collisions, but in liquids the transport takes place predominantly by 
virtue of the intermoIecular forces that pairs of molecules experience as they wind their 
way around among their neighbors. In g51.4 and 1.5 we give some elementary kinetic 
theory arguments to explain the temperature dependence of viscosity. 

Compute the steady-state momentum flux T,, in lbf/ft? when the lower plate velocity V in Fig. 
1.1-1 is I ft/s in the positive x direction, the plate separation Y is 0.001 ft, and the fluid viscos- 

Calculation of ity p is 0.7 cp. 
Momentum Flux 

SOLUTION 

Since T ~ ,  is desired in British units, we should convert the viscosity into that system of units. 
Thus, making use of Appendix F, we find p = (0.7 cp)(2.0886 X = 1.46 x Ibf s/ft2. 
The velocity profile is linear so that 

dv, - Av, - -1.0 ft/s 
= -10oos-~ 

dy Ay 0.001 ft 

Substitution into Eq. 1.1-2 gives 
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1 . 2  GENERALIZATION OF NEWTON'S LAW OF VISCOSITY 

In the previous section the viscosity was defined by Eq. 1.1-2, in terms of a simple 
steady-state shearing flow in which v, is a function of y alone, and v, and v, are zero. 
Usually we are interested in more complicated flows in which the three velocity compo- 
nents may depend on all three coordinates and possibly on time. Therefore we must 
have an expression more general than Eq. 1.1-2, but it must simplify to Eq. 1.1-2 for 
steady-state shearing flow. 

This generalization is not simple; in fact, it took mathematicians about a century and a 
half to do this. It is not appropriate for us to give all the details of this development here, 
since they can be found in many fluid dynamics books.' Instead we explain briefly the main 
ideas that led to the discovery of the required generalization of Newton's law of viscosity. 

To do this we consider a very general flow pattern, in which the fluid velocity may 
be in various directions at various places and may depend on the time t. The velocity 
components are then given by 

In such a situation, there will be nine stress components ril (where i and j may take on 
the designations x, y, and z), instead of the component T~ that appears in Eq. 1.1-2. We 
therefore must begin by defining these stress components. 

In Fig. 1.2-1 is shown a small cube-shaped volume element within the flow field, 
each face having unit area. The center of the volume element is at the position x, y, z. At 

Fig. 1.2-1 Pressure and viscous forces acting on planes in the fluid perpendicular to the three 
coordinate systems. The shaded planes have unit area. 

W. Prager, Introduction to Mechanics of Continua, Ginn, Boston (1961), pp. 89-91; R. Aris, Vectors, 
Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs, N.J. (19621, pp. 30-34, 
99-112; L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, London, 2nd edition (1987), pp. 44-45. 
Lev Davydovich Landau (1908-1968) received the Nobel prize in 1962 for his work on liquid helium and 
superfluid dynamics. 
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any instant of time we can slice the volume element in such a way as to remove half the 
fluid within it. As shown in the figure, we can cut the volume perpendicular to each of 
the three coordinate directions in turn. We can then ask what force has to be applied on 
the free (shaded) surface in order to replace the force that had been exerted on that sur- 
face by the fluid that was removed. There will be two contributions to the force: that as- 
sociated with the pressure, and that associated with the viscous forces. 

The pressure force will always be perpendicular to the exposed surface. Hence in (a) 
the force per unit area on the shaded surface will be a vector p6,-that is, the pressure (a 
scalar) multiplied by the unit vector 6, in the x direction. Similarly, the force on the 
shaded surface in (b) will be p6,, and in (c) the force will be p6,. The pressure forces will 
be exerted when the fluid is stationary as well as when it is in motion. 

The viscous forces come into play only when there are velocity gradients within the 
fluid. In general they are neither perpendicular to the surface element nor parallel to it, 
but rather at some angle to the surface (see Fig. 1.2-1). In (a) we see a force per unit area 
T, exerted on the shaded area, and in (b) and (c) we see forces per unit area T, and 7,. 
Each of these forces (which are vectors) has components (scalars); for example, T, has 
components T,,, T,~, and T,,. Hence we can now summarize the forces acting on the three 
shaded areas in Fig. 1.2-1 in Table 1.2-1. This tabulation is a summary of the forces per 
unit area (stresses) exerted within a fluid, both by the thermodynamic pressure and the 
viscous stresses. Sometimes we will find it convenient to have a symbol that includes both 
types of stresses, and so we define the molecular stresses as follows: 

r . = paii + rii where i and j may be x, y, or z 'I (1.2-2) 

Here Sij is the Kronecker delta, which is 1 if i = j and zero if i # j. 
Just as in the previous section, the r,j (and also the 'rr$ may be interpreted in two ways: 

rZi = pa,, + ril = force in the j direction on a unit area perpendicular to the i direction, 
where it is understood that the fluid in the region of lesser xi is exerting 
the force on the fluid of greater xi 

'rrY = paij + rij = flux of j-momentum in the positive i direction-that is, from the region 
of lesser xi to that of greater xi 

Both interpretations are used in this book; the first one is particularly useful in describ- 
ing the forces exerted by the fluid on solid surfaces. The stresses .rr,, = p + T,,, 5, = p + 
ryy, 'rrzz = p + T,, are called normal stresses, whereas the remaining quantities, IT,, = T,,, 
5, = T ~ ~ ,  . . . are called shear stresses. These quantities, which have two subscripts associ- 
ated with the coordinate directions, are referred to as "tensors," just as quantities (such 
as velocity) that have one subscript associated with the coordinate directions are called 

Table 1.2-1 Summary of the Components of the Molecular Stress Tensor (or Molecular 
Momentum-Flux Tensor)" 

Direction 
normal 
to the 
shaded 

Vector force 
per unit area on the 

shaded face (momentum 
face flux through shaded face) 

X Tr, = pajx + Tw 

Y n, = p6 ,  + T, 

z m, = p6 ,  + T, 

Components of the forces (per unit area) 
acting on the shaded face (components of the 

momentum flux through the shaded face) 

x-component y-component z-component 

" These are referred to as components of the "molecular momentum flux tensor" because they are 
associated with the molecular motions, as discussed in g1.4 and Appendix D. The additional "convective 
momentum flux tensor" components, associated with bulk movement of the fluid, are discussed in 51.7. 
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I, vectors." Therefore we will refer to T as the z~iscous stress tensor (with components T ~ )  

and .rr as the molecular stress tensor (with components qj). When there is no chance for 
confusion, the modifiers "viscous" and "molecular" may be omitted. A discussion of 
vectors and tensors can be found in Appendix A. 

The question now is: How are these stresses rij related to the velocity gradients in 
the fluid? In generalizing Eq. 1.1-2, we put several restrictions on the stresses, as follows: 

The viscous stresses may be linear combinations of all the velocity gradients: 

dvk 
7.. = -CkClp.. - where i, j, k, and 1 may be 1,2,3 (1.2-3) 

11 vk' dx1 

Here the 81 quantities pijkl are "viscosity coefficients." The quantities x,, x,, x3 in 
the derivatives denote the Cartesian coordinates x, y, z, and v,, v,, v, are the same 
as v,, v,, v,. 
We assert that time derivatives or time integrals should not appear in the expres- 
sion. (For viscoelastic fluids, as discussed in Chapter 8, time derivatives or time in- 
tegrals are needed to describe the elastic responses.) 

We do not expect any viscous forces to be present, if the fluid is in a state of pure 
rotation. This requirement leads to the necessity that ri, be a symmetric combina- 
tion of the velocity gradients. By this we mean that if i and j are interchanged, the 
combination of velocity gradients remains unchanged. It can be shown that the 
only symmetric linear combinations of velocity gradients are 

If the fluid is isotropic-that is, it has no preferred direction-then the coefficients 
in front of the two expressions in Eq. 1.2-4 must be scalars so that 

We have thus reduced the number of "viscosity coefficients" from 81 to 2! 

Of course, we want Eq. 1.2-5 to simplify to Eq. 1.1-2 for the flow situation in Fig. 
1.1-1. For that elementary flow Eq. 1.2-5 simplifies to T,, = A dv,/dy, and hence the 
scalar constant A must be the same as the negative of the viscosity p. 

Finally, by common agreement among most fluid dynamicists the scalar constant 
B is set equal to $p - K, where K is called the dilatational viscosity. The reason for 
writing B in this way is that it is known from kinetic theory that K is identically 
zero for monatomic gases at low density. 

Thus the required generalization for Newton's law of viscosity in Eq. 1.1-2 is then 
the set of nine relations (six being independent): 

Here T~~ = T,~, and i and j can take on the values 1,2,3. These relations for the stresses in a 
Newtonian fluid are associated with the names of Navier, Poisson, and ~ t o k e s . ~  If de- 

' C.-L.-M.-H. Navier, Ann. Chimie, 19,244-260 (1821); S.-D. Poisson, I .  ~ c o l e  Polytech., 13, Cahier 20,l-174 
(1831); G. G. Stokes, Trans. Camb. Phil. Soc., 8,287-305 (1845). Claude-Louis-Marie-Henri Navier (1785-1836) 
(pronounced "Nah-vyay," with the second syllable accented) was a civil engineer whose specialty was road 
and bridge building; George Gabriel Stokes (1819-1903) taught at Cambridge University and was president 
of the Royal Society. Navier and Stokes are well known because of the Navier-Stokes equations (see Chapter 
3). See also D. J. Acheson, Elemazta y Fluid Mechanics, Oxford University Press (1990), pp. 209-212,218. 



1 . 2  Generalization of Newton's Law of Viscosity 19 

sired, this set of relations can be written more concisely in the vector-tensor notation of 
Appendix A as 

in which 6 is the unit tensor with components SV, Vv is the velocity gradient tensor with 
components (d/dxi)vj, (Vv)' is the "transposer' of the velocity gradient tensor with com- 
ponents (d/dxj)vi, and (V . v) is the divergence of the velocity vector. 

The important conclusion is that we have a generalization of Eq. 1.1-2, and this gen- 
eralization involves not one but two coefficients3 characterizing the fluid: the viscosity p 
and the dilatational viscosity K .  Usually, in solving fluid dynamics problems, it is not 
necessary to know K .  If the fluid is a gas, we often assume it to act as an ideal 
monoatomic gas, for which K is identically zero. If the fluid is a liquid, we often assume 
that it is incompressible, and in Chapter 3 we show that for incompressible liquids 
(V v) = 0, and therefore the term containing K is discarded anyway. The dilational vis- 
cosity is important in describing sound absorption in polyatomic gases4 and in describ- 
ing the fluid dynamics of liquids containing gas  bubble^.^ 

Equation 1.2-7 (or 1.2-6) is an important equation and one that we shall use often. 
Therefore it is written out in full in Cartesian (x, y, z), cylindrical (r, 8, z), and spherical 
(r, O f + )  coordinates in Table B.1. The entries in this table for curvilinear coordinates are 
obtained by the methods outlined in 55A.6 and A.7. It is suggested that beginning stu- 
dents not concern themselves with the details of such derivations, but rather concen- 
trate on using the tabulated results. Chapters 2 and 3 will give ample practice in doing 
this. 

In curvilinear coordinates the stress components have the same meaning as in Carte- 
sian coordinates. For example, r,, in cylindrical coordinates, which will be encountered 
in Chapter 2, can be interpreted as: (i) the viscous force in the z direction on a unit area 
perpendicular to the r direction, or (ii) the viscous flux of z-momentum in the positive r 
direction. Figure 1.2-2 illustrates some typical surface elements and stress-tensor compo- 
nents that arise in fluid dynamics. 

The shear stresses are usually easy to visualize, but the normal stresses may cause 
conceptual problems. For example, T,, is a force per unit area in the z direction on a 
plane perpendicular to the z direction. For the flow of an incompressible fluid in the 
convergent channel of Fig. 1.2-3, we know intuitively that v, increases with decreas- 
ing z; hence, according to Eq. 1.2-6, there is a nonzero stress r,, = -2p(dv,/dz) acting 
in the fluid. 

Note on the Sign Convention for the Stress Tensor We have emphasized in connection 
with Eq. 1.1-2 (and in the generalization in this section) that T~~ is the force in the posi- 
tive x direction on a plane perpendicular to the y direction, and that this is the force ex- 
erted by the fluid in the region of the lesser y on the fluid of greater y. In most fluid 
dynamics and elasticity books, the words "lesser" and "greater" are interchanged and 
Eq. 1.1-2 is written as r,, = +p(dv,/dy). The advantages of the sign convention used in 
this book are: (a) the sign convention used in Newton's law of viscosity is consistent 
with that used in Fourier's law of heat conduction and Fick's law of diffusion; (b) the 
sign convention for rij is the same as that for the convective momentum flux p w  (see 

Some writers refer to p as the "shear viscosity," but this is inappropriate nomenclature inasmuch 
as p can arise in nonshearing flows as well as shearing flows. The term "dynamic viscosity" is also 
occasionally seen, but this term has a very specific meaning in the field of viscoelasticity and is an 
inappropriate term for p. 

L. Landau and E. M. Lifshitz, op. cit., Ch. VIII. 
G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (1963, pp. 253-255. 
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of radius R  
Force by fluid in 
+8 direction on 
surface element 

(RdB)(dz) is 
- ~ ~ o ( ~ = R R d e d z  

Z 

surface element 
(RdNdz )  is 

- 7 , . , ( , . = ~ R d ~ d ~  

Z 
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Solid sphere 
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Force by fluid in 
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(RdMR sin 8  d 4 )  is 

- T ~ + ~ ~ = ~ R ~  sin 8  d8d4 

I 

Force by fluid in 
r  direction on 

surface element 
Solid cone (dr)(r sin a d+) is 
with half 

- r o r ( o = a r  sin ru drd4 

Fig. 1.2-2 (a) Some typical surface elements and shear stresses in the cylindrical coordinate system. 
(b)  Some typical surface elements and shear stresses in the spherical coordinate system. 

51.7 and Table 19.2-2); (c) in Eq. 1.2-2, the terms paij and T~~ have the same sign affixed, 
and the terms p and T~~ are both positive in compression (in accordance with common 
usage in thermodynamics); (d) all terms in the entropy production in Eq. 24.1-5 have 
the same sign. Clearly the sign convention in Eqs. 1.1-2 and 1.2-6 is arbitrary, and either 
sign convention can be used, provided that the physical meaning of the sign convention 
is clearly understood. 
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Fig. 1.2-3 The flow in a converging duct is an example of a situation 
in which the normal stresses are not zero. Since v, is a function of 
r and z,  the normal-stress component T,, = -2p(dv , /dz)  is nonzero. 
Also, since v, depends on r and z, the normal-stress component 
T,, = -2p (dvr /dr )  is not equal to zero. At the wall, however, the 

'z") normal stresses all vanish far fluids described by Eq. 1.2-7 provided 
that the density is constant (see Example 3.1-1 and Problem 3C.2). 

1 . 3  PRESSURE AND TEMPERATURE DEPENDENCE 
OF VISCOSITY 

Extensive data on viscosities of pure gases and liquids are available in various science 
and engineering handbooks.' When experimental data are lacking and there is not time 
to obtain them, the viscosity can be estimated by empirical methods, making use of other 
data on the given substance. We present here a corresponding-states correlation, which fa- 
cilitates such estimates and illustrates general trends of viscosity with temperature and 
pressure for ordinary fluids. The principle of corresponding states, which has a sound 
scientific basis: is widely used for correlating equation-of-state and thermodynamic 
data. Discussions of this principle can be found in textbooks on physical chemistry and 
thermodynamics. 

The plot in Fig. 1.3-1 gives a global view of the pressure and temperature dependence 
of viscosity. The reduced viscosity pr = p / p ,  is plotted versus the reduced temperature T, 
= T / T ,  for various values of the reduced pressure p, = p/p,. A "reduced quantity is one 
that has been made dimensionless by dividing by the corresponding quantity at the criti- 
cal point. The chart shows that the viscosity of a gas approaches a limit (the low-density 
limit) as the pressure becomes smaller; for most gases, this limit is nearly attained at 1 atm 
pressure. The viscosity of a gas at low density increases with increasing temperature, 
whereas the viscosity of a liquid decreases with increasing temperature. 

Experimental values of the critical viscosity p, are seldom available. However, p, 
may be estimated in one of the following ways: (i) if a value of viscosity is known at a 
given reduced pressure and temperature, preferably at conditions near to those of 

- - -- 

J. A. Schetz and A. E. Fuhs (eds.), Handbook of Fluid Dynamics and Fluid Machinery, Wiley- 
Interscience, New York (1996), Vol. 1, Chapter 2; W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook 
of Heat Transfer, McGraw-Hill, New York, 3rd edition (19981, Chapter 2. Other sources are mentioned in 
fn. 4 of 91.1. 

J. Millat, J. H. Dymond, and C. A. Nieto de Castro (eds.), Transport Properties of Fluids, Cambridge 
University Press (1996), Chapter 11, by E. A. Mason and F. J. Uribe, and Chapter 12, by M. L. Huber and 
H. M. M. Hanley. 
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Fig. 1.3-1 Reduced vis- 
cosity pr = p/p, as a 
function of reduced 
temperature for several 
values of the reduced 
pressure. 10. A. Uye- 
hara and K. M. Watson, 
Nat. Petroleum News, 
Tech. Section, 36,764 
(Oct. 4,1944); revised 
by K. M. Watson (1960). 
A large-scale version of 
this graph is available 
in 0. A. Hougen, 
K. M. Watson, and 
R. A. Ragatz, C. P. P. 
Charts, Wiley, New 
York, 2nd edition 
(1960)l. 

Reduced temperature T,  = T / T ,  

interest, then pc can be calculated from p, = p/pY; or (ii) if critical p-V-T data are avail- 
able, then p, may be estimated from these empirical relations: 

Here p, is in micropoises, p, in atm, Tc in K, and in cm3/g-mole. A tabulation of critical 
viscosities3 computed by method (i) is given in Appendix E. 

Figure 1.3-1 can also be used for rough estimation of viscosities of mixtures. For 
N-component fluids with mole fractions x,, the "pseudocritical" properties4 are: 

That is, one uses the chart exactly as for pure fluids, but with the pseudocritical proper- 
ties instead of the critical properties. This empirical procedure works reasonably well 

". A. Hougen and K. M. Watson, Chemical Process Principles, Part 111, Wiley, New York (1947), 
p. 873. Olaf Andreas Hougen (pronounced "How-gen") (1893-1986) was a leader in the development of 
chemical engineering for four decades; together with K. M. Watson and R. A. Ragatz, he wrote 
influential books on thermodynamics and kinetics. 

0. A. Hougen and K. M. Watson, Chemical Process Principles, Part 11, Wiley, New York (1947), p. 604. 



1 . 4  Molecular Theory of the Viscosity of Gases at Low Density 23 

unless there are chemically dissimilar substances in the mixture or the critical properties 
of the components differ greatly. 

There are many variants on the above method, as well as a number of other empiri- 
cism~. These can be found in the extensive compilation of Reid, Prausnitz, and Poling.' 

EXAMPLE 1.3-1 Estimate the viscosity of NZ at 50°C and 854 atm, given M = 28.0 g/g-mole, p, = 33.5 atm, and 
T, = 126.2 K. 

Estimation of Viscosity 
from Critica I Properties SOLUTION 

Using Eq. 1.3-1 b, we get 

p, = 7.70(28.0)"~(33.5)~'~(126.2)'/~ 

= 189 micropoises = 189 X poise (1.3-3) 

The reduced temperature and pressure are 

From Fig. 1.3-1, we obtain p, = p/pc = 2.39. Hence, the predicted value of the viscosity is 

p = p,(p/p,) = (189 X 1OP6)(2.39) = 452 X poise (1.3-5) 

The measured value6 is 455 X lop6 poise. This is unusually good agreement. 

1 . 4  MOLECULAR THEORY OF THE VISCOSITY 
OF GASES AT LOW DENSITY 

To get a better appreciation of the concept of molecular momentum transport, we exam- 
ine this transport mechanism from the point of view of an elementary kinetic theory of 
gases. 

We consider a pure gas composed of rigid, nonattracting spherical molecules of di- 
ameter d and mass m, and the number density (number of molecules per unit volume) is 
taken to be n. The concentration of gas molecules is presumed to be sufficiently small 
that the average distance between molecules is many times their diameter d. In such a 
gas it is known1 that, at equilibrium, the molecular velocities are randomly directed and 
have an average magnitude given by (see Problem 1C.1) 

7 

in which K is the Boltzmann constant (see Appendix F). The frequency of molecular 
bombardment per unit area on one side of any stationary surface exposed to the gas is 

R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New 
York, 4th edition (19871, Chapter 9. 

A. M. J. F. Michels and R. E. Gibson, Proc. Roy. Soc. (London), A134,288-307 (1931). 
' The first four equations in this section are given without proof. Detailed justifications are given in 

books on kinetic theory-for example, E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York 
(1938), Chapters I1 and 111. Also E. A. Guggenheim, Elements of the Kinetic Theory of Gases, Pergamon 
Press, New York (1960), Chapter 7, has given a short account of the elementary theory of viscosity. For 
readable summaries of the kinetic theory of gases, see R. J. Silbey and R. A. Alberty, Physical Chemistry, 
Wiley, New York, 3rd edition (2001), Chapter 17, or R. S. Berry, S. A. Rice, and J. Ross, Physical Chemistry, 
Oxford University Press, 2nd edition (2000), Chapter 28. 
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The average distance traveled by a molecule between successive collisions is the mean 
free path A, given by 

A = 
1 (1.4-3) 

V?ird2n 

On the average, the molecules reaching a plane will have experienced their last collision 
at a distance a from the plane, where a is given very roughly by 

The concept of the mean free path is intuitively appealing, but it is meaningful only 
when A is large compared to the range of intermolecular forces. The concept is appropri- 
ate for the rigid-sphere molecular model considered here. 

To determine the viscosity of a gas in terms of the molecular model parameters, we 
consider the behavior of the gas when it flows parallel to the m-plane with a velocity 
gradient dvx/dy (see Fig. 1.4-1). We assume that Eqs. 1.4-1 to 4 remain valid in this non- 
equilibrium situation, provided that all molecular velocities are calculated relative to the 
average velocity v in the region in which the given molecule had its last collision. The 
flux of x-momentum across any plane of constant y is found by summing the x-momenta 
of the molecules that cross in the positive y direction and subtracting the x-momenta of 
those that cross in the opposite direction, as follows: 

In writing this equation, we have assumed that all molecules have velocities representa- 
tive of the region in which they last collided and that the velocity profile vx(y) is essen- 
tially linear for a distance of several mean free paths. In view of the latter assumption, 
we may further write 

By combining Eqs. 1.4-2,5, and 6 we get for the net flux of x-momentum in the positive y 
direction 

This has the same form as Newton's law of viscosity given in Eq. 1.1-2. Comparing the 
two equations gives an equation for the viscosity 

1 p = nmiiA = ipiiA (1.4-8) 

Velocity profile vx(y) 

Fig. 1.4-1 Molecular transport 
of x-momentum from the plane at 

x (y - a) to the plane at y. 
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or, by combining Eqs. 1.4-1,3, and 8 

This expression for the viscosity was obtained by Maxwell2 in 1860. The quantity d2 is 
called the collision cross section (see Fig. 1.4-2). 

The above derivation, which gives a qualitatively correct picture of momentum 
transfer in a gas at low density, makes it clear why we wished to introduce the term 
"momentum flux" for rp in §1 .l.  

The prediction of Eq. 1.4-9 that p is independent of pressure agrees with experimen- 
tal data up to about 10 atm at temperatures above the critical temperature (see Fig. 1.3-1). 
The predicted temperature dependence is less satisfactory; data for various gases indi- 
cate that p increases more rapidly than 1/T. To better describe the temperature depen- 
dence of p, it is necessary to replace the rigid-sphere model by one that portrays the 
attractive and repulsive forces more accurately. It is also necessary to abandon the mean 
free path theories and use the Boltzmann equation to obtain the molecular velocity dis- 
tribution in nonequilibrium systems more accurately. Relegating the details to Appendix 
D, we present here the main  result^.^'^^ 

7 of area d2 

, /-- 
/ 

/ 
/ 
I 
I Fig. 1.4-2 When two rigid spheres of diameter d approach 
1 
\ each other, the center of one sphere (at 0') "sees" a circle of 
\ 
\ area md2 about the center of the other sphere (at O), on 

/ which a collision can occur. The area &I2 is referred to as the '\ .---/ / "collision cross section." 

-- - - - - 

James Clerk Maxwell (1831-1879) was one of the greatest physicists of all time; he is particularly 
famous for his development of the field of electromagnetism and his contributions to the kinetic theory 
of gases. In connection with the latter, see J. C. Maxwell, Phil. Mag., 19,19, Prop. XI11 (1860); S. G. Brush, 
Am. J. Phys, 30,269-281 (1962). There is some controversy concerning Eqs. 1.4-4 and 1.4-9 (see S. Chapman 
and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, 3rd 
edition 1970), p. 98; R. E. Cunningham and R. J. J. Williams, Diffusion in Gases and Porous Media, Plenum 
Press, New York (1980), s6.4. 

Sydney Chapman (1888-1970) taught at Imperial College in London, and thereafter was at the 
High Altitude Observatory in Boulder, Colorado; in addition to h s  seminal work on gas kinetic theory, 
he contributed to kinetic theory of plasmas and the theory of flames and detonations. David Enskog 
(1884-1947) (pronounced, roughly, "Ayn-skohg") is famous for his work on kinetic theories of low- and 
highdensity gases. The standard reference on the Chapman-Enskog kinetic theory of dilute gases is 
S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University 
Press, 3rd edition (1970); pp. 407409 give a historical summary of the kinetic theory. See also D. Enskog, 
Inaugural Dissertation, Uppsala (1917). In addition J. H. Ferziger and H. G. Kaper, Mathematical Theory of 
Transport Processes in Gases, North-Holland, Amsterdam (1972), is a very readable account of molecular 
theory. 

The Curtiss-Hirschfelder5 extension of the Chapman-Enskog theory to multicomponent gas 
mixtures, as well as the development of useful tables for computation, can be found in J. 0. Hirschfelder, 
C .  F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 2nd corrected printing 
(1964). See also C. F. Curtiss, J. Chem. Phys., 49,2917-2919 (19681, as well as references given in Appendix 
E. Joseph Oakland Hirschfelder (1911-1990), founding director of the Theoretical Chemistry Institute at 
the University of Wisconsin, specialized in intermolecular forces and applications of kinetic theory. 

C. F. Curtiss and J. 0. Hirschfelder, J. Chem. Phys., 17,550-555 (1949). 
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A rigorous kinetic theory of monatomic gases at low density was developed early in 
the twentieth century by Chapman in England and independently by Enskog in Sweden. 
The Chapman-Enskog theory gives expressions for the transport properties in terms of 
the intermolecular potential energy &), where r is the distance between a pair of molecules 
undergoing a collision. The intermolecular force is then given by F(r) = -dp/dr. The 
exact functional form of p(r) is not known; however, for nonpolar molecules a satisfac- 
tory empirical expression is the Lennard-Jones (6-12) potential6 given by 

in which a is a characteristic diameter of the molecules, often called the collision diameter 
and E is a characteristic energy, actually the maximum energy of attraction between a 
pair of molecules. This function, shown in Fig. 1.4-3, exhibits the characteristic features 
of intermolecular forces: weak attractions at large separations and strong repulsions at 
small separations. Values of the parameters a and E are known for many substances; a 
partial list is given in Table E.l, and a more extensive list is available el~ewhere.~ When u 
and E are not known, they may be estimated from properties of the fluid at the critical 
point (c), the liquid at the normal boiling point (b), or the solid at the melting point (m), 
by means of the following empirical relations:" 

Here E/K and T are in K, a is in &tgstriim units (1 A = lop1' m), ?is in ~ rn~ /~ - rno l e ,  and 
p, is in atmospheres. 

The viscosity of a pure monatomic gas of molecular weight M may be written in 
terms of the Lennard-Jones parameters as 

Molecules repel Molecules attract 
one another at one another at 
separations r  < r,, separations r  > r ,  

I 
I 
I 

Whenr -3u, l l c p (  
I has dropped off 

to less than 0.01 E Fig. 1.4-3 Potential energy function 
0 - p(r) describing the interaction of two 

r  spherical, nonpolar molecules. The 
Lennard-Jones (6-12) potential, given 
in Eq. 1.4-10, is one of the many em- 
pirical equations proposed for fitting 
this curve. For r < Y, the molecules 
repel one another, whereas for r > r, 
the molecules attract one another. 

J. E. (Lennard-)Jones, Proc. Roy. Soc., A106,441462,463477 (1924). See also R. J. Silbey and R. A. 
Alberty, Physical Chemistry, Wiley, 2nd edition (2001), §§11.10,16.14, and 17.9; and R. S. Berry, S. A. Rice, 
and J. Ross, Physical Chemistry, Oxford University Press, 2nd edition (2000), g10.2. 
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In the second form of this equation, if T [=I K and a [=I A, then p [=I  g/cm s. The di- 
mensionless quantity (n, is a slowly varying function of the dimensionless temperature 
KT/&, of the order of magnitude of unity, given in Table E.2. It is called the "collision in- 
tegral for viscosity," because it accounts for the details of the paths that the molecules 
take during a binary collision. If the gas were made up of rigid spheres of diameter a (in- 
stead of real molecules with attractive and repulsive forces), then 0, would be exactly 
unity. Hence the function In, may be interpreted as describing the deviation from rigid- 
sphere behavior. 

Although Eq. 1.4-14 is a result of the kinetic theory of monatomic gases, it has been 
found to be remarkably good for polyatomic gases as well. The reason for this is that, in 
the equation of conservation of momentum for a collision between polyatomic mole- 
cules, the center of mass coordinates are more important than the internal coordinates 
[see §0.3(b)l. The temperature dependence predicted by Eq. 1.4-14 is in good agreement 
with that found from the low-density line in the empirical correlation of Fig. 1.3-1. The 
viscosity of gases at low density increases with temperature, roughly as the 0.6 to 1.0 
power of the absolute temperature, and is independent of the pressure. 

To calculate the viscosity of a gas mixture, the multicomponent extension of the 
Chapman-Enskog theory can be used."j5 Alternatively, one can use the following very 
satisfactory semiempirical f~ rmula :~  

in which the dimensionless quantities Qap are 

Here N is the number of chemical species in the mixture, x, is the mole fraction of species 
a, pa is the viscosity of pure species a at the system temperature and pressure, and Ma is 
the molecular weight of species a. Equation 1.4-16 has been shown to reproduce mea- 
sured values of the viscosities of mixtures within an average deviation of about 2%. The 
dependence of mixture viscosity on composition is extremely nonlinear for some mix- 
tures, particularly mixtures of light and heavy gases (see Problem 1A.2). 

To summarize, Eqs. 1.4-14, 15, and 16 are useful formulas for computing viscosities 
of nonpolar gases and gas mixtures at low density from tabulated values of the intermol- 
ecular force parameters a and E / K .  They will not give reliable results for gases consisting 
of polar or highly elongated molecules because of the angle-dependent force fields that 
exist between such molecules. For polar vapors, such as H20, NH,, CHOH, and NOCl, 
an angle-dependent modification of Eq. 1.4-10 has given good  result^.^ For the light 
gases H, and He below about loOK, quantum effects have to be taken into acco~n t .~  

Many additional empiricisms are available for estimating viscosities of gases and 
gas mixtures. A standard reference is that of Reid, Prausnitz, and Poling.'' 

C. R. Wilke, J. Chem. Phys., 18,517-519 (1950); see also J. W. Buddenberg and C. R. Wilke, Ind. Eng. 
Chem., 41,1345-1347 (1949). 

E. A. Mason and L. Monchick, J. Chem. Phys., 35,1676-1697 (1961) and 36,1622-1639,2746-2757 
(1962). 

J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, op. cif. ,  Chapter 10; H. T. Wood and C. F. Curtiss, J. 
Chem. Phys., 41,1167-1173 (1964); R. J. Munn, F. J. Smith, and E. A. Mason, J. Chem. Phys., 42,537-539 
(1965); S. Imam-Rahajoe, C. F. Curtiss, and R. B. Bernstein, J. Chem. Phys., 42,530-536 (1965). 

lo R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Propeties of Gases and Liquids, McGraw-Hill, New 
York, 4th edition (1987). 
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Compute the viscosity of C02 at 200,300, and 800K and 1 atm. 

Computation of the SOLUTION 
Viscosity of a Pure 
G~~ at L~~  it^ Use Eq. 1.4-14. From Table E.1, we find the Lennard-Jones parameters for C02 to be E / K  = 

190 K and a = 3.996 A. The molecular weight of C02 is 44.01. Substitution of M and (T into 
Eq. 1.4-14 gives 

in which p [ = I  g/cm . s and T [ = I  K. The remaining calculations may be displayed in a table. 

Viscosity (g/cm . s) 

T (K) KT/& a, fi Predicted Observed" 

Experimental data are shown in the last column for comparison. The good agreement is to be 
expected, since the Lennard-Jones parameters of Table E.l were derived from viscosity data. 

Estimate the viscosity of the following gas mixture at 1 atm and 293K from the given data on 
the pure components at the same pressure and temperature: 

Prediction of the 
Viscosity of a Gas 
Mixture at Low Mole Molecular Viscosity, p, 

Species a fraction, x, weight, M, Density (g/cm. s) 

SOLUTION Use Eqs. 1.4-16 and 15 (in that order). The calculations can be systematized in tabular form, thus: 

" H. L. Johnston and K. E. McCloskey, I. Phys. Chem., 44,1038-1058 (1940). 
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Eq. 1.4-15 then gives 

The observed value12 is 1793 X g/cm s. 

1.5 MOLECULAR THEORY OF THE VISCOSITY OF LIQUIDS 

A rigorous kinetic theory of the transport properties of monatomic liquids was devel- 
oped by Kirkwood and coworkers.' However this theory does not lead to easy-to-use 
results. An older theory, developed by Eyring2 and coworkers, although less well 
grounded theoretically, does give a qualitative picture of the mechanism of momentum 
transport in liquids and permits rough estimation of the viscosity from other physical 
properties. We discuss this theory briefly. 

In a pure liquid at rest the individual molecules are constantly in motion. However, 
because of the close packing, the motion is largely confined to a vibration of each mole- 
cule within a "cage" formed by its nearest neighbors. This cage is represented by an en- 
ergy barrier of height AG;/I;J, in which AG: is the molar free energy of activation for 
escape from the cage in the stationary fluid (see Fig. 1.5-1). According to Eyring, a liquid 
at rest continually undergoes rearrangements, in which one molecule at a time escapes 
from its "cage" into an adjoining "hole," and that the molecules thus move in each of the 

Vacant lattice 
/site or "hole" 

a y e  c /'@ .i 
T 0 V X B  

Layer B - 0 -  I 

Fig. 1.5-1 Illustration of an escape 
In fluid at rest process in the flow of a liquid. 
In fluid under stress T~~ Molecule 1 must pass through a 

t 
"bottleneck to reach the vacant 

x site. 

'* F. Herning and L. Zipperer, Gas- und Wasserfach, 79,49-54,69-73 (1936). 
J. H. Irving and J. G. Kirkwood, J. Chem. Phys., 18,817-823 (1950); R. J. Bearman and J. G. Kirkwood, 

J. Chem. Phys, 28,136146 (1958). For additional publications, see John Gamble Kirkwood, Collected 
Works, Gordon and Breach, New York (1967). John Gamble Kirkwood (1907-1959) contributed much to 
the kinetic theory of liquids, properties of polymer solutions, theory of electrolytes, and thermodynamics 
of irreversible processes. 

' 5. Glasstone, K. J. Laidler, and H. Eyring, Theory of Rate Processes, McGraw-Hill, New York (1941), 
Chapter 9; H. Eyring, D. Henderson, B. J. Stover, and E. M. Eyring, Statistical Mechanics, Wiley, New York 
(1964), Chapter 16. See also R. J. Silbey and R. A. Alberty, Physical Chemisty, Wiley, 3rd edition (2001), 
s20.1; and R. S.  Berry, S. A. Rice, and J. Ross, Physical Chemisty, Oxford University Press, 2nd edition 
(2000), Ch. 29. Henry Eyring (1901-1981) developed theories for the transport properties based on simple 
physical models; he also developed the theory of absolute reaction rates. 



30 Chapter 1 Viscosity and the Mechanisms of Momentum Transport 

coordinate directions in jumps of length a at a frequency u per molecule. The frequency 
is given by the rate equation 

In which K and h are the Boltzmann and Planck constants, fi is the Avogadro number, 
and R = NK is the gas constant (see Appendix F). 

In a fluid that is flowing in the x direction with a velocity gradient dv,/dy, the fre- 
quency of molecular rearrangements is increased. The effect can be explained by consid- 
ering the potential energy barrier as distorted under the applied stress T,, (see Fig. 1.5-11, 
so that 

where vis the volume of a mole of liquid, and 2 (a/S)(~,v/2) is an approximation to the 
work done on the molecules as they move to the top of the energy barrier, moving with 
the applied shear stress (plus sign) or against the applied shear stress (minus sign). We 
now define u+ as the frequency of forward jumps and u- as the frequency of backward 
jumps. Then from Eqs. 1.5-1 and 1.5-2 we find that 

The net velocity with which molecules in layer A slip ahead of those in layer B (Fig. 
1.5-1) is just the distance traveled per jump (a) times the net frequency of forward jumps 
(v+ - u-); this gives 

The velocity profile can be considered to be linear over the very small distance S between 
the layers A and B, so that 

By combining Eqs. 1.5-3 and 5, we obtain finally 

KT exp(-~6,'/Rn 2 sinh - )( 2 ' )  
This predicts a nonlinear relation between the shear stress (momentum flux) and the ve- 
locity gradient-that is, non-Newtonian pow. Such nonlinear behavior is discussed further 
in Chapter 8. 

The usual situation, however, is that ~ T , ~ / ~ s R T  << 1. Then we can use the Taylor 
series (see gC.2) sinh x = x + (1 /3!)x3 + (1 /5!)x5 + . and retain only one term. Equation 
1.5-6 is then of the form of Eq. 1.1-2, with the viscosity being given by 

The factor S/a can be taken to be unity; this simplification involves no loss of accuracy, 
since A(?: is usually determined empirically to make the equation agree with experimen- 
tal viscosity data. 

It has been found that free energies of activation, AG:, determined by fitting Eq. 1.5-7 
to experimental data on viscosity versus temperature, are almost constant for a given 
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fluid and are simply related to the internal energy of vaporization at the normal boiling 
point, as  follow^:^ 

AS: - 0.408 A&,, (1.5-8) 

By using this empiricism and setting 6 / a  = 1, Eq. 1.5-7 becomes 

h 
p = T exp (0.408 AU,,/RT) 

v 
The energy of vaporization at the normal boiling point can be estimated roughly from 
Trouton's rule 

With this further approximation, Eq. 1.5-9 becomes 

Equations 1.5-9 and 11 are in agreement with the long-used and apparently successful 
empiricism p = A exp(B/T). The theory, although only approximate in nature, does give 
the observed decrease of viscosity with temperature, but errors of as much as 30% are 
common when Eqs. 1.5-9 and 11 are used. They should not be used for very long slender 
molecules, such as n-C,,H,. 

There are, in addition, many empirical formulas available for predicting the viscos- 
ity of liquids and liquid mixtures. For these, physical chemistry and chemical engineer- 
ing textbooks should be consulted.* 

Estimate the viscosity of liquid benzene, C,H,, at 20°C (293.2K). 

Estimation of the 
Viscosity of a Pure 

SOLUTION 

Liquid Use Eq. 1.5-11 with the following information: 

Since this information is given in c.g.s. units, we use the values of Avogadrofs number and 
Planck's constant in the same set of units. Substituting into Eq. 1.5-11 gives: 

1 . 6  VISCOSITY OF SUSPENSIONS AND EMULSIONS 

Up to this point we have been discussing fluids that consist of a single homogeneous 
phase. We now turn our attention briefly to two-phase systems. The complete descrip- 
tion of such systems is, of course, quite complex, but it is often useful to replace the sus- 
pension or emulsion by a hypothetical one-phase system, which we then describe by 

J. F. Kincaid, H. Eyring, and A. E. Steam, Chem. Revs., 28,301-365 (1941). 
See, for example, J. R. Partington, Treatise on Physical Chemistry, Longmans, Green (1949); or R. C. 

Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New York, 4th 
edition (1987). See also P. A. Egelstaff, An Introduction to the Liquid State, Oxford University Press, 2nd 
edition (1994), Chapter 13; and J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, 
London (1986), Chapter 8. 
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Newton's law of viscosity (Eq. 1.1-2 or 1.2-7) with two modifications: (i) the viscosity p is 
replaced by an effective viscosity pefh and (ii) the velocity and stress components are then 
redefined (with no change of symbol) as the analogous quantities averaged over a vol- 
ume large with respect to the interparticle distances and small with respect to the dimen- 
sions of the flow system. This kind of theory is satisfactory as long as the flow involved 
is steady; in time-dependent flows, it has been shown that Newton's law of viscosity is 
inappropriate, and the two-phase systems have to be regarded as viscoelastic materials.' 

The first major contribution to the theory of the viscosity of suspensions of spheres was 
that of Einstein.' He considered a suspension of rigid spheres, so dilute that the move- 
ment of one sphere does not influence the fluid flow in the neighborhood of any other 
sphere. Then it suffices to analyze only the motion of the fluid around a single sphere, 
and the effects of the individual spheres are additive. The Einstein equation is 

in which po is the viscosity of the suspending medium, and C#I is the volume fraction of 
the spheres. Einstein's pioneering result has been modified in many ways, a few of 
which we now describe. 

For dilute suspensions of particles of various shapes the constant has to be replaced by 
a different coefficient depending on the particular shape. Suspensions of elongated or 
flexible particles exhibit non-Newtonian v isc~s i t~ .~""~  

For concentrated suspensions of spheres (that is, 4 greater than about 0.05) particle in- 
teractions become appreciable. Numerous semiempirical expressions have been devel- 
oped, one of the simplest of which is the Mooney equation7 

in which 4, is an empirical constant between about 0.74 and 0.52, these values corre- 
sponding to the values of 4 for closest packing and cubic packing, respectively. 

For dilute suspensions of rigid spheres, the linear viscoelastic behavior has been studied by 
H. Frohlich and R. Sack, Proc. Roy. Soc., A185,415430 (1946), and for dilute emulsions, the analogous 
derivation has been given by J. G. Oldroyd, Proc. Roy. Soc., A218,122-132 (1953). In both of these 
publications the fluid is described by the Jeffreys model (see Eq. 8.4-4), and the authors found the relations 
between the three parameters in the Jeffreys model and the constants describing the structure of the two- 
phase system (the volume fraction of suspended material and the viscosities of the two phases). For 
further comments concerning suspensions and rheology, see R. B. Bird and J. M. Wiest, Chapter 3 in 
Handbook of Fluid Dynamics and Fluid Machinery, J. A. Schetz and A. E. Fuhs (eds.), Wiley, New York (1996). 

Albert Einstein (1879-1955) received the Nobel prize for his explanation of the photoelectric effect, 
not for his development of the theory of special relativity. His seminal work on suspensions appeared in 
A. Einstein, Ann. Phys. (Leipzig), 19,289-306 (1906); erratum, ibzd., 24,591-592 (1911). In the original 
publication, Einstein made an error in the derivation and got 4 instead of :4. After experiments 
showed that his equation did not agree with the experimental data, he recalculated the coefficient. 
Einstein's original derivation is quite lengthy; for a more compact development, see L. D. Landau and 
E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 2nd edition (19871, pp. 73-75. The mathematical 
formulation of multiphase fluid behavior can be found in D. A. Drew and S. L. Passman, Theory of 
Multicomponent Fluids, Springer, Berlin (1999). 

' H. L. Frisch and R. Simha, Chapter 14 in Rheology, Vol. 1, (F.  R. Eirich, ed.), Academic Press, New 
York (1956), Sections I1 and 111. 

E. W. Merrill, Chapter 4 in Modern Chemical Engineering, Vol. 1, (A. Acrivos, ed.), Reinhold, New 
York (1963), p. 165. 

E. J. Hinch and L. G. Leal, J .  Fluid Mech., 52,683-712 (1972); 76,187-208 (1976). 
W. R. Schowalter, Mechanics of Non-Newtonian Fluids, Pergamon, Oxford (1978), Chapter 13. 
M. Mooney, J .  Coll. Sci., 6,162-170 (1951). 
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Another approach for concentrated suspensions of spheres is the "cell theory," in 
which one examines the dissipation energy in the "squeezing flow" between the spheres. 
As an example of this kind of theory we cite the Graham equation8 

"ff - 1  +-,$, + -  -- 
Po : : (@(I + ;$)(I l )  + @)2 

in which @ = 2[(1 - -)/-I, where +,,, is the volume fraction corre- 
sponding to the experimentally determined closest packing of the spheres. This expres- 
sion simplifies to Einstein's equation for ,$, + 0 and the Frankel-Acrivos equation9 when 
,$, + ,$,mar 

For concentrated suspensions of nonspherical particles, the Krieger-Dougherty equation'' 
can be used: 

The parameters A and dm,, to be used in this equation are tabulated1' in Table 1.6-1 for 
suspensions of several materials. 

Non-Newtonian behavior is observed for concentrated suspensions, even when the 
suspended particles are spherical." This means that the viscosity depends on the veloc- 
ity gradient and may be different in a shear than it is in an elongational flow. Therefore, 
equations such as Eq. 1.6-2 must be used with some caution. 

Table 1.6-1 Dimensionless Constants for Use in Eq. 1.6-4 

System A &,, Reference 

Spheres (submicron) 
Spheres (40 pm) 
Ground gypsum 
Titanium dioxide 
Laterite 
Glass rods (30 X 700 pm) 
Glass plates (100 X 400 ,urn) 
Quartz grains (53-76 pm) 
Glass fibers (axial ratio 7) 
Glass fibers (axial ratio 14) 
Glass fibers (axial ratio 21) 

a C. G. de Kruif, E. M. F. van Ievsel, A. Vrij, and W. B. Russel, in 
Viscoelasticity and Rheology (A. S. Lodge, M. Renardy, J. A. Nohel, 
eds.), Academic Press, New York (1985). 

H. Giesekus, in Physical Properties ofFoods (J. Jowitt et al., eds.), 
Applied Science Publishers (19831, Chapter 13. 

' R. M. Turian and T.-F. Yuan, AlChE Journal, 23,232-243 (1977). 

* B. Clarke, Trans. Inst. Chem. Eng., 45,251-256 (1966). 

A. L. Graham, Appl. Sci. Res., 37,275-286 (1981). 
N.  A. Frankel and A. Acrivos, Chem. Engr. Sci., 22,847-853 (1967). 

lo I. M. Krieger and T. J. Dougherty, Trans. Soc. Rheol., 3,137-152 (1959). 
" H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier, Amsterdam 

(1989), p. 125. 
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For emulsions or suspensions of tiny droplets, in which the suspended material may un- 
dergo internal circulation but still retain a spherical shape, the effective viscosity can be 
considerably less than that for suspensions of solid spheres. The viscosity of dilute emul- 
sions is then described by the Taylor equation:" 

in which pl is the viscosity of the disperse phase. It should, however, be noted that 
surface-active contaminants, frequently present even in carefully purified liquids, can ef- 
fectively stop the internal circulation;13 the droplets then behave as rigid spheres. 

For dilute suspensions of charged spheres, Eq. 1.6-1 may be replaced by the Smolu- 
chowski equafion14 

in which D is the dielectric constant of the suspending fluid, k, the specific electrical con- 
ductivity of the suspension, the electrokinetic potential of the particles, and R the parti- 
cle radius. Surface charges are not uncommon in stable suspensions. Other, less well 
understood, surface forces are also important and frequently cause the particles to form 
loose  aggregate^.^ Here again, non-Newtonian behavior is encountered.'" 

1 . 7  CONVECTIVE MOMENTUM TRANSPORT 

Thus far we have discussed the molecular transport of momentum, and this led to a set of 
quantities .rri,, which give the flux of j-momentum across a surface perpendicular to the i 
direction. We then related the .rrij to the velocity gradients and the pressure, and we 
found that this relation involved two material parameters p and K .  We have seen in Ss1.4 
and 1.5 how the viscosity arises from a consideration of the random motion of the mole- 
cules in the fluid-that is, the random molecular motion with respect to the bulk motion 
of the fluid. Furthermore, in Problem 1C.3 we show how the pressure contribution to 'rrij 

arises from the random molecular motions. 
Momentum can, in addition, be transported by the bulk flow of the fluid, and this 

process is called convective transport. To discuss this we use Fig. 1.7-1 and focus our atten- 
tion on a cube-shaped region in space through which the fluid is flowing. At the center 
of the cube (located at x, y, z) the fluid velocity vector is v. Just as in 51.2 we consider 
three mutually perpendicular planes (the shaded planes) through the point x, y, z, and 
we ask how much momentum is flowing through each of them. Each of the planes is 
taken to have unit area. 

The volume rate of flow across the shaded unit area in (a) is v,. This fluid carries 
with it momentum pv per unit volume. Hence the momentum flux across the shaded 
area is v,pv; note that this is the momentum flux from the region of lesser x to the region 

- -- 

l2 G. I. Taylor, Proc. Roy. Soc., A138,4148 (1932). Geoffrey Ingram Taylor (1886-1975) is famous for 
Taylor dispersion, Taylor vortices, and his work on the statistical theory of turbulence; he attacked many 
complex problems in ingenious ways that made maximum use of the physical processes involved. 

l3  V. G. Levich, Pkysicockemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), Chapter 
8. Veniamin Grigorevich Levich (1917-19871, physicist and electrochemist, made many contributions to 
the solution of important problems in diffusion and mass transfer. 

l4 M. von Smoluchowski, Kolloid Zeits., 18,190-195 (1916). 
j5 W. B. Russel, The Dynamics of Colloidal Systems, U, of Wisconsin Press, Madison (1987), Chapter 4; 

W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, Cambridge University Press 
(1989); R. G. Larson, The Structure and Rkeology of Complex Fluids, Oxford University Press (1998). 
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Fig. 1.7-1 The convective momentum fluxes through planes of unit area perpendicular to the 
coordinate directions. 

of greater x. Similarly the momentum flux across the shaded area in (b) is v p ,  and the 
momentum flux across the shaded area in (c) is v,pv. 

These three vectors-pv,v, pvyv, and pv,v-describe the momentum flux across the 
three areas perpendicular to the respective axes. Each of these vectors has an x-, y-, and 
z-component. These components can be arranged as shown in Table 1.7-1. The quantity 
pv,vy is the convective flux of y-momentum across a surface perpendicular to the x direc- 
tion. This should be compared with the quantity T ~ ,  which is the molecular flux of 
y-momentum across a surface perpendicular to the x direction. The sign convention for 
both modes of transport is the same. 

The collection of nine scalar components given in Table 1.7-1 can be represented as 

Since each component of p w  has two subscripts, each associated with a coordinate di- 
rection, p w  is a (second-order) tensor; it is called the convective momentum-flux tensor. 
Table 1.7-1 for the convective momentum flux tensor components should be compared 
with Table 1.2-1 for the molecular momentum flux tensor components. 

Table 1.7-1 Summary of the Convective Momentum Flux Components 

Direction Flux of momentum Convective momentum flux components 
normal to the through the shaded 
shaded surface surface x-component y-component z-component 
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z A Fig. 1.7-2 The convective momentum flux through a plane 

.C of arbitrary orientation n is (n v)pv = [n pw]. 

- 

Next we ask what the convective momentum flux would be through a surface ele- 
ment whose orientation is given by a unit normal vector n (see Fig. 1.7-2). If a fluid is 
flowing through the surface dS with a velocity v, then the volume rate of flow through 
the surface, from the minus side to the plus side, is (n v)dS. Hence the rate of flow of 
momentum across the surface is (n v)pvdS, and the convective momentum flux is 
(n - v)pv. According to the rules for vector-tensor notation given in Appendix A, this can 
also be written as [n . pwl-that is, the dot product of the unit normal vector n with the 
convective momentum flux tensor pvv. If we let n be successively the unit vectors point- 
ing in the x, y, and z directions (i.e., &,, &,, and &,), we obtain the entries in the second col- 
umn of Table 1.7-1,. 

Similarly, the total molecular momentum flux through a surface of orientation n is 
given by [n . IT] = pn + [n . TI. It is understood that this is the flux from the minus side to 
the plus side of the surface. This quantity can also be interpreted as the force per unit 
area exerted by the minus material on the plus material across the surface. A geometric 
interpretation of [n T I  is given in Problem 1D.2. 

In this chapter we defined the molecular transport of momentum in 91.2, and in this 
section we have described the convective transport of momentum. In setting up shell mo- 
mentum balances in Chapter 2 and in setting up the general momentum balance in 
Chapter 3, we shall find it useful to define the combined momentum flux, which is the sum 
of the molecular momentum flux and the convective momentum flux: 

Keep in mind that the contribution p6 contains no velocity, only the pressure; the combi- 
nation pvv contains the density and products of the velocity components; and the contri- 
bution T contains the viscosity and, for a Newtonian fluid, is linear in the velocity 
gradients. All these quantities are second-order tensors. 

Most of the time we will be dealing with components of these quantities. For exam- 
ple the components of + are 

and so on, paralleling the entries in Tables 1.2-1 and 1.7-1. The important thing to re- 
member is that 

4, = the combined flux of y-momentum across a surface perpendicular to the x 
direction by molecular and convective mechanisms. 

The second index gives the component of momentum being transported and the first 
index gives the direction of transport. 

The various symbols and nomenclature that are used for momentum fluxes are 
given in Table 1.7-2. The same sign convention is used for all fluxes. 



Problems 37 

Table 1.7-2 Summary of Notation for Momentum Fluxes 

Symbol Meaning Reference 

P W  Convective momentum-flux tensor Table 1.7-1 
T Viscous momentum-flux tensof Table 1.2-1 
a=pti+~ Molecular momentum-flux tensorb Table 1.2-1 
+ = a + p w  Combined momentum-flux tensor Eq. 1.7-2 

-- 

T o r  viscoelastic fluids (see Chapter 8), this should be called the viscoelastic 
momentum-flux tensor or the viscoelastic stress tensor. 

This may be referred to as the molecular stress tensor. 

QUESTIONS FOR DISCUSSION 

Compare Newton's law of viscosity and Hooke's law of elasticity. What is the origin of these 
"laws"? 
Verlfy that "momentum per unit area per unit time" has the same dimensions as "force per 
unit area." 
Compare and contrast the molecular and convective mechanisms for momentum trans- 
port. 
What are the physical meanings of the Lennard-Jones parameters and how can they be deter- 
mined from viscosity data? Is the determination unique? 
How do the viscosities of liquids and low-density gases depend on the temperature and pres- 
sure? 
The Lennard-Jones potential depends only on the intermolecular separation. For what kinds 
of molecules would you expect that this kind of potential would be inappropriate? 
Sketch the potential energy function p(r) for rigid, nonattracting spheres. 
Molecules differing only in their atomic isotopes have the same values of the Lennard-Jones 
potential parameters. Would you expect the viscosity of CD, to be larger or smaller than that 
of CH, at the same temperature and pressure? 
Fluid A has a viscosity twice that of fluid B; which fluid would you expect to flow more 
rapidly through a horizontal tube of length L and radius R when the same pressure difference 
is imposed? 
Draw a sketch of the intermolecular force F ( r )  obtained from the Lennard-Jones function 
for &). Also, determine the value of r,, in Fig. 1.4-2 in terms of the Lennard-Jones para- 
meters. 
What main ideas are used when one goes from Newton's law of viscosity in Eq. 1.1-2 to the 
generalization in Eq. 1.2-6? 
What reference works can be consulted to find out more about kinetic theory of gases and liq- 
uids, and also for obtaining useful empiricisms for calculating viscosity? 

PROBLEMS 

lA.l Estimation of dense-gas viscosity. Estimate the 1A.2 Estimation of the viscosity of methyl fluoride. Use 
viscosity of nitrogen at 68°F and 1000 psig by means of Fig. Fig. 1.3-1 to find the viscosity in Pa s of CH3F at 370°C and 
1.3-1, using the critical viscosity from Table E.1. Give the 120 atm. Use the following values1 for the critical con- 
result in units of lbm/ft . s. For the meaning of "psig," see stants: Tc = 4.55"C, p, = 58.0 atm, pc = 0.300 g/cm3. 
Table F.3-2. 
Answer: 1.4 X lbm/fte s K. A. Kobe and R. E. Lynn, Jr., Chem. Revs. 52,117-236 (19531, 

see p. 202. 
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1A.3 Computation of the viscosities of gases at low 
density. Predict the viscosities of molecular oxygen, nitro- 
gen, and methane at 20°C and atmospheric pressure, and 
express the results in mPa . s. Compare the results with ex- 
perimental data given in this chapter. 
Answers: 0.0202,0.0172,0.0107 mPa . s 

1A.4 Gas-mixture viscosities at low density. The fol- 
lowing data2 are available for the viscosities of mixtures of 
hydrogen and Freon-12 (dichlorodifluoromethane) at 25°C 
and 1 atm: 

MolefractionofH,: 0.00 0.25 0.50 0.75 1.00 
p X lo6 (poise): 124.0 128.1 131.9 135.1 88.4 

Use the viscosities of the pure components to calculate the 
viscosities at the three intermediate compositions by 
means of Eqs. 1.4-15 and 16. 
Sample answer: At 0.5, p = 0.01317 cp 

1A.5 Viscosities of chlorine-air mixtures at low den- 
sity. Predict the viscosities (in cp) of chlorine-air mixtures 
at 75°F and 1 atm, for the following mole fractions of chlo- 
rine: 0.00, 0.25, 0.50, 0.75, 1.00. Consider air as a single 
component and use Eqs. 1.4-14 to 16. 
Answers: 0.0183,0.0164,0.0150,0.0139,0.0130 cp 

1A.6 Estimation of liquid viscosity. Estimate the viscosity 
of saturated liquid water at O°C and at lOVC by means of 
(a) Eq. 1.5-9, with AU,, = 897.5 Btu/lb,,, at 100°C, and (b) 
Eq. 1.5-1 1. Compare the results with the values in Table 1 .l-2. 
Answer: (b) 4.0 cp, 0.95 cp 

1A.7 Molecular velocity and mean free path. Compute 
the mean molecular velocity ii (in cm/s) and the mean free 
path h (in cm) for oxygen at 1 atm and 273.2 K. A reason- 
able value for d is 3 A. What is the ratio of the mean free 
path to the molecular diameter under these conditions? 
What would be the order of magnitude of the correspond- 
ing ratio in the liquid state? 
Answers: ii = 4.25 X lo4 cm/s, h = 9.3 X lo-' cm 

lB.l Velocity profiles and the stress components qj. 
For each of the following velocity distributions, draw a 
meaningful sketch showing the flow pattern. Then find all 
the components of T and pvv for the Newtonian fluid. The 
parameter b is a constant. 
(a) v, = by, v, = 0, v, = 0 
(b) u, = by, u, = bx, v, = 0 
(c) v, = -by, v, = bx, v, = 0 
(d) v, = -$bx, v, = -+by, vZ = bz 

1B.2 A fluid in a state of rigid rotation. 
(a) Verify that the velocity distribution (c) in Problem lB.l 
describes a fluid in a state of pure rotation; that is, the fluid 

is rotating like a rigid body. What is the angular velocity of 
rotation? 
(b) For that flow pattern evaluate the symmetric and anti- 
symmetric combinations of velocity derivatives: 

(i) (dv,/dx) + (dv,/dy) 
(ii) (du,/dx) - (dv,/dy) 

(c) Discuss the results of (b) in connection with the devel- 
opment in s1.2. 

1B.3 Viscosity of suspensions. Data of Vand3 for sus- 
pensions of small glass spheres in aqueous glycerol solu- 
tions of ZnI, can be represented up to about q5 = 0.5 by the 
semiempirical expression 

Compare this result with Eq. 1.6-2. 
Answer: The Mooney equation gives a good fit of Vand's 
data if 4, is assigned the very reasonable value of 0.70. 

lC.l Some consequences of the Maxwell-Boltzmann 
distribution. In the simplified kmetic theory in s1.4, sev- 
eral statements concerning the equilibrium behavior of a 
gas were made without proof. In this problem and the 
next, some of these statements are shown to be exact 
consequences of the Maxwell-Boltzmann velocity distri- 
bution. 

The Maxwell-Boltzmann distribution of molecular ve- 
locities in an ideal gas at rest is 

f(u,, u,, u,) = n(rn/2n-~T)~'~ exp(-rnu2/2~T) (1C.1-1) 

in which u is the molecular velocity, n is the number 
density, and f(u,, u,, u,)du,du,du, is the number of mole- 
cules per unit volume that is expected to have velocities 
between u, and u, + du,, u, and u, + du,, u, and u, + du,. 
It follows from this equation that the distribution of the 
molecular speed u is 

f (u) = 4.rm~~(rn/2.rr~T)~'~ exp(-rnu2/2~T) (1C.1-2) 

(a) Verify Eq. 1.4-1 by obtaining the expression for the 
mean speed ii from 

- lom uf (u)du 
u =  r m  (lC.1-3) 

(b) Obtain the mean values of the velocity components &, 
- 
u,, and &. The first of these is obtained from 

r + m  r + 3 o  r + m  

What can one conclude from the results? 

J. W. Buddenberg and C. R. Wilke, Ind. Eng. Chem. 41, 
1345-1347 (1949). 

V .  Vand, J. Phys. Colloid Chem., 52,277-299,300-314, 
314-321 (1948). 
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(c) Obtain the mean kinetic energy per molecule by 

j f(u)du 
0 

The correct result is jrnz = :KT. 

1C.2 The wall collision frequency. It is desired to find 
the frequency Z with which the molecules in an ideal gas 
strike a unit area of a wall from one side only. The gas is at 
rest and at equilibrium with a temperature T and the num- 
ber density of the molecules is n. All molecules have a 
mass m. All molecules in the region x < 0 with u, > 0 will 
hit an area S in the yz-plane in a short time At  if they are in 
the volume Su,At. The number of wall collisions per unit 
area per unit time will be 

J - 3 0  J p m  J O  z = 
SAt 

Verify the above development. 

1C.3 Pressure of an ideal gas." It is desired to get the 
pressure exerted by an ideal gas on a wall by accounting 
for the rate of momentum transfer from the molecules to 
the wall. 
(a) When a molecule traveling with a velocity v collides 
with a wall, its incoming velocity components are u,, u,, u,, 
and after a specular reflection at the wall, its components 
are -u,, u,, u,. Thus the net momentum transmitted to the 
wall by a molecule is 2mux. The molecules that have an x- 
component of the velocity equal to u,, and that will collide 
with the wall during a small time interval At, must be 
within the volume Su,At. How many molecules with ve- 
locity components in the range from u,, uy, U, to u, + Au,, 
u, + Au,, u, + Au, will hit an area S of the wall with a ve- 
locity u, within a time interval At? It will be f(u,, u,, uJdu, 
du,/u, times Su,At. Then the pressure exerted on the wall 
by the gas will be 

1-y /o+m(~ux~t)(2mu,)f(uI. u,, u , ) d u ~ u ~ u ,  

P = S At 
(lC.3-1) 

Explain carefully how this expression is constructed. Ver- 
ify that this relation is dimensionally correct. 

(b) Insert Eq. lC.l-1 for the Maxwell-Boltzmann equilib- 
rium distribution into Eq. 1C.3-1 and perform the integra- 
tion. Verify that this procedure leads to p = ~ K T ,  the ideal 
gas law. 

lD.l Uniform rotation of a fluid. 
(a) Verify that the velocity distribution in a fluid in a state 
of pure rotation (i.e., rotating as a rigid body) is v = [w X 
rl, where w is the angular velocity (a constant) and r is the 
position vector, with components x, y, z. 

(b) What are Vv + (Vv)+ and (V v) for the flow field in (a)? 
(c) Interpret Eq. 1.2-7 in terms of the results in (b). 

1D.2 Force on a surface of arbitrary orientatiom5 (Fig. 
1D.2) Consider the material within an element of volume 
OABC that is in a state of equilibrium, so that the sum of 
the forces acting on the triangular faces AOBC, AOCA, 
AOAB, and AABC must be zero. Let the area of AABC be 
dS, and the force per unit area acting from the minus to the 
plus side of dS be the vector n,. Show that n, = [n nl. 

(a) Show that the area of AOBC is the same as the area of 
the projection AABC on the yz-plane; this is (n .6,)dS. Write 
similar expressions for the areas of AOCA and AOAB. 
(b) Show that according to Table 1.2-1 the force per unit 
area on AOBC is 6,.rr,, + 6 , ~ ~ ~  + 6 , ~ ~ ~ .  Write similar force 
expressions for AOCA and AOAB. 
(c) Show that the force balance for the volume element 
OABC gives 

m, = 2 2 (n . Si)(tijaij) = [n z z 6,S,?r,I (lD.2-1) 
i j i I 

in which the indices i, j take on the values x, y, z. The dou- 
ble sum in the last expression is the stress tensor n written 
as a sum of products of unit dyads and components. 

Fig. 1D.2 Element of volume OABC over which a force 
balance is made. The vector n, = [n . m] is the force per 
unit area exerted by the minus material (material inside 
OABC) on the plus material (material outside OABC). The 
vector n is the outwardly directed unit normal vector on 
face ABC. 

R. J. Silbey and R. A. Alberty, Physical Chemistry, Wiley, 
New York, 3rd edition (20011, pp. 639-640. 

M. Abraham and R. Becker, The Classical Theory of Electricity 
and Magnetism, Blackie and Sons, London (19521, pp. 4445. 



Chapter 2 

Shell Momentum Balances 
and Velocity Distributions 
in Laminar Flow 
92.1 Shell momentum balances and boundary conditions 

92.2 Flow of a falling film 

92.3 Flow through a circular tube 

92.4 Flow through an annulus 

92.5 Flow of two adjacent immiscible fluids 

92.6 Creeping flow around a sphere 

In this chapter we show how to obtain the velocity profiles for laminar flows of fluids in 
simple flow systems. These derivations make use of the definition of viscosity, the ex- 
pressions for the molecular and convective momentum fluxes, and the concept of a mo- 
mentum balance. Once the velocity profiles have been obtained, we can then get other 
quantities such as the maximum velocity, the average velocity, or the shear stress at a 
surface. Often it is these latter quantities that are of interest in engineering problems. 

In the first section we make a few general remarks about how to set up differential 
momentum balances. In the sections that follow we work out in detail several classical 
examples of viscous flow patterns. These examples should be thoroughly understood, 
since we shall have frequent occasions to refer to them in subsequent chapters. Although 
these problems are rather simple and involve idealized systems, they are nonetheless 
often used in solving practical problems. 

The systems studied in this chapter are so arranged that the reader is gradually in- 
troduced to a variety of factors that arise in the solution of viscous flow problems. In 52.2 
the falling film problem illustrates the role of gravity forces and the use of Cartesian co- 
ordinates; it also shows how to solve the problem when viscosity may be a function of 
position. In 52.3 the flow in a circular tube illustrates the role of pressure and gravity 
forces and the use of cylindrical coordinates; an approximate extension to compressible 
flow is given. In 52.4 the flow in a cylindrical annulus emphasizes the role played by the 
boundary conditions. Then in 52.5 the question of boundary conditions is pursued fur- 
ther in the discussion of the flow of two adjacent immiscible liquids. Finally, in 92.6 the 
flow around a sphere is discussed briefly to illustrate a problem in spherical coordinates 
and also to point out how both tangential and normal forces are handled. 

The methods and problems in this chapter apply only to steady flow. By "steady" we 
mean that the pressure, density, and velocity components at each point in the stream do 
not change with time. The general equations for unsteady flow are given in Chapter 3. 
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Fluid containing 

I I tiny particles 
Fig. 2.0-1 (a) Laminar flow, in which fluid 
layers move smoothly over one another in 
the direction of flow, and ( b )  turbulent 
flow, in which the flow pattern is complex 

Direction 
(a) O - L ~ )  of flow 

and time-dependent, with considerable 
motion perpendicular to the principal flow 
direction. 

This chapter is concerned only with laminar flow. "Laminar flow" is the orderly flow 
that is observed, for example, in tube flow at velocities sufficiently low that tiny particles 
injected into the tube move along in a thin line. This is in sharp contrast with the wildly 
chaotic "turbulent flow" at sufficiently high velocities that the particles are flung apart 
and dispersed throughout the entire cross section of the tube. Turbulent flow is the sub- 
ject of Chapter 5. The sketches in Fig. 2.0-1 illustrate the difference between the two flow 
regimes. 

2 . 1  SHELL MOMENTUM BALANCES AND BOUNDARY 
CONDITIONS 

The problems discussed in 52.2 through 52.5 are approached by setting up momentum 
balances over a thin "shell" of the fluid. For steady pow, the momentum balance is 

[te momentum of in ] - r of 1 + r of ] - [rate of 1 + 
momentum out momentum in momentum out force of gravity 

by convective by convective by molecular by molecular acting on system 
transport transport transport transport 

This is a restricted statement of the law of conservation of momentum. In this chapter we 
apply this statement only to one component of the momentum-namely, the component 
in the direction of flow. To write the momentum balance we need the expressions for the 
convective momentum fluxes given in Table 1.7-1 and the molecular momentum fluxes 
given in Table 1.2-1; keep in mind that the molecular momentum flux includes both the 
pressure and the viscous contributions. 

In this chapter the momentum balance is applied only to systems in which there is 
just one velocity component, which depends on only one spatial variable; in addition, 
the flow must be rectilinear. In the next chapter the momentum balance concept is ex- 
tended to unsteady-state systems with curvilinear motion and more than one velocity 
component. 

The procedure in this chapter for setting up and solving viscous flow problems is as 
follows: 

Identify the nonvanishing velocity component and the spatial variable on which it 
depends. 

Write a momentum balance of the form of Eq. 2.1-1 over a thin shell perpendicular 
to the relevant spatial variable. 

Let the thickness of the shell approach zero and make use of the definition of the first 
derivative to obtain the corresponding differential equation for the momentum flux. 
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Integrate this equation to get the momentum-flux distribution. 

Insert Newton's law of viscosity and obtain a differential equation for the velocity. 

Integrate this equation to get the velocity distribution. 

Use the velocity distribution to get other quantities, such as the maximum veloc- 
ity, average velocity, or force on solid surfaces. 

In the integrations mentioned above, several constants of integration appear, and these 
are evaluated by using "boundary conditionsu-that is, statements about the velocity or 
stress at the boundaries of the system. The most commonly used boundary conditions 
are as follows: 

a. At solid-fluid interfaces the fluid velocity equals the velocity with which the solid 
surface is moving; this statement is applied to both the tangential and the normal 
component of the velocity vector. The equality of the tangential components is 
referred to as the "no-slip condition.'' 

b. At a liquid-liquid interfacial plane of constant x, the tangential velocity compo- 
nents v, and v, are continuous through the interface (the "no-slip condition") as 
are also the molecular stress-tensor components p + T,,, rxy, and T,,. 

c. At a liquid-gas interfacial plane of constant x, the stress-tensor components T,, 

and T,, are taken to be zero, provided that the gas-side velocity gradient is not too 
large. This is reasonable, since the viscosities of gases are much less than those of 
liquids. 

In all of these boundary conditions it is presumed that there is no material passing 
through the interface; that is, there is no adsorption, absorption, dissolution, evapora- 
tion, melting, or chemical reaction at the surface between the two phases. Boundary con- 
ditions incorporating such phenomena appear in Problems 3C.5 and llC.6, and 518.1. 

In this section we have presented some guidelines for solving simple viscous flow 
problems. For some problems slight variations on these guidelines may prove to be 
appropriate. 

, 

92.2 FLOW OF A FALLING FILM 

The first example we discuss is that of the flow of a liquid down an inclined flat plate of 
length L and width W, as shown in Fig. 2.2-1. Such films have been studied in connection 
with wetted-wall towers, evaporation and gas-absorption experiments, and applications 
of coatings. We consider the viscosity and density of the fluid to be constant. 

A complete description of the liquid flow is difficult because of the disturbances at 
the edges of the system (z  = 0, z = L, y = 0, y = W). An adequate description can often be 

Entrance disturbance ,> 

Liquid FA- film Liquid in 

T 

I Keservoir 
Exit disturbance - 1 /A " 

-66 Ld 
f 

Direction of 
gravity 

Fig. 2.2-1 Schematic 
diagram of the falling 
film experiment, show- 
ing end effects. 
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obtained by neglecting such disturbances, particularly if W and L are large compared to 
the film thickness 6. For small flow rates we expect that the viscous forces will prevent 
continued acceleration of the liquid down the wall, so that v, will become independent 
of z in a short distance down the plate. Therefore it seems reasonable to postulate that 
v, = v,(x), v, = 0, and v, = 0, and further that p = p(x). From Table B.l it is seen that the 
only nonvanishing components of I are then T,, = T,, = -p(dv,/dx). 

We now select as the "system" a thin shell perpendicular to the x direction (see Fig. 
2.2-2). Then we set up a z-momentum balance over this shell, which is a region of thick- 
ness Ax, bounded by the planes z = 0 and z = L, and extending a distance Win the y di- 
rection. The various contributions to the momentum balance are then obtained with the 
help of the quantities in the "z-component" columns of Tables 1.2-1 and 1.7-1. By using 
the components of the "combined momentum-flux tensor" + defined in 1.7-1 to 3, we 
can include all the possible mechanisms for momentum transport at once: 

rate of z-momentum in 
across surface at z = O (WAX)+~~L=O 
rate of z-momentum out 
across surface at z = L (WAX)&I,=L 
rate of z-momentum in 
across surface at x (LW(+xz)Ix 
rate of z-momentum out 
across surface at x + Ax ( L W ( 4 ~ ~ ) I ~ + ~ ~  
gravity force acting 
on fluid in the z direction ( L  W Ax)(pg cos P) 
By using the quantities +,, and +,, we account for the z-momentum transport by all 
mechanisms, convective and molecular. Note that we take the "in" and "out" directions 
in the direction of the positive x- and z-axes (in this problem these happen to coincide 
with the directions of z-momentum transport). The notation I,,,, means "evaluated at 
x + Ax," and g is the gravitational acceleration. 

When these terms are substituted into the z-momentum balance of Eq. 2.1-1, we get 

, 
/ \ 

y =  W \ 
Direction of 

z = L  gravity 

Fig. 2.2-2 Shell of thickness Ax over which a z-momentum balance is made. Arrows show the 
momentum fluxes associated with the surfaces of the shell. Since v, and v, are both zero, pvxvz 
and pvp, are zero. Since v, does not depend on y and z, it follows from Table B.l that T,, = 0 
and T,, = 0. Therefore, the dashed-underlined fluxes do not need to be considered. Both p 
and pv,v, are the same at z = 0 and z = L, and therefore do not appear in the final equation 
for the balance of z-momentum, Eq. 2.2-10. 
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When this equation is divided by L W Ax, and the limit taken as Ax approaches zero, we 

get 

The first term on the left side is exactly the definition of the derivative of 4,: with respect 
to x. Therefore Eq. 2.2-7 becomes 

At this point we have to write out explicitly what the components +,, and 4,: are, mak- 
ing use of the definition of + in Eqs. 1.7-1 to 3 and the expressions for rxz and T,, in Ap- 
pendix B.1. This ensures that we do not miss out on any of the forms of momentum 
transport. Hence we get 

In accordance with the postulates that v, = v,(x), v, = 0, v, = 0, and p = p(x), we see that 
(i) since v, = 0, the pup, term in Eq. 2.2-9a is zero; (ii) since v, = v,(x), the term 
-2,u(dv,/dz) in Eq. 2.2-9b is zero; (iii) since v, = v,(x), the term pv,v, is the same at z = 0 
and z = L; and (iv) since p = p(x), the contribution p is the same at z = 0 and z = L. Hence 
T,, depends only on x, and Eq. 2.2-8 simplifies to 

I I 1 %  = pg cos p 

This is the differential equation for the momentum flux T,,. It may be integrated to give 

The constant of integration may be-evaluated by using the boundary condition at the 
gas-liquid interface (see 52.1): 

B.C. 1: a tx=O,  r,,=O (2.2-12) 

Substitution of this boundary condition into Eq. 2.2-11 shows that C, = 0. Therefore the 
momentum-flux distribution is 

as shown in Fig. 2.2-3. 
Next we substitute Newton's law of viscosity 

into the left side of Eq. 2.2-13 to obtain 

which is the differential equation for the velocity distribution. It can be integrated to 
give 
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Momentum 

Fig. 2.2-3 Final results for the falling film problem, 
showing the momentum-flux distribution and the 
velocity distribution. The shell of thickness Ax, over 

\ which the momentum balance was made, is also shown. 

The constant of integration is evaluated by using the no-slip boundary condition at the 
solid surface: 

B.C. 2 at x = 6, v, = 0 (2.2-17) 

Substitution of this boundary condition into Eq. 2.2-16 shows that C2 = (pg cos P / 2 4 a 2 .  
Consequently, the velocity distribution is 

I I 

This parabolic velocity distribution is shown in Fig. 2.2-3. It is consistent with the postu- 
lates made initially and must therefore be a possible solution. Other solutions might be 
possible, and experiments are normally required to tell whether other flow patterns can 
actually arise. We return to this point after Eq. 2.2-23. 

Once the velocity distribution is known, a number of quantities can be calculated: 

(i) The maximum velocity vZ,,,, is clearly the velocity at x = 0; that is, 

(ii) The average velocity (v,) over a cross section of the film is obtained as follows: 
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The double integral in the denominator of the first line is the cross-sectional area of the 
film. The double integral in the numerator is the volume flow rate through a differential 
element of the cross section, v,dx dy ,  integrated over the entire cross section. 

(iii) The mass rate of flow w is obtained from the average velocity or by integration of 
the velocity distribution 

p2g ws3 cos p 
w = low IO8 pv,dxdy = pWS(v,) = 

3~ 

(iv) The film thickness S may be given in terms of the average 
rate of flow as follows: 

(2.2-21) 

velocity or the mass 

(v) The force per unit area in the z direction on a surface element perpendicular 
to the x direction is +T,, evaluated at x = 6. This is the force exerted by the fluid (re- 
gion of lesser x)  on the wall (region of greater x) .  The z-component of the force F of the 
fluid on the solid surface is obtained by integrating the shear stress over the fluid-solid 
interface: 

This is the z-component of the weight of the fluid in the entire film-as we would have 
expected. 

Experimental observations of falling films show that there are actually three "flow 
regimes," and that these may be classified according to the Reynolds number,' Re, for the 
flow. For falling films the Reynolds number is defined by Re = 4S(vz)p/p. The three flow 
regime are then: 

laminar flow with negligible rippling Re < 20 
laminar flow with pronounced rippling 20 < Re < 1500 
turbulent flow Re > 1500 

The analysis we have given above is valid only for the first regime, since the analysis 
was restricted by the postulates made at the outset. Ripples appear on the surface of the 
fluid at all Reynolds numbers. For Reynolds numbers less than about 20, the ripples are 
very long and grow rather slowly as they travel down the surface of the liquid; as a re- 
sult the formulas derived above are useful up to about Re = 20 for plates of moderate 
length. Above that value of Re, the ripple growth increases very rapidly, although the 
flow remains laminar. At about Re = 1500 the flow becomes irregular and chaotic, and 
the flow is said to be t~rbulen t .~ ,~  At this point it is not clear why the value of the 

'This dimensionless group is named for Osbome ~ e ~ n b l d s  (1842-19121, professor of engineering at 
the University of Manchester. He studied the laminar-turbulent transition, turbulent heat transfer, and 
theory of lubrication. We shall see in the next chapter that the Reynolds number is the ratio of the inertial 
forces to the viscous forces. 

G. D. Fulford, Adv. Chem. Engr., 5,151-236 (1964); S. Whitaker, Ind. Eng. Chem. Fund., 3,132-142 
(1964); V.  G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), s135. 

H.-C. Chang, Ann. Rev. Fluid Mech., 26,103-136 (1994); S.-H. Hwang and H.-C. Chang, Phys. Fluids, 
30,1259-1268 (1987). 
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Reynolds number should be used to delineate the flow regimes. We shall have more to 
say about this in g3.7. 

This discussion illustrates a very important point: theoretical analysis of flow sys- 
tems is limited by the postulates that are made in setting u p  the problem. It is absolutely 
necessary to do experiments in order to establish the flow regimes so as to know when 
instabilities (spontaneous oscillations) occur and when the flow becomes turbulent. 
Some information about the onset of instability and the demarcation of the flow regimes 
can be obtained by theoretical analysis, but this is an extraordinarily difficult subject. 
This is a result of the inherent nonlinear nature of the governing equations of fluid dy- 
namics, as will be explained in Chapter 3. Suffice it to say at this point that experiments 
play a very important role in the field of fluid dynamics. 

An oil has a kinematic viscosity of 2 X m2/s and a density of 0.8 X 10%g/m3. If we want 
to have a falling film of thickness of 2.5 mm on a vertical wall, what should the mass rate of 

CalCulation of Film flow the liquid be? 
Velocity 

SOLUTION 

According to Eq. 2.2-21, the mass rate of flow in kg/s is 

To get the mass rate of flow one then needs to insert a value for the width of the wall in 
meters. This is the desired result provided that the flow is laminar and nonrippling. To 
determine the flow regime we calculate the Reynolds number, making use of Eqs. 2.2-21 
and 24 

This Reynolds number is sufficiently low that rippling will not be pronounced, and therefore 
the expression for the mass rate of flow in Eq. 2.2-24 is reasonable. 

Rework the falling film problem for a position-dependent viscosity p = which arises 
when the film is nonisothermal, as in the condensation of a vapor on a wall. Here po is the vis- 

Falling Film with cosity at the surface of the film and a is a constant that describes how rapidly p decreases as x 
Variable Viscosity increases. Such a variation could arise in the flow of a condensate down a wall with a linear 

temperature gradient through the film. 

SOLUTION The development proceeds as before up to Eq. 2.2-13. Then substituting Newton's law with 
variable viscosity into Eq. 2.2-13 gives 

This equation can be integrated, and using the boundary conditions in Eq. 2.2-17 enables us to 
evaluate the integration constant. The velocity profile is then 

As a check we evaluate the velocity distribution for the constant-viscosity problem (that is, 
when a is zero). However, setting a = 0 gives GO - in the two expressions within parentheses. 
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This difficulty can be overcome if we expand the two exponentials in Taylor series (see §C.2), 
as follows: 

- - pgs2 cos p .-[(-+-a+ 1 1  . . a ) - (  L ~ - I I ' , +  
Po 0-0 2 3 282 383 . . .)I 

which is in agreement with Eq. 2.2-18. 
From Eq. 2.2-27 it may be shown that the average velocity is 

pgs2 cos p 
(vz> = Po [.(A - -$ + 4) - 21 

The reader may verify that this result simplifies to Eq. 2.2-20 when a goes to zero. 

s2.3 FLOW THROUGH A CIRCULAR TUBE 

The flow of fluids in circular tubes is encountered frequently in physics, chemistry, biol- 
ogy, and engineering. The laminar flow of fluids in circular tubes may be analyzed by 
means of the momentum balance described in 52.1. The only new feature introduced 
here is the use of cylindrical coordinates, which are the natural coordinates for describ- 
ing positions in a pipe of circular cross section. 

We consider then the steady-state, laminar flow of a fluid of constant density p and 
viscosity p in a vertical tube of length L and radius R. The liquid flows downward under 
the influence of a pressure difference and gravity; the coordinate system is that shown in 
Fig. 2.3-1. We specify that the tube length be very large with respect to the tube radius, 
so that "end effects" will be unimportant throughout most of the tube; that is, we can ig- 
nore the fact that at the tube entrance and exit the flow will not necessarily be parallel to 
the tube wall. 

We postulate that v, = v,(r), vr = 0, v, = 0, and p = p(z). With these postulates it may 
be seen from Table B.l that the only nonvanishing components of 7 are rrz = rZr = 

-p(dv,/dr). 
We select as our system a cylindrical shell of thickness Ar and length L and we begin 

by listing the various contributions to the z-momentum balance: 

rate of z-momentum in (2~Ar)(#41z=0 (2.3-1) 
across annular surface at z = 0 

rate of z-momentum out (2~rAr)($,,)J,=~ (2.3-2) 
across annular surface at z = L 
rate of z-momentum in (2d)($,)(, = (2flL$,)(, (2.3-3) 
across cylindrical surface at r 

rate of 2-momentum out (2dr  + Ar)L)(+J/r+Ar = (2mL$J/r+Ar (2.3-4) 
across cylindrical surface at r + Ar 

gravity force acting in (2wArL)pg (2.3-5) 
z direction on cylindrical shell 
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4zz),=o =flux 
of z-momentum 

of z-momentum 
outa tz=L 

Fig. 2.3-1 Cylindrical shell of fluid 
over which the z-momentum bal- 
ance is made for axial flow in a cir- 
cular tube (see Eqs. 2.3-1 to 5). The 
z-momentum fluxes 4,  and +,, are 
given in full in Eqs. 2.3-9a and 9b. 

4rzI r + A r  = flux 
of z-momentum 

out at r + Ar 

+ Tube wall 

The quantities +,, and +,, account for the momentum transport by all possible mecha- 
nisms, convective and molecular. In Eq. 2.3-4, (Y + Ar) and (r)l,+,, are two ways of writ- 
ing the same thing. Note that we take "in" and "out" to be in the positive directions of 
the Y- and z-axes. 

We now add up the contributions to the momentum balance: 

When we divide Eq. (2.3-8) by 2.irLAr and take the limit as Ar + 0, we get 

The expression on the left side is the definition of the first derivative of r4,, with respect 
to r. Hence Eq. 2.3-7 may be written as 

Now we have to evaluate the components 4, and +,, from Eq. 1.7-1 and Appendix B.l: 

Next we take into account the postulates made at the beginning of the problem-namely, 
that vz = v,(r), V, = 0, vg = 0, and p = p(z). Then we make the following simplifications: 
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(i) because v, = 0, we can drop the term pqv, in Eq. 2.3-9a; (ii) because v, = v,(r), the term 
pvzvz  will be the same at both ends of the tube; and (iii) because vZ = vZ(r), the term 
-2pdv,/dz will be the same at both ends of the tube. Hence Eq. 2.3-8 simplifies to 

in which 9 = p - p g z  is a convenient abbreviation for the sum of the pressure and gravi- 
tational terms.' Equation 2.3-10 may be integrated to give 

The constant C1 is evaluated by using the boundary condition 

B.C. 1: at r = 0, T , ~  = finite (2.3-12) 

Consequently C1 must be zero, for otherwise the momentum flux would be infinite at the 
axis of the tube. Therefore the momentum flux distribution is 

1 

This distribution is shown in Fig. 2.3-2. 
Newton's law of viscosity for this situation is obtained from Appendix B.2 as 

follows: 

Substitution of this expression into Eq. 2.3-13 then gives the following differential equa- 
tion for the velocity: 

Parabolic velocity 
distribution uz(r) 

Linear momentum- 
flux distribution 

~,,(r) Fig. 2.3-2 The momentum-flux 
distribution and velocity distribu- 

I tion for the downward flow in a 
circular tube. 

' The quantity designated by 9 is called the modified pressure. In general it is defined by 9 = p + pgh, 
where h is the distance "upwardv-that is, in the direction opposed to gravity from some preselected 
reference plane. Hence in this problem h = -z. 
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This first-order separable differential equation may be integrated to give 

The constant C2 is evaluated from the boundary condition 

B.C. 2: at r = R, v, = 0 

From this C, is found to be (Yo - 9 , ) ~ ~ / 4 p L .  Hence the velocity distribution is 

We see that the velocity distribution for laminar, incompressible flow of a Newtonian 
fluid in a long tube is parabolic (see Fig. 2.3-2). 

Once the velocity profile has been established, various derived quantities can be 
obtained: 

(i) 

(ii) 

(iii) 

(iv) 

The maximum velocity v,,,,, occurs at r = 0 and is 

The average velocity (v,) is obtained by dividing the total volumetric flow rate by 
the cross-sectional area 

The mass rate of flow w is the product of the cross-sectional area ,rrR2, the density 
p, and the average velocity (v,) 

This rather famous result is called the Hagen-~oiseuille~ equation. It is used, along 
with experimental data for the rate of flow and the modified pressure difference, 
to determine the viscosity of fluids (see Example 2.3-1) in a "capillary viscometer." 

The z-component of the force, F,, of the fluid on the wetted surface of the pipe is 
just the shear stress 7,, integrated over the wetted area 

This result states that the viscous force F, is counterbalanced by the net pres- 
sure force and the gravitational force. This is exactly what one would obtain 
from making a force balance over the fluid in the tube. 

G. Hagen, Ann. Phys. Chern., 46,423442 (1839); J. L. Poiseuille, Comptes Rendus, 11,961 and 1041 
(1841). Jean Louis Poiseuille (1799-1869) (pronounced "Pwa-zd-yuh," with d is roughly the "00" in 
book) was a physician interested in the flow of blood. Although Hagen and Poiseuille established the 
dependence of the flow rate on the fourth power of the tube radius, Eq. 2.3-21 was first derived by E. 
Hagenbach, Pogg. Annalen der Physik u. Chemie, 108,385-426 (1860). 
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The results of this section are only as good as the postulates introduced at the begin- 
ning of the section-namely, that v, = v,(r) and p = p(z). Experiments have shown that 
these postulates are in fact realized for Reynolds numbers up to about 2100; above that 
value, the flow will be turbulent if there are any appreciable disturbances in the sys- 
tem-that is, wall roughness or  vibration^.^ For circular tubes the Reynolds number is 
defined by Re = D ( V , ) ~ / ~ ,  where D = 2R is the tube diameter. 

We now summarize all the assumptions that were made in obtaining the Hagen- 
Poiseuille equation. 

(a) The flow is laminar; that is, Re must be less than about 2100. 

(b) The density is constant ("incompressible flow"). 
(c) The flow is "steady" (i.e., it does not change with time). 
(d) The fluid is Newtonian (Eq. 2.3-14 is valid). 

(e )  End effects are neglected. Actually an "entrance length," after the tube entrance, 
of the order of L, = 0.035D Re, is needed for the buildup to the parabolic profile. 
If the section of pipe of interest includes the entrance region, a correction must 
be a ~ p l i e d . ~  The fractional correction in the pressure difference or mass rate of 
flow never exceeds L,/L if L > L,. 

(f) The fluid behaves as a continuum-this assumption is valid, except for very di- 
lute gases or very narrow capillary tubes, in which the molecular mean free path 
is comparable to the tube diameter (the "slip flow region") or much greater than 
the tube diameter (the "Knudsen flow" or "free molecule flow" regime).5 

(g) There is no slip at the wall, so that B.C. 2 is valid; this is an excellent assumption 
for pure fluids under the conditions assumed in (0. See Problem 2B.9 for a dis- 
cussion of wall slip. 

Glycerine (CH20H . CHOH . CH20H) at 26.5"C is flowing through a horizontal tube 1 ft long 
and with 0.1 in. inside diameter. For a pressure drop of 40 psi, the volume flow rate w / p  is 

Determination of 0.00398 ft3/min. The density of glycerine at 26.5"C is 1.261 g/cm3. From the flow data, find the 
Viscosity from viscosity of glycerine in centipoises and in Pa. s. 
Capillary Flow Data 

SOLUTION 

From the Hagen-Poiseuille equation (Eq. 2.3-211, we find 

dyn/cm2)(0.05 in. X 
Ibf/in.2 12 in. 

ft3 1 min 0.00398 - X - --- 
min 60 s 

A. A. Draad [Doctoral Dissertation, Technical University of Delft (199611 in a carefully controlled 
experiment, attained laminar flow up to Re = 60,000. He also studied the nonparabolic velocity profile 
induced by the earth's rotation (through the Coriolis effect). See also A. A. Draad and F. T. M. 
Nieuwstadt, J. Fluid. Mech., 361,207-308 (1998). 

9. H. Perry, Chemical Engineers Handbook, McGraw-Hill, New York, 3rd edition (1950), pp. 38S389; 
W. M. Kays and A. L. London, Compact Heat Exchangers, McGraw-Hill, New York (19581, p. 49. 

Martin Hans Christian Knudsen (1871-19491, professor of physics at the University of 
Copenhagen, did key experiments on the behavior of very dilute gases. The lectures he gave at the 
University of Glasgow were published as M. Knudsen, The Kinetic Theory of Gases, Methuen, London 
(1934); G. N. Patterson, Molecular Flow of Gases, Wiley, New York (1956). See also J. H. Ferziger and H. G. 
Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland, Amsterdam (19721, Chapter 15. 
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EXAMPLE 23-2 

Compressible Flow in 
a Horizontal Circular 
lkbe6 

To check whether the flow is laminar, we calculate the Reynolds number 

4(0.00398 -.)(2.54 min ? in. X 12 ~ ~ ( ' ~ ' 1 " ) ( 1 . 2 6 1  ft 6 0 s  cm3 

in. 
= 2.41 (dimensionless) (2.3-24) 

Hence the flow is indeed laminar. Furthermore, the entrance length is 

L, = 0.035D Re = (0.035)(0.1/12)(2.41) = 0.0007 ft 

Hence, entrance effects are not important, and the viscosity value given above has been calcu- 
lated properly. 

Obtain an expression for the mass rate of flow w for an ideal gas in laminar flow in a long cir- 
cular tube. The flow is presumed to be isothermal. Assume that the pressure change through 
the tube is not very large, so that the viscosity can be regarded a constant throughout. 

SOLUTION 

This problem can be solved approximately by assuming that the Hagen-Poiseuille equation 
(Eq. 2.3-21) can be applied over a small length dz of the tube as follows: 

To eliminate p in favor of p, we use the ideal gas law in the form plp = po/po, where po and po 
are the pressure and density at z = 0. This gives 

The mass rate of flow w is the same for all z. Hence Eq. 2.3-27 can be integrated from z = 0 to 
z = L to give 

where pa,, = + pL) is the average density calculated at the average pressure pa,, = 
1 
2@0 + P L ) .  

52.4 FLOW THROUGH AN ANNULUS 

We now solve another viscous flow problem in cylindrical coordinates, namely the 
steady-state axial flow of an incompressible liquid in an annular region between two 
coaxial cylinders of radii KR and R as shown in Fig. 2.4-1. The fluid is flowing upward in 

L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, 2nd edition (1987), 917, Problem 6. A 
perturbation solution of this problem was obtained by R. K. Prud'homme, T. W. Chapman, and J. R. 
Bowen, Appl. Sci. Res, 43,67-74 (1986). 
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Fig. 2.4-1 The momentum-flux distribution 
and velocity distribution for the upward 
flow in a cylindrical annulus. Note that the 
momentum flux changes sign at the same 
value of r for which the velocity has a 

Velocity 
distribution maximum. 

Shear stress 
or momentum- 
flux distribution 

the t u b e t h a t  is, in the direction opposed to gravity. We make the same postulates as in 
52.3: v, = v,(r), v, = 0, v, = 0, and p = p(z). Then when we make a momentum balance 
over a thin cylindrical shell of liquid, we arrive at the following differential equation: 

This differs from Eq. 2.3-10 only in that 9 = p + pgz here, since the coordinate z is in the 
direction opposed to gravity (i.e., z is the same as the h of footnote 1 in 52.3). Integration 
of Eq. 2.4-1 gives 

just as in Eq. 2.3-1 1. 
The constant C, cannot be determined immediately, since we have no information 

about the momentum flux at the fixed surfaces r = KR and r = R. All we know is that 
there will be a maximum in the velocity curve at some (as yet unknown) plane r = AR at 
which the momentum flux will be zero. That is, 

When we solve this equation for C, and substitute it into Eq. 2.4-2, we get 

The only difference between this equation and Eq. 2.4-2 is that the constant of integration 
C, has been eliminated in favor of a different constant A. The advantage of this is that we 
know the geometrical significance of A. 

We now substitute Newton's law of viscosity, T,, = -p(dv,/dr), into Eq. 2.4-4 to ob- 
tain a differential equation for v, 
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Integration of this first-order separable differential equation then gives 

We now evaluate the two constants of integration, A and C,, by using the no-slip condi- 
tion on each solid boundary: 

B.C. 1: 

B.C. 2: 

Substitution of these boundary conditions into Eq. 2.4-6 then gives two simultaneous 
equations: 

o = K ~ - u ~ I ~ K + c ~ ;  O = 1  +C2 (2.4-9, 10) 

From these the two integration constants A and C2 are found to be 

These expressions can be inserted into Eqs. 2.4-4 and 2.4-6 to give the momentum-flux 
distribution and the velocity distribution' as follows: 

Note that when the annulus becomes very thin (i.e., K only slightly less than unity), these 
results simplify to those for a plane slit (see Problem 2B.5). It is always a good idea to 
check "limiting cases" such as these whenever the opportunity presents itself. 

The lower limit of K + 0 is not so simple, because the ratio ln(R/r)/ln(l/~) will al- 
ways be important in a region close to the inner boundary. Hence Eq. 2.4-14 does not 
simplify to the parabolic distribution. However, Eq. 2.4-17 for the mass rate of flow does 
simplify to the Hagen-Poiseuille equation. 

Once we have the momentum-flux and velocity distributions, it is straightforward 
to get other results of interest: 

(i) The maximum velocity is 

where h2 is given in Eq. 2.4-12. 

(ii) The average velocity is given by 

(iii) The mass rate offlow is w = ~ " ~ ( 1  - K~)~(V,) ,  or 

H. Lamb, Hydrodynamics, Cambridge University Press, 2nd edition (1895), p. 522. 
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(iv) The force exerted by the fluid on  the solid surfaces is obtained by summing the 
forces acting on the inner and outer cylinders, as follows: 

The reader should explain the choice of signs in front of the shear stresses above and also 
give an interpretation of the final result. 

The equations derived above are valid only for laminar flow. The laminar-turbulent 
transition occurs in the neighborhood of Re = 2000, with the Reynolds number defined 
as Re = 2R(1 - ~) (v , )p /p .  

52.5 FLOW OF TWO ADJACENT IMMISCIBLE FLUIDS' 

Thus far we have considered flow situations with solid-fluid and liquid-gas boundaries. 
We now give one example of a flow problem with a liquid-liquid interface (see Fig. 2.5-1). 

Two immiscible, incompressible liquids are flowing in the z direction in a horizontal 
thin slit of length L and width W under the influence of a horizontal pressure gradient 
(po - p,)/L. The fluid flow rates are adjusted so that the slit is half filled with fluid I (the 
more dense phase) and half filled with fluid I1 (the less dense phase). The fluids are flow- 
ing sufficiently slowly that no instabilities occur-that is, that the interface remains ex- 
actly planar. It is desired to find the momentum-flux and velocity distributions. 

A differential momentum balance leads to the following differential equation for the 
momentum flux: 

This equation is obtained for both phase I and phase 11. Integration of Eq. 2.5-1 for the 
two regions gives 

Velocity 
distribution, 

Plane of zero shear stress - - - - - - - 

Shear stress 
or momentum- 
flux distribution 

Fig. 2.5-1 Flow of two immiscible fluids between a pair of horizontal plates under 
the influence of a pressure gradient. 

The adjacent flow of gases and liquids in conduits has been reviewed by A. E. Dukler and M. 
Wicks, 111, in Chapter 8 of Modern Chemical Engineering, Vol. 1, "Physical Operations," A. Acrivos (ed.), 
Reinhold, New York (1963). 
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We may immediately make use of one of the boundary conditions-namely, that the 
momentum flux T,, is continuous through the fluid-fluid interface: 

B.C. 1: at x = 0, 7', = ez (2.5-4) 

This tells us that C: = Cil; hence we drop the superscript and call both integration con- 
stants C,. 

When Newton's law of viscosity is substituted into Eqs. 2.5-2 and 2.5-3, we get 

These two equations can be integrated to give 

The three integration constants can be determined from the following no-slip boundary 
conditions: 

B.C. 2: a tx  = 0, v! = .i' (2.5-9) 

B.C. 3: atx = -b, v; = 0 (2.5-10) 

B.C. 4: atx = +b, v! = 0 (2.5-11) 

When these three boundary conditions are applied, we get three simultaneous equations 
for the integration constants: 

from B.C. 2: C: = C; (2.5-12) 

from B.C. 3: 

from B.C. 4: 

From these three equations we get 

The resulting momentum-flux and velocity profiles are 

I - = 'pa ;pJb [((X - ( )] ( (2.5-17) 
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These distributions are shown in Fig. 2.5-1. If both viscosities are the same, then the ve- 
locity distribution is parabolic, as one would expect for a pure fluid flowing between 
parallel plates (see Eq. 2B.3-2). 

The average velocity in each layer can be obtained and the results are 

From the velocity and momentum-flux distributions given above, one can also calculate 
the maximum velocity, the velocity at the interface, the plane of zero shear stress, and 
the drag on the walls of the slit. 

52.6 CREEPING FLOW AROUND A  SPHERE^^^^^^^ 
In the preceding sections several elementary viscous flow problems have been solved. 
These have all dealt with rectilinear flows with only one nonvanishing velocity compo- 
nent. Since the flow around a sphere involves two nonvanishing velocity components, v, 
and v,, it cannot be conveniently understood by the techniques explained at the begin- 
ning of this chapter. Nonetheless, a brief discussion of flow around a sphere is warranted 
here because of the importance of flow around submerged objects. In Chapter 4 we show 
how to obtain the velocity and pressure distributions. Here we only cite the results and 
show how they can be used to derive some important relations that we need in later dis- 
cussions. The problem treated here, and also in Chapter 4, is concerned with "creeping 
flowu-that is, very slow flow. This type of flow is also referred to as "Stokes flow." 

We consider here the flow of an incompressible fluid about a solid sphere of radius 
R and diameter D as shown in Fig. 2.6-1. The fluid, with density p and viscosity p, ap- 

Radius of sphere = R ' t 
At every point there are 
pressure and friction 
forces acting on the 

Fluid approaches 
from below with 
velocity v, I 

Point in space 
(x ,  y, z) or 
(r, 0 , 4 )  

Projection 
of point on 
xy-plane Fig. 2.6-1 Sphere of radius R 

around which a fluid is flow- 
ing. The coordinates r, 8, and 4 
are shown. For more informa- 
tion on spherical coordinates, 
see Fig. A.8-2. 

G. G. Stokes, Trans. Cambridge Phil. Soc., 9,8-106 (1851). For creeping flow around an object of 
arbitrary shape, see H. Brenner, Chem. Engr. Sci., 19,703-727 (1964). 

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon, London (1987), §20. 
G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (1967), s4.9. 
S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth- 

Heinemann, Boston (1991), s4.2.3; this book contains a thorough discussion of "creeping flow" problems. 
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proaches the fixed sphere vertically upward in the z direction with a uniform velocity v,. 
For this problem, "creeping flow" means that the Reynolds number Re = Dv,p/p is less 
than about 0.1. This flow regime is characterized by the absence of eddy formation 
downstream from the sphere. 

The velocity and pressure distributions for this creeping flow are found in Chapter 4 
to be 

I 1 

vB =..[-I + t(:) ++(:I sin, 

p = p a  - pgz 
2 R 

cos 8 

In the last equation the quantity pa is the pressure in the plane z = 0 far away from the 
sphere. The term -pgz is the hydrostatic pressure resulting from the weight of the fluid, 
and the term containing v ,  is the contribution of the fluid motion. Equations 2.6-1,2, and 
3 show that the fluid velocity is zero at the surface of the sphere. Furthermore, in the 
limit as r + a, the fluid velocity is in the z direction with uniform magnitude v,; this fol- 
lows from the fact that v, = v, cos 8 - v, sin 8, which can be derived by using Eq. A.6-33, 
and v, = vy = 0, which follows from Eqs. A.6-31 and 32. 

The components of the stress tensor T in spherical coordinates may be obtained from 
the velocity distribution above by using Table B.1. They are 

- rrB - TBr = - - p v m ( ~ ) I  sin B 
2 R  7 

and all other components are zero. Note that the normal stressks for this flow are 
nonzero, except at r = R. 

Let us now determine the force exerted by the flowing fluid on the sphere. Because 
of the symmetry around the z-axis, the resultant force will be in the z direction. There- 
fore the force can be obtained by integrating the z-components of the normal and tan- 
gential forces over the sphere surface. 

Integration of the Normal Force 

At each point on the surface of the sphere the fluid exerts a force per unit area - ( p  + 
T, , )[ ,=~ on the solid, acting normal to the surface. Since the fluid is in the region of 
greater r and the sphere in the region of lesser r, we have to affix a minus sign in 
accordance with the sign convention established in 51.2. The z-component of the force 
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is - ( p  + T,,)(,,~(cos 0). We now multiply this by a differential element of surface 
R2 sin 0 d0 d+ to get the force on the surface element (see Fig. A.8-2). Then we inte- 
grate over the surface of the sphere to get the resultant normal force in the z direction: 

According to Eq. 2.6-5, the normal stress r, is zero5 at r = R and can be omitted in the in- 
tegral in Eq. 2.6-7. The pressure distribution at the surface of the sphere is, according to 
Eq. 2.6-4, 

3 PVw plr=R = po - pgR cos 8 - - - cos 0 
2 R 

(2.6-8) 

When this is substituted into Eq. 2.6-7 and the integration performed, the term contain- 
ing p0 gives zero, the term containing the gravitational acceleration g gives the buoyant 
force, and the term containing the approach velocity v, gives the "form drag" as shown 
below: 

F'"' = $ d 3 p g  + 2~,uRv, (2.6-9) 

The buoyant force is the mass of displaced fluid ( ~ T R ~ ~ )  times the gravitational accelera- 
tion (g). 

Integration of the Tangential Force 

At each point on the solid surface there is also a shear stress acting tangentially. The 
force per unit area exerted in the -0 direction by the fluid (region of greater r) on the 
solid (region of lesser r) is +rY8~,=,. The 2-component of this force per unit area is (T,&~) 
sin 0. We now multiply this by the surface element R2 sin 0 d0d+ and integrate over the 
entire spherical surface. This gives the resultant force in the z direction: 

The shear stress distribution on the sphere surface, from Eq. 2.6-6, is 

Substitution of this expression into the integral in Eq. 2.6-10 gives the "friction drag" 

Hence the total force F of the fluid on the sphere is given by the sum of Eqs. 2.6-9 and 
2.6-12: 

F = $ T R ~ ~ ~  + 2~,uRv, + ~ T ~ R v ,  
buoyant form friction 

force drag drag 

F = F,  + F, = $rR3pg + 6r,uRv, 
buoyant kinetic 

force force 

-- 

In Example 3.1-1 we show that, for incompressible, Newtonian fluids, all three of the normal 
stresses are zero at fixed solid surfaces in all flows. 



s2.6 Creeping Flow Around a Sphere 61 

The first term is the buoyant force, which would be present in a fluid at rest; it is the mass 
of the displaced fluid multiplied by the gravitational acceleration. The second term, the 
kinetic force, results from the motion of the fluid. The relation 

is known as Stokes' law.' It is used in describing the motion of colloidal particles under an 
electric field, in the theory of sedimentation, and in the study of the motion of aerosol 
particles. Stokes' law is useful only up to a Reynolds number Re = Dv,p/p of about 0.1. 
At Re = 1, Stokes' law predicts a force that is about 10% too low. The flow behavior for 
larger Reynolds numbers is discussed in Chapter 6. 

This problem, which could not be solved by the shell balance method, emphasizes 
the need for a more general method for coping with flow problems in which the stream- 
lines are not rectilinear. That is the subject of the following chapter. 

Derive a relation that enables one to get the viscosity of a fluid by measuring the terminal ve- 
locity v, of a small sphere of radius R in the fluid. 

Determination of 
Viscosity from the SOLUTION 
Terminal Velocity 
, fa  Falling Sphere If a small sphere is allowed to fall from rest in a viscous fluid, it will accelerate until it reaches 

a constant velocity-the terminal velocity. When this steady-state condition has been reached 
the sum of all the forces acting on the sphere must be zero. The force of gravity on the solid 
acts in the direction of fall, and the buoyant and kinetic forces act in the opposite direction: 

Here p, and p are the densities of the solid sphere and the fluid. Solving this equation for the 
terminal velocity gives 

This result may be used only if the Reynolds number is less than about 0.1. 
This experiment provides an apparently simple method for determining viscosity. How- 

ever, it is difficult to keep a homogeneous sphere from rotating during its descent, and if it 
does rotate, then Eq. 2.6-17 cannot be used. Sometimes weighted spheres are used in order to 
preclude rotation; then the left side of Eq. 2.6-16 has to be replaced by m, the mass of the 
sphere, times the gravitational acceleration. 

QUESTIONS FOR DISCUSSION 

1. Summarize the procedure used in the solution of viscous flow by the shell balance 
method. What kinds of problems can and cannot be solved by this method? How is the defin- 
ition of the first derivative used in the method? 

2. Which of the flow systems in this chapter can be used as a viscometer? List the difficulties 
that might be encountered in each. 

3. How are the Reynolds numbers defined for films, tubes, and spheres? What are the dimen- 
sions of Re? 

4. How can one modify the film thickness formula in 52.2 to describe a thin film falling down 
the interior wall of a cylinder? What restrictions might have to be placed on this modified for- 
mula? 

5. How can the results in s2.3 be used to estimate the time required for a liquid to drain out of a 
vertical tube that is open at both ends? 

6. Contrast the radial dependence of the shear stress for the laminar flow of a Newtonian liquid 
in a tube and in an annulus. In the latter, why does the function change sign? 
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Show that the Hagen-Poiseuille formula is dimensionally consistent. 
What differences are there between the flow in a circular tube of radius R and the flow in the 
same tube with a thin wire placed along the axis? 
Under what conditions would you expect the analysis in s2.5 to be inapplicable? 
Is Stokes' law valid for droplets of oil falling in water? For air bubbles rising in benzene? For 
tiny particles falling in air, if the particle diameters are of the order of the mean free path of 
the molecules in the air? 
Two immiscible liquids, A and B, are flowing in laminar flow between two parallel plates. Is 
it possible that the velocity profiles would be of the following form? Explain. 

12. 

PROBLEMS 2A.1 

2A.2 

b Liquid A 

Liquid B B 
What is the terminal velocity of a spherical colloidal particle having an electric charge e in an 
electric field of strength %? How is this used in the Millikan oil-drop experiment? 

Thickness of a falling film. Water at 20°C is flowing down a vertical wall with Re = 10. 
Calculate (a) the flow rate, in gallons per hour per foot of wall width, and (b) the film thickness 
in inches. 
Answers: (a) 0.727 gal/hr. ft; (b) 0.00361 in. 

Determination of capillary radius by flow measurement. One method for determining the 
radius of a capillary tube is by measuring the rate of flow of a Newtonian liquid through the 
tube. Find the radius of a capillary from the following flow data: 

Length of capillary tube 50.02 cm 
Kinematic viscosity of liquid 4.03 X m2/s 
Density of liquid 0.9552 X 103 kg/m3 
Pressure drop in the horizontal tube 4.829 X lo5 Pa 
Mass rate of flow through tube 2.997 X kg/s 

What difficulties may be encountered in this method? Suggest some other methods for deter- 
mining the radii of capillary tubes. 

Volume flow rate through an annulus. A horizontal annulus, 27 ft in length, has an inner ra- 
dius of 0.495 in. and an outer radius of 1.1 in. A 60% aqueous solution of sucrose (C,2H220,,) 
is to be pumped through the annulus at 20°C. At this temperature the solution density is 80.3 
lb/ft3 and the viscosity is 136.8 lb,/ft hr. What is the volume flow rate when the impressed 
pressure difference is 5.39 psi? 
Answer: 0.110 ft3/s 

Loss of catalyst particles in stack gas. 
(a) Estimate the maximum diameter of microspherical catalyst particles that could be lost in 
the stack gas of a fluid cracking unit under the following conditions: 

Gas velocity at axis of stack = 1.0 ft/s (vertically upward) 

Gas viscosity = 0.026 cp 
Gas density = 0.045 lb/ft3 

Density of a catalyst particle = 1.2 g/cm3 
Express the result in microns (1 micron = 10-~rn = lpm). 
(b) Is it permissible to use Stokes' law in (a)? 
Answers: (a) 110 pm; Re = 0.93 
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2B.1 Different choice of coordinates for the falling film problem. Rederive the velocity profile 
and the average velocity in s2.2, by replacing x by a coordinate F measured away from the 
wall; that is, F = 0 is the wall surface, and ?i = 6 is the liquid-gas interface. Show that the ve- 
locity distribution is then given by 

and then use this to get the average velocity. Show how one can get Eq. 2B.1-1 from Eq. 2.2-18 
by making a change of variable. 

Alternate procedure for solving flow problems. In this chapter we have used the following 
procedure: (i) derive an equation for the momentum flux, (ii) integrate this equation, (iii) insert 
Newton's law to get a first-order differential equation for the velocity, (iv) integrate the latter 
to get the velocity distribution. Another method is: (i) derive an equation for the momentum 
flux, (ii) insert Newton's law to get a second-order differential equation for the velocity profile, 
(iii) integrate the latter to get the velocity distribution. Apply this second method to the falling 
film problem by substituting Eq. 2.2-14 into Eq. 2.2-10 and continuing as directed until the ve- 
locity distribution has been obtained and the integration constants evaluated. 

28.3 Laminar flow in a narrow slit (see Fig. 2B.3). 

Fluid in I 

Fig. 2B.3 Flow through a slit, with B << W << L. 

(a) A Newtonian fluid is in laminar flow in a narrow slit formed by two parallel walls a dis- 
tance 2B apart. It is understood that B << W, so that "edge effects" are unimportant. Make a 
differential momentum balance, and obtain the following expressions for the momentum-flux 
and velocity distributions: 

In these expressions 9 = p + pgh = p - pgz. 
(b) What is the ratio of the average velocity to the maximum velocity for this flow? 
(c) Obtain the slit analog of the Hagen-Poiseuille equation. 
(d) Draw a meaningful sketch to show why the above analysis is inapplicable if B = W. 
(e) How can the result in (b) be obtained from the results of §2.5? 
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2B.4 Laminar slit flow with a moving wall ("plane Couette flow"). Extend Problem 2B.3 by al- 
lowing the wall at x = B to move in the positive z direction at a steady speed v,. Obtain (a) the 
shear-stress distribution and (b)  the velocity distribution. Draw carefully labeled sketches of 
these functions. 

2B.5 Interrelation of slit and annulus formulas. When an annulus is very thin, it may, to a good 
approximation, be considered as a thin slit. Then the results of Problem 2B.3 can be taken over 
with suitable modifications. For example, the mass rate of flow in an annulus with outer wall 
of radius R and inner wall of radius (1 - s)R, where 8 is small, may be obtained from Problem 
2B.3 by replacing 2B by EX, and W by 2 d l  - ;.SIR. In this way we get for the mass rate of flow: 

Show that this same result may be obtained from Eq. 2.4-17 by setting K equal to 1 - every- 
where in the formula and then expanding the expression for w in powers of &. This requires 
using the Taylor series (see 5C.2) 

and then performing a long division. The first term in the resulting series will be Eq. 2B.5-1. Cau- 
tion: In the derivation it is necessary to use the first four terms of the Taylor series in Eq. 2B.5-2. 

2B.6 Flow of a film on the outside of a circular tube (see Fig. 2B.6). In a gas absorption experi- 
ment a viscous fluid flows upward through a small circular tube and then downward in lami- 
nar flow on the outside. Set up a momentum balance over a shell of thickness Ar in the film, 

Velocity 
distribution 

outside 
in film 

4 r 

z-Momentum 
out of shell 
of thickness 

A r 

Gravity force 
acting on 

the volume 
2mArL 

Fig. 2B.6 Velocity distribution and z-momentum 
balance for the flow of a falling film on the outside 
of a circular tube. 



Problems 65 

as shown in Fig. 2B.6. Note that the "momentum in" and "momentum out" arrows are al- 
ways taken in the positive coordinate direction, even though in this problem the momentum 
is flowing through the cylindrical surfaces in the negative r direction. 
(a) Show that the velocity distribution in the falling film (neglecting end effects) is 

(b) Obtain an expression for the mass rate of flow in the film. 
(c) Show that the result in (b) simplifies to Eq. 2.2-21 if the film thickness is very small. 

2B.7 Annular flow with inner cylinder moving axially (see Fig. 2B.7). A cylindrical rod of radius 
KR moves axially with velocity v, = vo along the axis of a cylindrical cavity of radius R as seen 
in the figure. The pressure at both ends of the cavity is the same, so that the fluid moves 
through the annular region solely because of the rod motion. 

Rod of radius KR- 
moving with velocity vo 

L 

Cylinder of inside 

Fig. 2B.7 Annular flow with the inner cylinder moving axially. 

(a) Find the velocity distribution in the narrow annular region. 
(b) Find the mass rate of flow through the annular region. 
(c) Obtain the viscous force acting on the rod over the length L. 
(d) Show that the result in (c) can be written as a "plane slit" formula multiplied by a "curva- 
ture correction." Problems of this kind arise in studying the performance of wire-coating dies.' 

Fluid at modified 
pressure YO 

Fluid at modified 
pressure Yo \ 

v, In (r/R) Answers: (a) - = - 
vo In K 

radius R 
I( 

- 2dpv,  - 
(d) F, = & 

(1 - ;E - As2 + . - .) where E = 1 - K (see Problem 2B.5) 

2B.8 Analysis of a capillary flowmeter (see Fig. 2B.8). Determine the rate of flow (in lb/hr) 
through the capillary flow meter shown in the figure. The fluid flowing in the inclined tube is 

Fig. 2B.8 A capillary flow meter. 

J. B. Paton, P. H. Squires, W. H. Darnell, F. M. Cash, and J. F. Carley, Processing of Themoplastic 
Materials, E. C. Bernhardt (ed.), Reinhold, New York (19591, Chapter 4. 
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water at 20"C, and the manometer fluid is carbon tetrachloride (CCl,) with density 1.594 
g/cm3. The capillary diameter is 0.010 in. Note: Measurements of H and L are sufficient to cal- 
culate the flow rate; 8 need not be measured. Why? 

2B.9 Low-density phenomena in compressible tube flodr3 (Fig. 2B.9). As the pressure is de- 
creased in the system studied in Example 2.3-2, deviations from Eqs. 2.3-28 and 2.3-29 arise. 
The gas behaves as if it slips at the tube wall. It is conventional2 to replace the customary "no- 
slip" boundary condition that v, = 0 at the tube wall by 

in which 5 is the slip coefficient. Repeat the derivation in Example 2.3-2 using Eq. 2B.9-1 as the 
boundary condition. Also make use of the experimental fact that the slip coefficient varies in- 
versely with the pressure ( = Jo/p, in which & is a constant. Show that the mass rate of flow is 

in which pa,, = $(po + p,). 
When the pressure is decreased further, a flow regime is reached in which the mean free 

path of the gas molecules is large with respect to the tube radius (Knudsen flow). In that 
regime3 

in which m is the molecular mass and K is the Boltzmann constant. In the derivation of this re- 
sult it is assumed that all collisions of the molecules with the solid surfaces are diffuse and not 
specular. The results in Eqs. 2.3-29,2B.9-2, and 2B.9-3 are summarized in Fig. 2B.9. 

1 ,Free molecule flow 
1 / or Knudsen flow / 

W 

PO-  " -1 A / Poiseuille flow 

/ 

/ 
/ 

/ 
/ 

+ Fig. 28.9 A comparison of the flow regimes 
Pavg in gas flow through a tube. 

2B.10 Incompressible flow in a slightly tapered tube. An incompressible fluid flows through a tube 
of circular cross section, for which the tube radius changes linearly from R, at the tube en- 
trance to a slightly smaller value RL at the tube exit. Assume that the Hagen-Poiseuille equa- 
tion is approximately valid over a differential length, dz, of the tube so that the mass flow rate is 

This is a differential equation for 9 as a function of z, but, when the explicit expression for 
X(z) is inserted, it is not easily solved. 

E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill, New York (1938), pp. 292-295,300-306. 
M. Knudsen, The Kinetic Theory of Gases, Methuen, London, 3rd edition (1950). See also R. J. Silbey 

and R. A. Alberty, Physicnl Chemistry, Wiley, New York, 3rd edition (2001), 517.6. 
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(a) Write down the expression for R as a function of z. 

(b) Change the independent variable in the above equation to R, so that the equation becomes 

(c) Integrate the equation, and then show that the solution can be rearranged to give 

Interpret the result. The approximation used here that a flow between nonparallel surfaces 
can be regarded locally as flow between parallel surfaces is sometimes referred to as the lubri- 
cation approximation and is widely used in the theory of lubrication. By making a careful 
order-of-magnitude analysis, it can be shown that, for this problem, the lubrication approxi- 
mation is valid as long as4 

2B.11 The cone-and-plate viscometer (see Fig. 2B.11). A cone-and-plate viscometer consists of a 
stationary flat plate and an inverted cone, whose apex just contacts the plate. The liquid 
whose viscosity is to be measured is placed in the gap between the cone and plate. The cone is 
rotated at a known angular velocity a, and the torque T, required to turn the cone is mea- 
sured. Find an expression for the viscosity of the fluid in terms of a, T,, and the angle +0 be- 
tween the cone and plate. For commercial instruments is about 1 degree. 

~ifferential ,,/ / area r dr 

Fig. 2B.11 The cone-and-plate viscometer: 
(a) side view of the instrument; (b) top view 

v- of the cone-plate system, showing a differ- 
ential element r dr d+; (c) an approximate 

( c )  velocity distribution within the differential 

Y region. To equate the systems in (a) and (c), 
we identify the following equivalences: 
V = Or and b = r sin i/io = ri/io. 

R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Wiley- 
Interscience, New York, 2nd edition (19871, pp. 16-18. 
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(a) Assume that locally the velocity distribution in the gap can be very closely approximated 
by that for flow between parallel plates, the upper one moving with a constant speed. Verify 
that this leads to the approximate velocity distribution (in spherical coordinates) 

This approximation should be rather good, because I++, is so small. 
(b) From the velocity distribution in Eq. 28.11-1 and Appendix B.l, show that a reasonable 
expression for the shear stress is 

This result shows that the shear stress is uniform throughout the gap. It is this fact that makes 
the cone-and-plate viscometer quite attractive. The instrument is widely used, particularly in 
the polymer industry. 
(c) Show that the torque required to turn the cone is given by 

This is the standard formula for calculating the viscosity from measurements of the torque 
and angular velocity for a cone-plate assembly with known R and rCr,. 
(d) For a cone-and-plate instrument with radius 10 cm and angle Go equal to 0.5 degree, what 
torque (in dyn . cm) is required to turn the cone at an angular velocity of 10 radians per 
minute if the fluid viscosity is 100 cp? 
Answer: (d) 40,000 dyn . cm 

2B.12 Flow of a fluid in a network of tubes (Fig. 2B.12). A fluid is flowing in laminar flow from A 
to B through a network of tubes, as depicted in the figure. Obtain an expression for the mass 
flow rate w of the fluid entering at A (or leaving at B )  as a function of the modified pressure 
drop gA - 9,. Neglect the disturbances at the various tube junctions. 

3?7(pA - 9B)R4p 
Answer: w = 

20pL 

3 

Fluid in 

6 
Fluid out 

\ - 
d 

4 

"A 
All tubes have the same 

radius X and same length L 
Fig. 2B.12 Flow of a fluid in a network with 
branching. 

2C.1 Performance of an electric dust collector (see Fig. 2C.U5. 
(a) A dust precipitator consists of a pair of oppositely charged plates between which dust- 
laden gases flow. It is desired to establish a criterion for the minimum length of the precipita- 
tor in terms of the charge on the particle e, the electric field strength %, the pressure difference 

-- 

The answer given in the first edition of this book was incorrect, as pointed out to us in 1970 by 
Nau Gab Lee of Seoul National University. 
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X 

z 
Parabolic 
velocity - trajectory 

distribution 

B-:,.'' ' ; ,  ; ..;, , . - '  , *-:. " ",'. , ,  , * - . ' , ~ ' - (  
1 

+ " '  % ,  

f 
Pressure 

Po 

4 
Pressure 

PL 

Fig. 2C.1 Particle trajectory in an electric dust collector. The particle that begins at z = 0 and 
ends at x = + B may not necessarily travel the longest distance in the z direction. 

(po - pJ, the particle mass m, and the gas viscosity p. That is, for what length L will the smallest 
particle present (mass m) reach the bottom just before it has a chance to be swept out of the chan- 
nel? Assume that the flow between the plates is laminar so that the velocity distribution is de- 
scribed by Eq. 2B.3-2. Assume also that the particle velocity in the z direction is the same as the 
fluid velocity in the z direction. Assume further that the Stokes drag on the sphere as well as the 
gravity force acting on the sphere as it is accelerated in the negative x direction can be neglected. 
(b) Rework the problem neglecting acceleration in the x direction, but including the Stokes drag. 
(c) Compare the usefulness of the solutions in (a) and (b), considering that stable aerosol par- 
ticles have effective diameters of about 1-10 microns and densities of about 1 g/cm3. 
Answer: (a) Lmi, = [12(po - pL)2~5m/25p2eCe11'4 

2C.2 Residence time distribution in tube flow. Define the residence time function F ( t )  to be that 
fraction of the fluid flowing in a conduit which flows completely through the conduit in a 
time interval t. Also define the mean residence time t, by the relation 

(a) An incompressible Newtonian liquid is flowing in a circular tube of length L and radius 
R, and the average flow velocity is (v,). Show that 

F(t) = 0 for t 5 (L/2(vZ)) 

F(t) = 1 - (L/2(~,)t)~ fort 2 (L/2(vZ)) 

(b) Show that t, = (L/(v,)). 

2C.3 Velocity distribution in a tube. You have received a manuscript to referee for a technical 
journal. The paper deals with heat transfer in tube flow. The authors state that, because they 
are concerned with nonisothermal flow, they must have a "general" expression for the veloc- 
ity distribution, one that can be used even when the viscosity of the fluid is a function of tem- 
perature (and hence position). The authors state that a "general expression for the velocity 
distribution for flow in a tube" is 

in which y = r/R. The authors give no derivation, nor do they give a literature citation. As the 
referee you feel obliged to derive the formula and list any restrictions implied. 
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2C.4 Falling-cylinder viscometer (see Fig. 2C.4).6 A falling-cylinder viscometer consists of a long 
vertical cylindrical container (radius R), capped at both ends, with a solid cylindrical slug (ra- 
dius KR). The slug is equipped with fins so that its axis is coincident with that of the tube. 

One can observe the rate of descent of the slug in the cylindrical container when the lat- 
ter is filled with fluid. Find an equation that gives the viscosity of the fluid in terms of the ter- 
minal velocity v, of the slug and the various geometric quantities shown in the figure. 

Cylindrical 
slug descends - 
with speed v, 

- Cylindrical container Fig. 2C.4 A falling-cylinder viscom- 
with fluid eter with a tightly fitting solid cylin- 

der moving vertically. The cylinder 
is usually equipped with fins to 

----t 

Y maintain centering within the tube. 
The fluid completely fills the tube, 
and the top and bottom are closed. 

(a) Show that the velocity distribution in the annular slit is given by 

in which 5 = r/R is a dimensionless radial coordinate. 
(b) Make a force balance on the cylindrical slug and obtain 

in which p and p, are the densities of the fluid and the slug, respectively. 
(c) Show that, for small slit widths, the result in (b) may be expanded in powers of E = 1 - K 

to give 

See sC.2 for information on expansions in Taylor series. 

2C.5 Falling film on a conical surface (see Fig. 2C.5).7 A fluid flows upward through a circular 
tube and then downward on a conical surface. Find the film thickness as a function of the dis- 
tance s down the cone. 

- -- 

J. Lohrenz, G. W. Swift, and F. Kurata, AIChE Journal, 6,547-550 (1960) and 7,6S (1961); E. Ashare, 
R. B. Bird, and J. A. Lescarboura, AIChE Journal, 11,910-916 (1965). 

R. B. Bird, in Selected Topics in Transport Phenomena, CEP Symposium Series #58,61,1-15 (1965). 
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I s = downstream distance 

sured from the 

ilm thickness is 

t Fluid in with mass 
flow rate w 

Fig. 2C.5 A falling film on a conical 
surface. 

(a) Assume that the results of 92.2 apply approximately over any small region of the cone sur- 
face. Show that a mass balance on a ring of liquid contained between s and s + As gives: 

(b) Integrate this equation and evaluate the constant of integration by equating the mass rate 
of flow w up the central tube to that flowing down the conical surface at s = L. Obtain the fol- 
lowing expression for the film thickness: 

s = d  3pw (;) 
rp2gL sin 2/3 

2C.6 Rotating cone pump (see Fig. 2C.6). Find the mass rate of flow through this pump as a func- 
tion of the gravitational acceleration, the impressed pressure difference, the angular velocity 
of the cone, the fluid viscosity and density, the cone angle, and other geometrical quantities 
labeled in the figure. 

iredion of flow Fig. 2C.6 A rotating-cone pump. The variable r 
with mass rate of is the distance from the axis of rotation out to 

flow w (Ib, /s) the center of the slit. 
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(a) Begin by analyzing the system without the rotation of the cone. Assume that it is possible 
to apply the results of Problem 2B.3 locally. That is, adapt the solution for the mass flow rate 
from that problem by making the following replacements: 

replace (9, - BJ/L by -dP/dz  

replace W by 2717 = 27rz sin /3 

thereby obtaining 

d p  B3p .2.rrz sin p 
-=5(-z) P 

The mass flow rate w is a constant over the range of z. Hence this equation can be integrated 
to give 

(b) Next, modify the above result to account for the fact that the cone is rotating with angular 
velocity fl. The mean centrifugal force per unit volume acting on the fluid in the slit will have 
a z-component approximately given by 

What is the value of K? Incorporate this as an additional force tending to drive the fluid 
through the channel. Show that this leads to the following expression for the mass rate of flow: 

Here Pi = pi + pgLi cos P. 

2C.7 A simple rate-of-climb indicator (see Fig. 2C.7). Under the proper circumstances the simple 
apparatus shown in the figure can be used to measure the rate of climb of an airplane. The 
gauge pressure inside the Bourdon element is taken as proportional to the rate of climb. For 
the purposes of this problem the apparatus may be assumed to have the following properties: 
(i) the capillary tube (of radius R and length L, with R << L) is of negligible volume but ap- 
preciable flow resistance; (ii) the Bourdon element has a constant volume V and offers negli- 
gible resistance to flow; and (iii) flow in the capillary is laminar and incompressible, and the 
volumetric flow rate depends only on the conditions at the ends of the capillary. 

Rate of climb 

Capillary- 
tube 

Bourdon 
element 

Pressure Pressure 

outside = p, inside = pi Fig. 2C.7 A rate-of-climb indicator. 

(a) Develop an expression for the change of air pressure with altitude, neglecting tempera- 
ture changes, and considering air to be an ideal gas of constant composition. (Hint: Write a 
shell balance in which the weight of gas is balanced against the static pressure.) 
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(b) By making a mass balance over the gauge, develop an approximate relation between 
gauge pressure p, - p, and rate of climb v, for a long continued constant-rate climb. Neglect 
change of air viscosity, and assume changes in air density to be small. 
(c) Develop an approximate expression for the "relaxation time" trel of the indicator-that is, 
the time required for the gauge pressure to drop to l / e  of its initial value when the external 
pressure is suddenly changed from zero (relative to the interior of the gauge) to some differ- 
ent constant value, and maintained indefinitely at this new value. 
(d) Discuss the usefulness of this type of indicator for small aircraft. 
(e) Justify the plus and minus signs in the figure. 
Answers: (a) dp/dz = p g  = -(pM/RT)g 

(b) pi - p, = v Z ( 8 p ~ / ~ 4 ) ( ~ g ~ / ~ , T ) ,  where R,, is the gas constant and M is the mole- 
cular weight. 

(c) to = (128/.ir)(pVL/.rrD4@, where p = $(p, + p,) 

2D.1 Rolling-ball viscometer. An approximate analysis of the rolling-ball experiment has been 
given, in which the results of Problem 28.3 are used.8 Read the original paper and verify the 
results. 

2D.2 Drainage of liquids9 (see Fig. 2D.2). How much liquid clings to the inside surface of a large 
vessel when it is drained? As shown in the figure there is a thin film of liquid left behind on 
the wall as the liquid level in the vessel falls. The local film thickness is a function of both z 
(the distance down from the initial liquid level) and t (the elapsed time). 

Initial level of liquid ---------------- 

6(z, t )  = thickness of film 

- Wall of containing vessel Fig. 2D.2 Clinging of a viscous fluid to wall of 
vessel during draining. 

H. W. Lewis, Anal. Chem., 25,507 (1953); R. B. Bird and R. M. Turian, Ind. Eng. Chem. Fundamentals, 
3,87 (1964); J. &stkk and F. Arnbros, Rheol. Acta, 12,70-76 (1973). 

J. J. van Rossum, Appl. Sci. Research, A7,121-144 (1958); see also V. G. Levich, Physicochemical 
Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), Chapter 12. 
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(a) Make an unsteady-state mass balance on a portion of the film between z and z + Az to get 

(b) Use Eq. 2.2-18 and a quasi-steady-assumption to obtain the following first-order partial 
differential equation for 6(z, t) :  

(e)  Solve this equation to get 

What restrictions have to be placed on this result? 



Chapter 3 

The Equations of Change 
for Isothermal Systems 

3 . 1  The equation of continuity 

93.2 The equation of motion 

93.3 The equation of mechanical energy 

93.4' The equation of angular momentum 

93.5 The equations of change in terms of the substantial derivative 

93.6 Use of the equations of change to solve flow problems 

93.7 Dimensional analysis of the equations of change 

In Chapter 2, velocity distributions were determined for several simple flow systems by 
the shell momentum balance method. The resulting velocity distributions were then 
used to get other quantities, such as the average velocity and drag force. The shell bal- 
ance approach was used to acquaint the novice with the notion of a momentum balance. 
Even though we made no mention of it in Chapter 2, at several points we tacitly made 
use of the idea of a mass balance. 

It is tedious to set up a shell balance for each problem that one encounters. What we 
need is a general mass balance and a general momentum balance that can be applied to 
any problem, including problems with nonrectilinear motion. That is the main point of 
this chapter. The two equations that we derive are called the equation of continuity (for the 
mass balance) and the equation of motion (for the momentum balance). These equations 
can be used as the starting point for studying all problems involving the isothermal flow 
of a pure fluid. 

In Chapter 11 we enlarge our problem-solving capability by developing the equa- 
tions needed for nonisothermal pure fluids by adding an equation for the temperature. 
In Chapter 19 we go even further and add equations of continuity for the concentra- 
tions of the individual species. Thus as we go from Chapter 3 to Chapter 11 and on to 
Chapter 19 we are able to analyze systems of increasing complexity, using the com- 
plete set of equations of change. It should be evident that Chapter 3 is a very important 
chapter-perhaps the most important chapter in the book-and it should be mastered 
thoroughly. 

In 53.1 the equation of continuity is developed by making a mass balance over a 
small element of volume through which the fluid is flowing. Then the size of this ele- 
ment is allowed to go to zero (thereby treating the fluid as a continuum), and the desired 
partial differential equation is generated. 
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In 53.2 the equation of motion is developed by making a momentum balance over a 
small element of volume and letting the volume element become infinitesimally small. 
Here again a partial differential equation is generated. This equation of motion can be 
used, along with some help from the equation of continuity, to set up and solve all the 
problems given in Chapter 2 and many more complicated ones. It is thus a key equation 
in transport phenomena. 

In 53.3 and 53.4 we digress briefly to introduce the equations of change for mechani- 
cal energy and angular momentum. These equations are obtained from the equation of 
motion and hence contain no new physical information. However, they provide a conve- 
nient starting point for several applications in this book-particularly the macroscopic 
balances in Chapter 7. 

In 53.5 we introduce the "substantial derivative." This is the time derivative follow- 
ing the motion of the substance (i.e., the fluid). Because it is widely used in books on 
fluid dynamics and transport phenomena, we then show how the various equations of 
change can be rewritten in terms of the substantial derivatives. 

In 53.6 we discuss the solution of flow problems by use of the equations of continu- 
ity and motion. Although these are partial differential equations, we can solve many 
problems by postulating the form of the solution and then discarding many terms in 
these equations. In this way one ends up with a simpler set of equations to solve. In this 
chapter we solve only problems in which the general equations reduce to one or more 
ordinary differential equations. In Chapter 4 we examine problems of greater complexity 
that require some ability to solve partial differential equations. Then in Chapter 5 the 
equations of continuity and motion are used as the starting point for discussing turbu- 
lent flow. Later, in Chapter 8, these same equations are applied to flows of polymeric liq- 
uids, which are non-Newtonian fluids. 

Finally, 53.7 is devoted to writing the equations of continuity and motion in di- 
mensionless form. This makes clear the origin of the Reynolds number, Re, often men- 
tioned in Chapter 2, and why it plays a key role in fluid dynamics. This discussion lays 
the groundwork for scale-up and model studies. In Chapter 6 dimensionless numbers 
arise again in connection with experimental correlations of the drag force in complex 
systems. 

At the end of 52.2, we emphasized the importance of experiments in fluid dynamics. 
We repeat those words of caution here and point out that photographs and other types 
of flow visualization have provided us with a much deeper understanding of flow prob- 
lems than would be possible by theory alone.' Keep in mind that when one derives a 
flow field from the equations of change, it is not necessarily the only physically admissi- 
ble solution. 

Vector and tensor notations are occasionally used in this chapter, primarily for the 
purpose of abbreviating otherwise lengthy expressions. The beginning student will find 
that only an elementary knowledge of vector and tensor notation is needed for reading 
this chapter and for solving flow problems. The advanced student will find Appendix A 
helpful in getting a better understanding of vector and tensor manipulations. With re- 
gard to the notation, it should be kept in mind that we use lightface italic symbols for 
scalars, boldface Roman symbols for vectors, and boldface Greek symbols for tensors. 
Also dot-product operations enclosed in ( ) are scalars, and those enclosed in I I are 
vectors. 

-- 

' We recommend particularly M. Van Dyke, An Album of Fluid Motion, Parabolic Press, Stanford 
(1982); H. Werlk, Ann. Rev. Fluid Mech., 5,361-382 (1973); D. V. Boger and K. Walters, Rheological 
Phenomena in Focus, Elsevier, Amsterdam (1993). 
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Fig. 3.1-1. Fixed volume element Ax Ay 
Az through which a fluid is flowing. The 
arrows indicate the mass flux in and out 

\ I  of the volume at the two shaded faces lo- 
x cated at x and x + Ax. 

3 . 1  THE EQUATION OF CONTINUITY 

This equation is developed by writing a mass balance over a volume element Ax Ay Az, 
fixed in space, through which a fluid is flowing (see Fig. 3.1-1): 

rate of rate of rate of ] = [y] - (3.1-1) 

Now we have to translate this simple physical statement into mathematical language. 
We begin by considering the two shaded faces, which are perpendicular to the 

x-axis. The rate of mass entering the volume element through the shaded face at x is 
(pvx)lxAy Az, and the rate of mass leaving through the shaded face at x + Ax is 
(p~x)lx+AxAy Az. Similar expressions can be written for the other two pairs of faces. The 
rate of increase of mass within the volume element is Ax Ay Az(dp/dt). The mass balance 
then becomes 

By dividing the entire equation by Ax Ay Az and taking the limit as Ax, Ay, and Az go to 
zero, and then using the definitions of the partial derivatives, we get 

This is the equation of continuity, which describes the time rate of change of the fluid den- 
sity at a fixed point in space. This equation can be written more concisely by using vector 
notation as follows: ' 

rate of net rate of mass 
increase of addition per 
mass per unit volume 
unit volume by convection 
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Here (V . pv) is called the "divergence of pv," sometimes written as "div pv." The vector 
pv is the mass flux, and its divergence has a simple meaning: it is the net rate of mass ef- 
flux per unit volume. The derivation in Problem 3D.1 uses a volume element of arbitrary 
shape; it is not necessary to use a rectangular volume element as we have done here. 

A very important special form of the equation of continuity is that for a fluid of con- 
stant density, for which Eq. 3.1-4 assumes the particularly simple form 

(incompressible fluid) (V . v) = 0 (3.1-5) 

Of course, no fluid is truly incompressible, but frequently in engineering and biological 
applications, the assumption of constant density results in considerable simplification 
and very little error.'r2 

Show that for any kind of flow pattern, the normal stresses are zero at fluid-solid boundaries, 
for Newtonian fluids with constant density. This is an important result that we shall use 

Normal Stresses a t  often. 
Solid Surfaces for 
~ n c o m ~ r ~ s s i b l ~  SOLUTION 
Newtonian Fluids 

We visualize the flow of a fluid near some solid surface, which may or may not be flat. The 
flow may be quite general, with all three velocity components being functions of all three co- 
ordinates and time. At some point P on the surface we erect a Cartesian coordinate system 
with the origin at P. We now ask what the normal stress r,, is at P. 

According to Table B.l or Eq. 1.2-6, T,, = -2p(dv,/dz), because (V . v) = 0 for incompress- 
ible fluids. Then at point P on the surface of the solid 

First we replaced the derivative dv,/dz by using Eq. 3.1-3 with p constant. However, on the 
solid surface at z = 0, the velocity v, is zero by the no-slip condition (see §2.1), and therefore 
the derivative dv,/dx on the surface must be zero. The same is true of dv,/dy on the surface. 
Therefore T,, is zero. It is also true that T,, and ry, are zero at the surface because of the vanish- 
ing of the derivatives at z = 0. (Note: The vanishing of the normal stresses on solid surfaces 
does not apply to polymeric fluids, which are viscoelastic. For compressible fluids, the nor- 
mal stresses at solid surfaces are zero if the density is not changing with time, as is shown in 
Problem 3C.2.) 

53.2 THE EQUATION OF MOTION 

To get the equation of motion we write a momentum balance over the volume element 
Ax Ay Az in Fig. 3.2-1 of the form 

rate of rate of rate of external 
momentum momentum + force on 

[of 2:E:Eud = [ in ] - [ out ] [the f l U i j  (3'2-1) 

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford (1987), p. 21, point out 
that, for steady, isentropic flows, commonly encountered in aerodynamics, the incompressibility 
assumption is valid when the fluid velocity is small compared to the velocity of sound (i.e., low Mach 
number). 

Equation 3.1-5 is the basis for Chapter 2 in G. K. Batchelor, An Introduction to Fluid Dynamics, 
Cambridge University Press (1967), which is a lengthy discussion of the kinematical consequences of the 
equation of continuity. 
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z A Fig. 3.2-1. Fixed volume element Ax 
+ Ax, y + Ay, z + Az) Ay Az, with six arrows indicating the 

directions of the fluxes of x-momen- 
turn through the surfaces by all mech- 
anisms. The shaded faces are located 

dx X ~ X + A X  at x and x + Ax. 

Note that Eq. 3.2-1 is an extension of Eq. 2.1-1 to unsteady-state problems. Therefore we 
proceed in much the same way as in Chapter 2. However, in addition to including the 
unsteady-state term, we must allow the fluid to move through all six faces of the volume 
element. Remember that Eq. 3.2-1 is a vector equation with components in each of the 
three coordinate directions x, y, and z. We develop the x-component of each term in Eq. 
3.2-1; the y- and z-components may be treated analogously.1 

First, we consider the rates of flow of the x-component of momentum into and out of 
the volume element shown in Fig. 3.2-1. Momentum enters and leaves Ax Ay Az by two 
mechanisms: convective transport (see §1.7), and molecular transport (see 51.2). 

The rate at which the x-component of momentum enters across the shaded face at 
x by all mechanisms-both convective and molecular-is (4,,)IX Ay Az and the rate at 
which it leaves the shaded face at x + Ax is (t$xx)lx+Ax Ay Az. The rates at which 
x-momentum enters and leaves through the faces at y and y + Ay are ($,,)I, Az Ax and 
( ~ y x ) I y + A y  Az Ax, respectively. Similarly, the rates at which x-momentum enters and 
leaves through the faces at z and z + Az are (+,,)Iz Ax Ay and ( + Z x ) l z + A z  AX Ay. When 
these contributions are added we get for the net rate of addition of x-momentum 

across all three pairs of faces. 
Next there is the external force (typically the gravitational force) acting on the fluid 

in the volume element. The x-component of this force is 

Equations 3.2-2 and 3.2-3 give the x-components of the three terms on the right side of 
Eq. 3.2-1. The sum of these terms must then be equated to the rate of increase of 
x-momentum within the volume element: Ax Ay Az d(pvx)/dt. When this is done, we 
have the x-component of the momentum balance. When this equation is divided by 
Ax Ay Az and the limit is taken as Ax, Ay, and Az go to zero, the following equation 
results: 

' In this book all the equations of change are derived by applying the conservation laws to a region 
Ax Ay Az fixed in space. The same equations can be obtained by using an arbitrary region fixed in space 
or one moving along with the fluid. These derivations are described in Problem 3D.1. Advanced students 
should become familiar with these derivations. 
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Here we have made use of the definitions of the partial derivatives. Similar equations 
can be developed for the y- and z-components of the momentum balance: 

By using vector-tensor notation, these three equations can be written as follows: 

That is, by letting i be successively x, y, and z, Eqs. 3.2-4,5, and 6 can be reproduced. The 
quantities pvi are the Cartesian components of the vector pv, which is the momentum per 
unit volume at a point in the fluid. Similarly, the quantities pgi are the components of the 
vector pg, which is the external force per unit volume. The term - [V $ I i  is the ith com- 
ponent of the vector - [V . $ 1 .  

When the ith component of Eq. 3.2-7 is multiplied by the unit vector in the ith direc- 
tion and the three components are added together vectorially, we get 

which is the differential statement of the law of conservation of momentum. It is the 
translation of Eq. 3.2-1 into mathematical symbols. 

In Eq. 1.7-1 it was shown that the combined momentum flux tensor + is the sum of 
the convective momentum flux tensor p w  and the molecular momentum flux tensor m, 
and that the latter can be written as the sum of p8 and 7. When we insert $ = p w  + p8 + 
T into Eq. 3.2-8, we get the following equation of rnot i~n:~ 

d z p v  = - [ V - p v v ]  - v p  - [ V . s ]  + p g  

rate of rate of momentum rate of momentum addition external force 
increase of addition by by molecular transport on fluid 
momentum convection per unit volume per unit 
per unit per unit volume 
volume volume 

In this equation V p  is a vector called the "gradient of (the scalar) p" sometimes written as 
"grad p." The symbol [V TI is a vector called the "divergence of (the tensor) 7" and 
[V . p w l  is a vector called the "divergence of (the dyadic product) p w . "  

In the next two sections we give some formal results that are based on the equation 
of motion. The equations of change for mechanical energy and angular momentum are 
not used for problem solving in this chapter, but will be referred to in Chapter 7. Begin- 
ners are advised to skim these sections on first reading and to refer to them later as the 
need arises. 

This equation is attributed to A.-L. Cauchy, Ex. de math., 2,108-111 (1827). (Baron) Augustin-Louis 
Cauchy (1789-1857) (pronounced "Koh-shee" with the accent on the second syllable), originally trained 
as an engineer, made great contributions to theoretical physics and mathematics, including the calculus 
of complex variables. 
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53.3 THE EQUATION OF MECHANICAL ENERGY 

Mechanical energy is not conserved in a flow system, but that does not prevent us from 
developing an equation of change for this quantity. In fact, during the course of this 
book, we will obtain equations of change for a number of nonconserved quantities, such 
as internal energy, enthalpy, and entropy. The equation of change for mechanical en- 
ergy, which involves only mechanical terms, may be derived from the equation of mo- 
tion of g3.2. The resulting equation is referred to in many places in the text that follows. 

We take the dot product of the velocity vector v with the equation of motion in Eq. 
3.2-9 and then do some rather lengthy rearranging, making use of the equation of conti- 
nuity in Eq. 3.1-4. We also split up each of the terms containing p and 7 into two parts. 
The final result is the equation of change for kinetic energy: 

d , ($pu2) = - (V . ;pv%) - (V . pv) - p( -v . v) 

rate of rate of addition rate of work rate of reversible 
increase of of kinetic energy done by pressure conversion of 
kinetic energy by convection of surroundings kinetic energy into 
per unit volume per unit volume on the fluid internal energy 

- (V (T v]) - (-T:VV) + p(v g) (3.34)' 
rate of work done rate of rate of work 
by viscous forces irreversible by external force 
on the fluid conversion on the fluid 

from kinetic to 
internal energy 

At this point it is not clear why we have attributed the indicated physical significance to 
the terms p(V . v) and (7:Vv). Their meaning cannot be properly appreciated until one 
has studied the energy balance in Chapter 11. There it will be seen how these same two 
terms appear with opposite sign in the equation of change f9r internal energy. 

A 

We now introduce the potential energy2 (per unit m%ss) @, defined-by g - -V@. Then 
the last term in Eq. 3.3-1 may be rewritten as -p(v V@) = -(V : pv@) + @(V -_pv). The 
equation of continuity in Eq. 3.1-4 m3y now be used to replace + @(V . pv) by -@(dp/dt). 
The latter may be written as -d(p@)/dt, if the potential energy is independent of the 
time. This is tru: for the gravitational field for systems that are located on the surface of 
the earth; then @ = gh, where g is the (constant) gravitational acceleration and h is the el- 
evation coordinate in the gravitational field. 

With the introduction of the potential energy, Eq. 3.3-1 assumes the following form: 

This is an equation of change for kinetic-plus-potential energy. Since Eqs. 3.3-1 and 3.3-2 con- 
tain only mechanical terms, they are both referred to as the equation of change for mechani- 
cal energy. 

The term p(V v) may be either positive or negative depending on whether the fluid 
is undergoing expansion or compression. The resulting temperature changes can be rather 
large for gases in compressors, turbines, and shock tubes. 

' The interpretation under the (T:VV) term is correct only for Newtonian fluids; for viscoelastic 
fluids, such as polymers, this term may include reversible conversion to elastic energy. 

If g = _S,g is a vector of magnitude g in the negative z direction, then the potential energy per 
unit mass is @ = gz, where z is the elevation in the gravitational field. 
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The term (-T:VV) is always positive for Newtonian fluids: because it may be written 
as a sum of squared terms: 

which serves to define the two quantities @, and 9,. When the index i takes on the val- 
ues 1, 2, 3, the velocity components vi become v,, vy, vz and the Cartesian coordinates xi 
become x, y, z. The symbol 6q is the Kronecker delta, which is 0 if i # j and 1 if i = j. 

The quantity (-T:VV) describes the degradation of mechanical energy into thermal 
energy that occurs in all flow systems (sometimes called the viscous dissipation heati~g).~ 
This heating can produce considerable temperature rises in systems with large viscosity 
and large velocity gradients, as in lubrication, rapid extrusion, and high-speed flight. 
(Another example of conversion of mechanical energy into heat is the rubbing of two 
sticks together to start a fire, which scouts are presumably able to do.) 

When we speak of "isothermal systems," we mean systems in which there are no ex- 
ternally imposed temperature gradients and no appreciable temperature change result- 
ing from expansion, contraction, or viscous dissipation. 

The most important use of Eq. 3.3-2 is for the development of the macroscopic me- 
chanical energy balance (or engineering Bernoulli equation) in Section 7.8. 

53.4 THE EQUATION OF ANGULAR MOMENTUM 

Another equation can be obtained from the equation of motion by forming the cross 
product of the position vector r (which has Cartesian components x, y, z )  with Eq. 3.2-9. 
The equation of motion as derived in $3.2 does not contain the assumption that the stress 
(or momentum-flux) tensor T is symmetric. (Of course, the expressions given in $2.3 for 
the Newtonian fluid are symmetric; that is, rii = T ~ ~ . )  

When the cross product is formed, we get-after some vector-tensor manipula- 
tions-the following equation of change for angular momentum: 

Here E is a third-order tensor with components sijk (the permutation symbol defined in 
sA.2). If the stress tensor T is symmetric, as for Newtonian fluids, the last term is zero. 
According to the kinetic theories of dilute gases, monatomic liquids, and polymers, the 
tensor T is symmetric, in the absence of electric and magnetic torques.' If, on the other 
hand, T is asymmetric, then the last term describes the rate of conversion of bulk angular 
momentum to internal angular momentum. 

The assumption of a symmetric stress tensor, then, is equivalent to an assertion that 
there is no interconversion between bulk angular momentum and internal angular mo- 
mentum and that the two forms of angular momentum are conserved separately. This 

%n amusing consequence of the viscous dissipation for air is the study by H. K. Moffatt [Nature, 
404,833434 (2000)l of the way in which a spinning coin comes to rest on a table. 

G. G. Stokes, Trans. Camb. Phil. Soc., 9,&106 (1851), see pp. 57-59. 
' J. S. Dahler and L. E. Scriven, Nature, 192,3637 (1961); S. de Groot and P. Mazur, Nonequilibrium 

Thermodynamics, North Holland, Amsterdam (19621, Chapter XII. A literature review can be found in 
G. D. C. Kuiken, Ind. Eng. Chem. Res., 34,3568-3572 (1995). 
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corresponds, in Eq. 0.3-8, to equating the cross-product terms and the internal angular 
momentum terms separately. 

Eq. 3.4-1 will be referred to only in Chapter 7, where we indicate that the macro- 
scopic angular momentum balance can be obtained from it. 

53.5 THE EQUATIONS OF CHANGE IN TERMS 
OF THE SUBSTANTIAL DERIVATIVE 

Before proceeding we point out that several different time derivatives may be encoun- 
tered in transport phenomena. We illustrate these by a homely example--namely, the ob- 
servation of the concentration of fish in the Mississippi River. Because fish swim around, 
the fish concentration will in general be a function of position (x, y, z)  and time (t). 

The Partial Time Derivative dldt 

Suppose we stand on a bridge and observe the concentration of fish just below us as a 
function of time. We can then record the time rate of change of the fish concentration at a 
fixed location. The result is (d~/dt)l,,~,,, the partial derivative of c with respect to t, at con- 
stant x, y, and z. 

The Total Time Derivative dldt 

Now suppose that we jump into a motor boat and speed around on the river, sometimes 
going upstream, sometimes downstream, and sometimes across the current. All the time 
we are observing fish concentration. At any instant, the time rate of change of the ob- 
served fish concentration is 

in which dx/dt, dy/dt, and dz/dt are the components of the velocity of the boat. 

The Substantial Time Derivative DIDt 

Next we climb into a canoe, and not feeling energetic, we just float along with the cur- 
rent, observing the fish concentration. In this situation the velocity of the observer is the 
same as the velocity v of the stream, which has components v,, vy, and v,. If at any instant 
we report the time rate of change of fish concentration, we are then giving 

The special operator D/Dt = d/dt + v . V is called the substantial derivative (meaning that 
the time rate of change is reported as one moves with the "substance"). The terms mater- 
ial derivative, hydrodynamic derivative, and derivative following the motion are also used. 

Now we need to know how to convert equations expressed in terms of d/dt into 
equations written with D/Dt. For any scalar function f ( x ,  y, z, t) we can do the following 
manipulations: 
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Table 3.5-1 The Equations of Change for Isothermal Systems in the D/Dt-Forma 
Note: At the left are given the equation numbers for the d/dt forms. 

D (3.4-1) p [r X vl = -[V . {r X p ~ J ' ]  - [V . {r x T)'] + [r x pg] (DY 

" Equations (A) through (C) are obtained from Eqs. 3.14,3.2-9, and 3.3-1 with no 
assumptions. Equation (D) is written for symmetrical 7 only. 

The quantity in the second parentheses in the second line is zero according to the equa- 
tion of continuity. Consequently Eq. 3.5-3 can be written in vector form as 

Similarly, for any vector function f(x, y, z,  t), 

d D f 
- (pf) + [V . pvf] = p - dt Dt 

These equations can be used to rewrite the equations of change given in 553.1 to 3.4 in 
terms of the substantial derivative as shown in Table 3.5-1. 

Equation A in Table 3.5-1 tells how the density is decreasing or increasing as one 
moves along with the fluid, because of the compression [(V v) < 01 or expansion of the 
fluid [(V . v) > 01. Equation B can be interpreted as (mass) x (acceleration) = the sum of 
the pressure forces, viscous forces, and the external force. In other words, Eq. 3.2-9 is 
equivalent to Newton's second law of motion applied to a small blob of fluid whose en- 
velope moves locally with the fluid velocity v (see Problem 3D.1). 

We now discuss briefly the three most common simplifications of the equation of 
motion.' 

(i) For constant p and p, insertion of the Newtonian expression for 7 from Eq. 1.2-7 
into the equation of motion leads to the very famous Navier-Stokes equation, first de- 
veloped from molecular arguments by Navier and from continuum arguments by 
Stokes:' 

In the second form we have used the "modified pressure" 9 = p + pgh introduced in 
Chapter 2, where h is the elevation in the gravitational field and gh is the gravitational 

For discussions of the history of these and other famous fluid dynamics relations, see H. Rouse 
and S. Ince, History of Hydraulics, Iowa Institute of Hydraulics, Iowa City (1959). 

L. M. H. Navier, Mkmoires de I'Acadkmie Royale des Sciences, 6,389-440 (1827); G. G. Stokes, Proc. 
Cambridge Phil. Soc, 8,287-319 (1845). The name Navier is pronounced "Nah-vyay." 
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Fig. 3.5-1. The equation of state for a slightly com- 

1 slight?;;mp;sible pressible fluid and an incompressible fluid when T 

~ - p o = K ( p - P o )  is constant. 
where K = constant 

Po - - - - - - - - - - - - - - - - 

potential energy per unit mass. Equation 3.5-6 is a standard starting point for describing 
isothermal flows of gases and liquids. 

It must be kept in mind that, when constant p is assumed, the equation of state (at 
constant T )  is a vertical line on a plot of p vs. p (see Fig. 3.5-1). Thus, the absolute pres- 
sure is no longer determinable from p and T, although pressure gradients and instanta- 
neous differences remain determinate by Eq. 3.5-6 or Eq. 3.5-7. Absolute pressures are 
also obtainable if p is known at some point in the system. 

(ii) When the acceleration terms in the Navier-Stokes equation are neglected-that is, 
when p(Dv/Dt) = 0-we get 

which is called the Stokes flow equation. It is sometimes called the creeping flow equation, be- 
cause the term p[v . Vvl, which is quadratic in the velocity, can be discarded when the 
flow is extremely slow. For some flows, such as the Hagen-Poiseuille tube flow, the term 
p[v - Vvl drops out, and a restriction to slow flow is not implied. The Stokes flow equation 
is important in lubrication theory, the study of particle motions in suspension, flow 
through porous media, and swimming of microbes. There is a vast literature on this 
~ubject.~ 

(iii) When viscous forces are neglected-that is, [V . T I  = 0-the equation of motion 
becomes 

which is known as the Euler equation for "inviscid"  fluid^.^ Of course, there are no truly 
"inviscid" fluids, but there are many flows in which the viscous forces are relatively 
unimportant. Examples are the flow around airplane wings (except near the solid 
boundary), flow of rivers around the upstream surfaces of bridge abutments, some prob- 
lems in compressible gas dynamics, and flow of ocean  current^.^ 

". Happel and H. Brenner, Low Reynolds Number Hydrodynaniics, Martinus Nijhoff, The Hague 
(1983); S. Kim and S. J. Karrila, Microkydrodynamics: Principles and Selected Applications, Butterworth- 
Heinemann, Boston (1991). 

L. Euler, Mim. Acad. Sci. Berlin, 11,217-273,274-315,316-361 (1755). The Swiss-born 
mathematician Leonhard Euler (1707-1783) (pronounced "Oiler") taught in St. Petersburg, Basel, and 
Berlin and published extensively in many fields of mathematics and physics. 

See, for example, D. J. Acheson, Elementary Fluid Mechanics, Clarendon Press, Oxford (1990), 
Chapters 3-5; and G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (19671, 
Chapter 6. 
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The Bernoulli equation for steady flow of inviscid fluids is one of the most famous equations 
in classical fluid dynami~s.~ Show how it is obtained from the Euler equation of motion. 

The Bernoulli Equation 
for the Steady Flow of SOLUTION 
Inviscid Fluids Omit the time-derivative term in Eq. 3.5-9, and then use the vector identity [v . Vvl = 

iV(v V) - [V X [V X v]] (Eq. A.4-23) to rewrite the equation as 

pV;v2 - p[v X [V X v]] = -Vp - pgVh (3.5-10) 
A 

In writing the last term, we have expressed g as -V@ = -gVh, where h is the elevation in the 
gravitational field. 

Next we divide Eq. 3.5-10 by p and then form the dot product with the unit vector 
s = v//vl in the flow direction. When this is done the term involving the curl of the velocity 
field can be shown to vanish (a nice exercise in vector analysis), and (s . V) can be replaced by 
d/ds, where s is the distance along a streamline. Thus we get 

When this is integrated along a streamline from point 1 to point 2, we get 

which is called the Bernoulli equafion. It relates the velocity, pressure, and elevation of two 
points along a streamline in a fluid in steady-state flow. It is used in situations where it can be 
assumed that viscosity plays a rather minor role. 

53.6 USE OF THE EQUATIONS OF CHANGE 
TO SOLVE FLOW PROBLEMS 

For most applications of the equation of motion, we have to insert the expression for T 
from Eq. 1.2-7 into Eq. 3.2-9 (or, equivalently, the components of T from Eq. 1.2-6 or Ap- 
pendix B.l into Eqs. 3.2-5, 3.2-6, and 3.2-7). Then to describe the flow of a Newtonian 
fluid at constant temperature, we need in general 

The equation of continuity Eq. 3.1-4 
The equation of motion Eq. 3.2-9 
The components of T Eq. 1.2-6 
The equation of state P = P(P) 
The equations for the viscosities p = K = ~ ( p )  

These equations, along with the necessary boundary and initial conditions, determine 
completely the pressure, density, and velocity distributions in the fluid. They are seldom 
used in their complete form to solve fluid dynamics problems. Usually restricted forms 
are used for convenience, as in this chapter. 

If it is appropriate to assume constant density and viscosity, then we use 

The equation of continuity Eq. 3.1-4 and Table B.4 
The Navier-Stokes equation Eq. 3.5-6 and Tables B.5,6,7 

along with initial and boundary conditions. From these one determines the pressure and 
velocity distributions. 

Daniel Bernoulli (1700-1782) was one of the early researchers in fluid dynamics and also the 
kinetic theory of gases. His hydrodynamical ideas were summarized in D. Bernoulli, Hydrodynarnica sive 
de uiribus et motibus fluidovum commentarii, Argentorati (1738), however he did not actually give Eq. 3.5-12. 
The credit for the derivation of Eq. 3.5-12 goes to L. Euler, Histoires de l'Acad6mie de Berlin (1755). 
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In Chapter 1 we gave the components of the stress tensor in Cartesian coordinates, 
and in this chapter we have derived the equations of continuity and motion in Cartesian 
coordinates. In Tables B.1, 4, 5, 6, and 7 we summarize these key equations in three 
much-used coordinate systems: Cartesian (x, y, z), cylindrical (r, 0, z) ,  and spherical (r, 0, 
4). Beginning students should not concern themselves with the derivation of these equa- 
tions, but they should be very familiar with the tables in Appendix B and be able to use 
them for setting up fluid dynamics problems. Advanced students will want to go 
through the details of Appendix A and learn how to develop the expressions for the var- 
ious V-operations, as is done in 55A.6 and A.7. 

In this section we illustrate how to set up and solve some problems involving the 
steady, isothermal, laminar flow of Newtonian fluids. The relatively simple analytical 
solutions given here are not to be regarded as ends in themselves, but rather as a prepa- 
ration for moving on to the analytical or numerical solution of more complex problems, 
the use of various approximate methods, or the use of dimensional analysis. 

The complete solution of viscous flow problems, including proofs of uniqueness and 
criteria for stability, is a formidable task. Indeed, the attention of some of the world's best 
applied mathematicians has been devoted to the challenge of solving the equations of con- 
tinuity and motion. The beginner may well feel inadequate when faced with these equa- 
tions for the first time. All we attempt to do in the illustrative examples in this section is to 
solve a few problems for stable flows that are known to exist. In each case we begin by 
making some postulates about the form for the pressure and velocity distributions: that is, 
we guess how p and v should depend on position in the problem being studied. Then we 
discard all the terms in the equations of continuity and motion that are unnecessary ac- 
cording to the postulates made. For example, if one postulates that v, is a function of y 
alone, terms like dv,/dx and d2v,/dz2 can be discarded. When all the unnecessary terms 
have been eliminated, one is frequently left with a small number of relatively simple equa- 
tions; and if the problem is sufficiently simple, an analytical solution can be obtained. 

It must be emphasized that in listing the postulates, one makes use of intuition. The 
latter is based on our daily experience with flow phenomena. Our intuition often tells us 
that a flow will be symmetrical about an axis, or that some component of the velocity is 
zero. Having used our intuition to make such postulates, we must remember that the 
final solution is correspondingly restricted. However, by starting with the equations of 
change, when we have finished the "discarding process" we do at least have a complete 
listing of all the assumptions used in the solution. In some instances it is possible to go 
back and remove some of the assumptions and get a better solution. 

In several examples to be discussed, we will find one solution to the fluid dynamical 
equations. However, because the full equations are nonlinear, there may be other solutions 
to the problem. Thus a complete solution to a fluid dynamics problem requires the specifi- 
cation of the limits on the stable flow regimes as well as any ranges of unstable behavior. 
That is, we have to develop a "map" showing the various flow regimes that are possible. 
Usually analytical solutions can be obtained for only the simplest flow regimes; the re- 
mainder of the information is generally obtained by experiment or by very detailed nu- 
merical solutions. In other words, although we know the differential equations that govern 
the fluid motion, much is yet unknown about how to solve them. This is a challenging area 
of applied mathematics, well above the level of an introductory textbook. 

When difficult problems are encountered, a search should be made through some of 
the advanced treatises on fluid dynamics.' 

R. Berker, Handbuch der Physik, Volume VIII-2, Springer, Berlin (1963), pp. 1-384; G. K. Batchelor, 
An Infroduction to Fluid Mechanics, Cambridge University Press (1967); L. Landau and E. M. Lifshitz, Fluid 
Mechanics, Pergamon Press, Oxford, 2nd edition (1987); J. A. Schetz and A. E. Fuhs (eds.), Handbook of Fluid 
Dynamics and Fluid Machinery, Wiley-Interscience, New York (1996); R. W. Johnson (ed.), The Handbook of 
Fluid Dynamics, CRC Press, Boca Raton, Fla. (1998); C. Y. Wang, Ann. Revs. Fluid Mech., 23,159-177 (1991). 
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We now turn to the illustrative examples. The first two are problems that were dis- 
cussed in the preceding chapter; we rework these just to illustrate the use of the equa- 
tions of change. Then we consider some other problems that would be difficult to set up 
by the shell balance method of Chapter 2. 

Rework the tube-flow problem of Example 2.3-1 using the equations of continuity and mo- 
tion. This illustrates the use of the tabulated equations for constant viscosity and density in 

in a Long cylindrical coordinates, given in Appendix B. 
Circular Tube 

SOLUTION 

We postulate that v = 6,v,(r, z). This postulate implies that there is no radial flow (v, = 0) and 
no tangential flow (v, = O), and that v, does not depend on 8. Consequently, we can discard 
many terms from the tabulated equations of change, leaving 

equation of continuity dv, -- - 0 dz (3.6-1) 

r-equation of motion d 9  o = - -  
dr (3.6-2) 

&equation of motion d 9  o = - -  
de 

(3.6-3) 

z-equation of motion 

The first equation indicates that v, depends only on r; hence the partial derivatives in the sec- 
ond term on the right side of Eq. 3.6-4 can be replaced by ordinary derivatives. By using the 
modified pressure 9 = p + pgh (where h is the height above some arbitrary datum plane), we 
avoid the necessity of calculating the components of g in cylindrical coordinates, and we ob- 
tain a solution valid for any orientation of the axis of the tube. 

Equations 3.6-2 and 3.6-3 show that 9 is a function of z alone, and the partial derivative 
in the first term of Eq. 3.6-4 may be replaced by an ordinary derivative. The only way that we 
can have a function of r plus a function of z equal to zero is for each term individually to be a 
constant-say, Co-so that Eq. 3.6-4 reduces to 

The 9 equation can be integrated at once. The v,-equation can be integrated by merely "peel- 
ing off" one operation after another on the left side (do not "work out" the compound deriva- 
tive there). This gives 

9 = C+ + C, (3.6-6) 

The four constants of integration can be found from the boundary conditions: 

B.C. I 

B.C. 2 

B.C. 3 

B.C. 4 

atz=O, 9 = Y 0  

at z = L, 9 = 9[, 
at r = A, v, = 0 

at r = 0, v, = finite 

The resulting solutions are: 

9 = go - (yo - gL)(2/L) 
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Equation 3.6-13 is the same as Eq. 2.3-18. The pressure profile in Eq. 3.6-12 was not obtained 
in Example 2.3-1, but was tacitly postulated; we could have done that here, too, but we chose 
to work with a minimal number of postulates. 

As pointed out in Example 2.3-1, Eq. 3.6-13 is valid only in the laminar-flow regime, and 
at locations not too near the tube entrance and exit. For Reynolds numbers above about 2100, 
a turbulent-flow regime exists downstream of the entrance region, and Eq. 3.6-13 is no longer 
valid. 

Set up the problem in Example 2.2-2 by using the equations of Appendix B. This illustrates 
the use of the equation of motion in terms of T. 

Falling Film with 
Variable Viscosity SOLUTION 

As in Example 2.2-2 we postulate a steady-state flow with constant density, but with viscosity 
depending on x. We postulate, as before, that the x- and y-components of the velocity are zero 
and that v, = v,(x). With these postulates, the equation of continuity is identically satisfied. 
According to Table B.l, the only nonzero components of .r are T,, = r,, = -,u(dv,/dx). The 
components of the equation of motion in terms of T are, from Table B.5, 

where /3 is the angle shown in Fig. 2.2-2. 
Integration of Eq. 3.6-14 gives 

p = pgx sin p + f ( y, z) (3.6-1 7) 

in which f (y ,  z) is an arbitrary function. Equation 3.6-15 shows that f cannot be a function of y. 
We next recognize that the pressure in the gas phase is very nearly constant at the prevailing 
atmospheric pressure pa,,. Therefore, at the gas-liquid interface x = 0, the pressure is also 
constant at the value pa,,. Consequently, f can be set equal to pa, and we obtain finally 

Equation 3.5-16 then becomes 

d 
- T,, = pg cos p 
dx 

which is the same as Eq. 2.2-10. The remainder of the solution is the same as in 52.2. 

We mentioned earlier that the measurement of pressure difference vs. mass flow rate through 
a cylindrical tube is the basis for the determination of viscosity in commercial capillary vis- 

Operation of a Couette cometers. The viscosity may also be determined by measuring the torque required to turn a 
Viscometer solid object in contact with a fluid. The forerunner of all rotational viscometers is the Couette 

instrument, which is sketched in Fig. 3.6-1. 
The fluid is placed in the cup, and the cup is then made to rotate with a constant angular 

velocity Ln, (the subscript "0" stands for outer). The rotating viscous liquid causes the sus- 
pended bob to turn until the torque produced by the momentum transfer in the fluid equals 
the product of the torsion constant kt and the angular displacement Ob of the bob. The angular 
displacement can be measured by observing the deflection of a light beam reflected from a 
mirror mounted on the bob. The conditions of measurement are controlled so that there is a 
steady, tangential, laminar flow in the annular region between the two coaxial cylinders 
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1- Torsion wire with torsion constant k ,  

Fig. 3.6-1. (a)Tangential laminar flow of an incompressible fluid in the space between two cylinders; the outer 
one is moving with an angular velocity In,. (b) A diagram of a Couette viscometer. One measures the angular 
velocity Ino of the cup and the deflection oB of the bob at steady-state operation. Equation 3.6-31 gives the vis- 
cosity p in terms of a, and the torque T, = kt&. 

ve is a function of r 

shown in the figure. Because of the arrangement used, end effects over the region including 
the bob height L are negligible. 

To analyze this measurement, we apply the equations of continuity and motion for con- 
stant p and ,u to the tangential flow in the annular region around the bob. Ultimately we want 
an expression for the viscosity in terms of (the z-component of) the torque T, on the inner 
cylinder, the angular velocity a, of the rotating cup, the bob height L, and the radii KR and R 
of the bob and cup, respectively. 

Ir.">- 

SOLUTION 

Fluid inside 

In the portion of the annulus under consideration the fluid moves in a circular pattern. Rea- 
sonable postulates for the velocity and pressure are: v, = v,(r), v, = 0, v, = 0, and p = p(r, 2). 
We expect p to depend on z because of gravity and on r because of the centrifugal force. 

For these postulates all the terms in the equation of continuity are zero, and the compo- 
nents of the equation of motion simplify to 

(a) 

r-component 

z-component 

The second equation gives the velocity distribution. The third equation gives the effect of 
gravity on the pressure (the hydrostatic effect), and the first equation tells how the centrifugal 
force affects the pressure. For the problem at hand we need only the 13-component of the 
equation of m ~ t i o n . ~  

See R. B. Bird, C. F. Curtiss, and W. E. Stewart, Chem. Eng. Sci., 11,114-117 (1959) for a method of 
getting p(r, z) for this system. The time-dependent buildup to the steady-state profiles is given by R. B. 
Bird and C. F. Curtiss, Chem. Eng. Sci., 11,108-113 (1959). 
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A novice might have a compelling urge to perform the differentiations in Eq. 3.6-21 be- 
fore solving the differential equation, but this should not be done. All one has to do is "peel 
off" one operation at a time-just the way you undress-as follows: 

1 rv, = - C,? + C2 
2 

(3.6-25) 

The boundary conditions are that the fluid does not slip at the two cylindrical surfaces: 

B.C. 1 

B.C. 2 

These boundary conditions can be used to get the constants of integration, which are then in- 
serted in Eq. 3.6-26. This gives 

By writing the result in this form, with similar terms in the numerator and denominator, it is clear 
that both boundary conditions are satisfied and that the equation is dimensionally consistent. 

From the velocity distribution we can find the momentum flux by using Table B.2: 

The torque acting on the inner cylinder is then given by the product of the inward momen- 
tum flux (-T,,), the surface of the cylinder, and the lever arm, as follows: 

The torque is also given by T, = kt&,. Therefore, measurement of the angular velocity of the 
cup and the angular deflection of the bob makes it possible to determine the viscosity. The 
same kind of analysis is available for other rotational viscometers." 

For any viscometer it is essential to know when turbulence will occur. The critical 
Reynolds number (LR$2p/p),,, above which the system becomes turbulent, is shown in Fig. 
3.6-2 as a function of the radius ratio K .  

One might ask what happens if we hold the outer cylinder fixed and cause the inner 
cylinder to rotate with an angular velocity ili (the subscript "i" stands for inner). Then 
the velocity distribution is 

This is obtained by making the same postulates (see before Eq. 3.6-20) and solving the 
same differential equation (Eq. 3.6-21), but with a different set of boundary conditions. 

J. R. VanWazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow Measurement, Wiley, 
New York (1963); K. Walters, Rheomety, Chapman and Hall, London (1975). 
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30 Fig. 3.6-2. Critical Reynolds number for the tangen- 
tial flow in an annulus, with the outer cylinder rotat- 

20 ing and the inner cylinder stationary [H. Schlichting, 
* 

Bounds y Layer Theo y, McGraw-Hill, New York s 
x (1955), p. 3571. 
2 10 g - 
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Equation 3.6-32 describes the flow accurately for small values of Ri. However, when 
Ri reaches a critical value (C&, = 41.3(~/~ ' (1  - K ) ~ " ~ )  for K = 1) the fluid develops a 
secondary flow, which is superimposed on the primary (tangential) flow and which is 
periodic in the axial direction. A very neat system of toroidal vortices, called Taylor vor- 
tices, is formed, as depicted in Figs. 3.6-3 and 3.6-4(b). The loci of the centers of these vor- 
tices are circles, whose centers are located on the common axis of the cylinders. This is 
still laminar motion-but certainly inconsistent with the postulates made at the begin- 
ning of the problem. When the angular velocity Ri is increased further, the loci of the 
centers of the vortices become traveling waves; that is, the flow becomes, in addition, pe- 
riodic in the tangential direction [see Fig. 3.6-4(c)I. Furthermore, the angular velocity of 
the traveling waves is approximately ;ai. When the angular velocity Ri is further in- 
creased, the flow becomes turbulent. Figure 3.6-5 shows the various flow regimes, with 
the inner and outer cylinders both rotating, determined for a specific apparatus and a 

Inner cylinder 
/ rotating 

I 1 

Outer 
I 

, cylinder fixed 

Fig. 3.6-3. Counter-rotating toroidal vor- Fig. 3.6-4. Sketches showing the phe- 
tices, called Taylor vortices, observed in the nomena observed in the annular space 
annular space between two cylinders. The between two cylinders: (a) purely tan- 
streamlines have the form of helices, with gential flow; (b )  singly periodic flow 
the axes wrapped around the common (Taylor vortices); and (c) doubly periodic 
axis of the cylinders. This corresponds to flow in which an undulatory motion is 
Fig. 3.5-4(b). superposed on the Taylor vortices. 
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/ 
Turbulent flow / / 

10,000 

1 8,000 
/ 

Fig. 3.6-5. Flow-regime dia- 
gram for the flow between two 
coaxial cylinders. The straight 
line labeled "Rayleigh" is Lord 
Rayleigh's analytic solution for 
an inviscid fluid. [See D. Coles, 
J. Fluid. Mech., 21,385425 
(1965).1 

specific fluid. This diagram demonstrates how complicated this apparently simple sys- 
tem is. Further details may be found e l ~ e w h e r e . ~ ~ ~  

The preceding discussion should serve as a stern warning that intuitive postulates 
may be misleading. Most of us would not think about postulating the singly and doubly 
periodic solutions just described. Nonetheless, this information is contained in the 
Navier-Stokes equations. However, since problems involving instability and transitions 
between several flow regimes are extremely complex, we are forced to use a combination 
of theory and experiment to describe them. Theory alone cannot yet give us all the an- 
swers, and carefully controlled experiments will be needed for years to come. 

A liquid of constant density and viscosity is in a cylindrical container of radius R as shown in 
Fig. 3.6-6. The container is caused to rotate about its own axis at an angular velocity a. The 

of the Su*face cylinder axis is vertical, so that g, = Or go = 0, and g, = -g, in which g is the magnitude of the 
of a Rotating Liquid gravitational acceleration. Find the shape of the free surface of the liquid when steady state 

has been established. 

The initial work on this subject was done by John William Strutt (Lord Rayleigh) (1842-1919), 
who established the field of acoustics with his Theory of Sound, written on a houseboat on the Nile River. 
Some original references on Taylor instability are: J. W. Strutt (Lord Rayleigh), Proc. Roy. Soc., A93, 
148-154 (1916); G. I. Taylor, Phil. Trans., A223,289-343 (1923) and Proc. Roy. Soc. A157,546-564 (1936); 
P. Schultz-Grunow and H. Hein, Zeits. Flugwiss., 4,28-30 (1956); D. Coles, J. Fluid. Mech. 21,385-425 
(1965). See also R. P. Feynman, R. 8. Leighton, and M. Sands, The Feynman Lectures in Physics, Addison- 
Wesley, Reading, MA (1964),§41-6. 

Other references on Taylor instability, as well as instability in other flow systems, are: L. D. Landau 
and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), pp. 99-106; S. Chandrasekhar, 
Hydrodynamic and Hydromagnetic Stability, Oxford University Press (1961), pp. 272-342; H. Schlichting 
and K. Gersten, Boundary-Layer Theory, 8th edition (2000), Chapter 15; P. G. Drazin and W. H. Reid, 
Hydrodynamic Stability, Cambridge University Press (1981); M. Van Dyke, An Album of Fluid Motion, 
Parabolic Press, Stanford (1982). 
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+Q 

SOLUTION 

Fig. 3.6-6. Rotating liquid with a free surface, the 
shape of which is a paraboloid of revolution. 

t 

for this problem, and the equations of change are 
given in Tables B.2 and B.6. At steady state we postulate that v, and viare both zero and that 
v, depends only on r. We also postulate that p depends on z because of the gravitational force 
and on r because of the centrifugal force but not on 6. 

These postulates give 0 = 0 for the equation of continuity, and the equation of motion gives: 

R - I  

Cylindrical coordinates are appropriate 

L P = Patm 
\ 

surface I 

\ 

r-component 

i 
z 

z-component 

-, p = p(r, z) 
within fluid 

The 6-component of the equation of motion can be integrated to give 

in which C1 and C2 are constants of integration. Because v, cannot be infinite at r = 0, the con- 
stant C2 must be zero. At r = R the velocity v, is Rfl. Hence C, = 2i2 and 

This states that each element of the rotating liquid moves as an element of a rigid body (we 
could have actually postulated that the liquid would rotate as a rigid body and written down 
Eq. 3.6-37 directly). When the result in Eq. 3.6-37 is substituted into Eq. 3.6-33, we then have 
these two equations for the pressure gradients: 

a p  dP 
- = pf12r and - = -pg 
dr dz 

Each of these equations can be integrated, as follows: 

p = ;pi2'r2 + f,@, z) and p = -pgz + f2(r, 6) (3.6-40,41) 

where f ,  and f2 are arbitrary functions of integration. Since we have postulated that p does not 
depend on 8, we can choose fi = -pgz + C and f2 = $a2$ + C, where C is a constant, and sat- 
isfy Eqs. 3.6-38 and 39. Thus the solution to those equations has the form 

The constant C may be determined by requiring that p = pa,, at r = 0 and z = z,, the latter 
being the elevation of the liquid surface at r = 0. When C is obtained in this way, we get 
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This equation gives the pressure at all points within the liquid. Right at the liquid-air inter- 
face, p = p,,,, and with this substitution Eq. 3.6-43 gives the shape of the liquid-air interface: 

This is the equation for a parabola. The reader can verify that the free surface of a liquid in a 
rotating annular container obeys a similar relation. 

A solid sphere of radius R is rotating slowly at a constant angular velocity R in a large body 
of quiescent fluid (see Fig. 3.6-7). Develop expressions for the pressure and velocity distribu- 

near a Slowly tions in the fluid and for the torque T, required to maintain the motion. It is assumed that the 
Rotating Sphere sphere rotates sufficiently slowly that it is appropriate to use the creeping flow version of the 

equation of motion in Eq. 3.5-8. This problem illustrates setting up and solving a problem in 
spherical coordinates. 

SOLUTION The equations of continuity and motion in spherical coordinates are given in Tables B.4 and 
B.6, respectively. We postulate that, for steady creeping flow, the velocity distribution will 
have the general form v = 6,v,(r, O), and that the modified pressure will be of the form 
9 = 9 (r, 8). Since the solution is expected to be symmetric about the z-axis, there is no depen- 
dence on the angle 4. 

With these postulates, the equation of continuity is exactly satisfied, and the components 
of the creeping flow equation of motion become 

r-component d 9  0 = -- 
dr 

(3.6-45) 

The boundary conditions may be summarized as 

B.C. 1: 

B.C. 2: 

B.C. 3: 

at r = R, v, = 0, v, = 0, v, = Rfl  sin 8 

asr+m,  vr+O,v,+O,vd+O 

asr+m,  9 + p 0  

where 9 = p + pgz, and p, is the fluid pressure far from the sphere at z = 0. 
Equation 3.6-47 is a partial differential equation for v,(r, 0). To solve this, we try a solu- 

tion of the form v, = f (r) sin 0. This is just a guess, but it is consistent with the boundary con- 
dition in Eq. 3.6-48. When this trial form for the velocity distribution is inserted into Eq. 3.6-47 
we get the following ordinary differential equation for f (r): 

Torque T, is required 
to make the sphere 

rotate 

Fig. 3.6-7. A slowly rotating sphere in an infinite expanse 
of fluid. The primary flow is u, = OR(R/U)~ sin 8. 
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This is an "equidimensional equation," which may be solved by assuming a trial solution 
f = rn (see Eq. C.l-14). Substitution of this trial solution into Eq. 3.6-51 gives n = 1, -2. The so- 
lution of Eq. 3.6-51 is then 

,- 

so that 

Application of the boundary conditions shows that C, = 0 and C2 = aR3. Therefore the final 
expression for the velocity distribution is 

v+ = O R  , sin 0 
(R)' 

Next we evaluate the torque needed to maintain the rotation of the sphere. This will be the in- 
tegral, over the sphere surface, of the tangential force (T,&=,)R~ sin 0dBd4 exerted on the fluid 
by a solid surface element, multiplied by the lever arm R sin 0 for that element: 

= J:' 1: (3161 sin B)(R sin B)R2 sin BdBd4 

In going from the first to the second line, we have used Table B.l, and in going from the sec- 
ond to the third line we have done the integration over the range of the 4 variable. The inte- 
gral in the third line is $. 

As the angular velocity increases, deviations from the "primary flow" of Eq. 3.6-54 occur. 
Because of the centrifugal force effects, the fluid is pulled in toward the poles of the sphere 
and shoved outward from the equator as shown in Fig. 3.6-8. To describe this "secondary 
flow," one has to include the [v Vvl term in the equation of motion. This can be done by the 
use of a stream-function m e t h ~ d . ~  

X 

Fig. 3.6-8. Rough sketch showing the secondary flow 

I I I I I I I I  which appears around a rotating sphere as the Reynolds 
Side view number is increased. 

ti See, for example, the development by 0. Hassager in R. B. Bird, R. C. Armstrong, and 0. Hassager, 
Dynamics of Polymeric Liquids, Vol. I., Wiley-Interscience, New York, 2nd edition (1987), pp. 31-33. See also 
L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), p. 65; and L. G. Leal, 
Laminar Flow and Convective Transport Processes, Butterworth-Heinemann, Boston (1992), pp. 180-181. 
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53.7 DIMENSIONAL ANALYSIS OF THE EQUATIONS OF CHANGE 

Suppose that we have taken experimental data on, or made photographs of, the flow 
through some system that cannot be analyzed by solving the equations of change analyt- 
ically. An example of such a system is the flow of a fluid through an orifice meter in a 
pipe (this consists of a disk with a centered hole in it, placed in the tube, with a pressure- 
sensing device upstream and downstream of the disk). Suppose now that we want to 
scale up (or down) the experimental system, in order to build a new one in which exactly 
the same flow patterns occur [but appropriately scaled up (or down)]. First of all, we 
need to have geometric similarity: that is, the ratios of all dimensions of the pipe and ori- 
fice plate in the original system and in the scaled-up (or scaled-down) system must be 
the same. In addition, we must have dynamic similarity: that is, the dimensionless groups 
(such as the Reynolds number) in the differential equations and boundary conditions 
must be the same. The study of dynamic similarity is best understood by writing the 
equations of change, along with boundary and initial conditions, in dimensionless 

For simplicity we restrict the discussion here to fluids of constant density and vis- 
cosity, for which the equations of change are Eqs. 3.1-5 and 3.5-7 

D p-v = -VY + iLV2v 
Dt 

In most flow systems one can identify the following "scale factors": a characteristic 
length I,, a characteristic velocity v,, and a characteristic modified pressure Po = p, + 
pgh, (for example, these might be a tube diameter, the average flow velocity, and the 
modified pressure at the tube exit). Then we can define dimensionless variables and dif- 
ferential operators as follows: 

We have suggested two choices for the dimensionless pressure, the first one being con- 
venient for high Reynolds numbers and the second for low Reynolds numbers. When 
the equations of change in Eqs. 3.7-1 and 3.7-2 are rewritten in terms of the dimension- 
less quantities, they become 

' G. Birkhoff, Hydrodynamics, Dover, New York (1955), Chapter IV. Our dimensional analysis 
procedure corresponds to Birkhoff's "complete inspectional analysis." 

R. W. Powell, An Elementary Text in Hydraulics and Fluid Mechanics, Macmillan, New York (19511, 
Chapter VIII; and H. Rouse and S. Ince, History of Hydraulics, Dover, New York (1963) have interesting 
historical material regarding the dimensionless groups and the persons for whom they were named. 
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In these dimensionless equations, the four scale factors I,, v,, p, and ,u appear in one dimen- 
sionless group. The reciprocal of this group is named after a famous fluid dynamicist3 

Re = - = Reynolds number ro7n 
The magnitude of this dimensionless group gives an indication of the relative impor- 
tance of inertial and viscous forces in the fluid system. 

From the two forms of the equation of motion given in Eq. 3.7-9, we can gain some 
perspective on the special forms of the Navier-Stokes equation given in 53.5. Equation 
3.7-9a gives the Euler equation of Eq. 3.5-9 when Re + and Eq. 3.7-913 gives the creep- 
ing flow equation of Eq. 3.5-8 when Re << 1. The regions of applicability of these and 
other asymptotic forms of the equation of motion are considered further in s54.3 and 4.4. 

Additional dimensionless groups may arise in the initial and boundary conditions; 
two that appear in problems with fluid-fluid interfaces are 

Fr = - = Froude number n:n 
We = [L] = Weber number 

~ O ~ P  

The first of these contains the gravitational acceleration g, and the second contains the in- 
terfacial tension a, which may enter into the boundary conditions, as described in Prob- 
lem 3C.5. Still other groups may appear, such as ratios of lengths in the flow system (for 
example, the ratio of tube diameter to the diameter of the hole in an orifice meter). 

The flow of an incompressible Newtonian fluid past a circular cylinder is to be studied exper- 
imentally. We want to know how the flow patterns and pressure distribution depend on the 

Transverse Flow cylinder diameter, length, the approach velocity, and the fluid density and viscosity. Show 
around a Circular how to organize the work so that the number of experiments needed will be minimized. 
Cylindefl 

SOLUTION 

For the analysis we consider an idealized flow system: a cylinder of diameter D and length L, 
submerged in an otherwise unbounded fluid of constant density and viscosity. Initially the 
fluid and the cylinder are both at rest. At time t = 0, the cylinder is abruptly made to move 
with velocity v, in the negative x direction. The subsequent fluid motion is analyzed by using 
coordinates fixed in the cylinder axis as shown in Fig. 3.7-1. 

The differential equations describing the flow are the equation of continuity (Eq. 3.7-1) 
and the equation of motion (Eq. 3.7-2). The initial condition for t = 0 is: 

I.C. i f x 2 + y 2 > ~ D 2 0 r i f I z I > ~ ~ ,  v=ij,v, (3.7-13) 

The boundary conditions for t 2 0 and all z are: 

B.C. 1 

B.C. 2 

B.C. 3 

asx2 + y2 + z2-+ 03, v -+ Zixvm 

v = O  

asx+ -03 aty = 0, Y+Y, 

See fn. 1 in s2.2. 
William Froude (1810-1879) (rhymes with "food") studied at Oxford and worked as a civil 

engineer concerned with railways and steamships. The Froude number is sometimes defined as the 
square root of the group given in Eq. 3.7-1 1. 

Moritz Weber (1871-1951) (pronounced "Vayber") was a professor of naval architecture in Berlin; 
another dimensionless group involving the surface tension in the capillary number, defined as Ca = [pvo/u]. 

This example is adapted from R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures 
on Physics, Vol. 11, Addison-Wesley, Reading, Mass. (19641, s41-4. 
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+ Fluid 
+ approaches 

from x = -w  - with uniform 

Fig. 3.7-1. Transverse flow around a cylinder. 

Now we rewrite the problem in terms of variables made dimensionless with the characteristic 
length Dl velocity v,, and modified pressure 9,. The resulting dimensionless equations of 
change are 

1 - ( d . 1 )  = O f  and Y +  [ + a d + ]  = -eO +-V2+ 
d t  Re 

in which Re = Dv,p/p. The corresponding initial and boundary conditions are: 

I.C. 

B.C. 1 

B.C. 2 

B.C. 3 

as i2 + ij2 + i2 + w, +-+ tix 

if k2 + g2 5 ,  and 121 5 ~ ( L / D ) ,  ; = o  
a s f +  - w a t y =  0, 9 + 0  

If we were bright enough to be able to solve the dimensionless equations of change along with 
the dimensionless boundary conditions, the solutions would have to be of the following form: 

+ = +(it ij, i, i, Re, LID)  and @ = @(?, ij,i, i, Re, L I D )  (3.7-23,24) 

That is, the dimensionless velocity and dimensionless modified pressure can depend only 
on the dimensionless parameters Re and L /  D and the dimensionless independent variables 
kf ijf i, and z. 

This completes the dimensional analysis of the problem. We have not solved the flow 
problem, but have decided on a convenient set of dimensionless variables to restate the prob- 
lem and suggest the form of the solution. The analysis shows that if we wish to catalog the 
flow patterns for flow past a cylinder, it will suffice to record them (e.g., photographically) for 
a series of Reynolds numbers Re = Dv,p/p and L / D  values; thus, separate investigations 
into the roles of L, Dl v,, p, and p are unnecessary. Such a simplification saves a lot of time 
and expense. Similar comments apply to the tabulation of numerical results, in the event that 
one decides to make a numerical assault on the p r ~ b l e m . ~ , ~  

Analytical solutions of this problem at very small Re and infinite L/D are reviewed in L. 
Rosenhead (ed.), Laminar Boundary Layers, Oxford University Press (1963), Chapter IV. An important 
feature of this two-dimensional problem is the absence of a "creeping flow" solution. Thus the [v - Vvl- 
term in the equation of motion has to be included, even in the limit as Re + 0 (see Problem 3B.9). This is 
in sharp contrast to the situation for slow flow around a sphere (see g2.6 and g4.2) and around other 
finite, three-dimensional objects. 

For computer studies of the flow around a long cylinder, see F. H. Harlow and J. E. From, Scientific 
American, 212,104-110 (19651, and S. J. Sherwin and G. E. Kamiadakis, Comput. Math., 123,189-229 (1995). 
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Experiments involve some necessary departures from the above analysis: the stream 
is finite in size, and fluctuations of velocity are inevitably present at the initial state and 
in the upstream fluid. These fluctuations die out rapidly near the cylinder at Re < 1. For 
Re approaching 40 the damping of disturbances gets slower, and beyond this approxi- 
mate limit unsteady flow is always observed. 

The observed flow patterns at large vary strongly with the Reynolds number as 
shown in Fig. 3.7-2. At Re << 1 the flow is orderly, as shown in (a). At Re of about 10, a 
pair of vortices appears behind the cylinder, as may be seen in (b). This type of flow per- 
sists up to about Re = 40, when there appear two "separation points," at which the 
streamlines separate from the solid surface. Furthermore the flow becomes permanently 
unsteady; vortices begin to "peel off" from the cylinder and move downstream. With 
further increase in Re, the vortices separate regularly from alternate sides of the cylinder, 
as shown in (c); such a regular array of vortices is known as a "von KArmtin vortex 
street." At still higher Re there is a disorderly fluctuating motion (turbulence) in the 
wake of the cylinder, as shown in (d). Finally, at Re near lo6, turbulence appears up- 
stream of the separation point, and the wake abruptly narrows down as shown in (e). 
Clearly, the unsteady flows shown in the last three sketches would be very difficult to 
compute from the equations of change. It is much easier to observe them experimentally 
and correlate the results in terms of Eqs. 3.7-23 and 24. 

Equations 3.7-23 and 24 can also be used for scale-up from a single experiment. Sup- 
pose that we wanted to predict the flow patterns around a cylinder of diameter D, = 5 ft, 
around which air is to flow with an approach velocity (v,), = 30 ft/s, by means of an ex- 

Stagnation point 7eparation point 

Separation point 

Separation point 

von 
Kbmin 
vortex 
street 

I Turbulent 
wake 

Separation point 

Fig. 3.7-2. The types of 
behavior for the flow 
around a cylinder, illus- 
trating the various flow 
regimes that are ob- 
served as the Reynolds 
number increases. Re- 
gions of turbulent flow 
are shaded in gray. 
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periment on a scale model of diameter DII = 1 ft. To have dynamic similarity, we must 
choose conditions such that Re, = ReI. Then if we use the same fluid in the small-scale 
experiment as in the large system, so that p,/fi, = ,uI/pI, we find (v,),, = 150 ft/s as the 
required air velocity in the small-scale model. With the Reynolds numbers thus equal- 
ized, the flow patterns in the model and the full-scale system will look alike: that is, they 
are geometrically similar. 

Furthermore, if Re is in the range of periodic vortex formation, the dimensionless 
time interval t,v,/D between vortices will be the same in the two systems. Thus, the vor- 
tices will shed 25 times as fast in the model as in the full-scale system. The regularity of 
the vortex shedding at Reynolds numbers from about lo2 to lo4 is utilized commercially 
for precise flow metering in large pipelines. 

It is desired to predict the flow behavior in a large, unbaffled tank of oil, shown in Fig. 3.7-3, 
as a function of the impeller rotation speed. We propose to do this by means of model experi- 

Steady Flow in an ments in a smaller, geometrically similar system. Determine the conditions necessary for the 
Agitated Tank model studies to provide a direct means of prediction. 

SOLUTION We consider a tank of radius R, with a centered impeller of overall diameter D. At time t = 0, 
the system is stationary and contains liquid to a height H above the tank bottom. Immediately 
after time t = 0, the impeller begins rotating at a constant speed of N revolutions per minute. 
The drag of the atmosphere on the liquid surface is neglected. The impeller shape and initial 
position are described by the function Si,,(r, 6, z) = 0. 

The flow is governed by Eqs. 3.7-1 and 2, along with the initial condition 

and the following boundary conditions for the liquid region: 

tank bottom a t z = O a n d O ~ r < R ,  v = O  

tank wall a t r = R ,  v = O  
impeller surface at Simp(r, 0 - 27~Nt, z) = 0, v = 2n-Nr6, 

gas-liquid interface at Si&, 6, z, t )  = 0, (n . v) = 0 

and np + [n . T I  = np,,, 

Initial 
liquid 
heights 

Fig. 3.7-3. Long-time average free-surface shapes, with ReI = Rell. 



102 Chapter 3 The Equations of Change for Isothermal Systems 

Equations 3.7-26 to 28 are the no-slip and impermeability conditions; the surface S,,,(Y, 
8 - 2 ~ N f ,  z) = O describes the location of the impeller after Nt rotations. Equation 3.7-29 is the 
condition of no mass flow through the gas-liquid interface, described by Sin&, 0, Z, t) = 0, 
which has a local unit normal vector n. Equation 3.7-30 is a force balance on an element of this 
interface (or a statement of the continuity of the normal component of the momentum flux ten- 
sor m) in which the viscous contributions from the gas side are neglected. This interface is ini- 
tially stationary in the plane z = H, and its motion thereafter is best obtained by measurement, 
though it is also predictable in principle by numerical solution of this equation system, which 
describes the initial conditions and subsequent acceleration Dv/Dt of every fluid element. 

Next we nondimensionalize the equations using the characteristic quantities v, = ND, 
1, = D, and Po = pa, along with dimensionless polar coordinates = r/D, 19, and i = z/D. 
Then the equations of continuity and motion appear as in Eqs. 3.7-8 and 9, with Re = D2NpIP. 
The initial condition takes the form 

and the boundary conditions become: 

tank bottom a t i = O a n d O < i <  

tank wall 

impeller surface at Simp(?, 6 - 2 ~ i ,  i) = O, 

gas-liquid interface at Sint(i, 8,i, I )  = 0, 

In going from Eq. 3.7-30 to 3.7-36 we have used Newton's law of viscosity in the form of Eq. 
1.2-7 (but with the last term omitted, as is appropriate for incompressible liquids). We have 
also used the abbreviation j = Vv -+ (Vv)+ for the rate-of-deformation tensor, whose dimen- 
sionless Cartesian components are y = d4 /d i i )  + (ai,/d;Fi). 

The quagtities in double brackets are known dimensionless quantities. -The function 
simp(;, 8 - 2rt, 2) is known for a given impeller design. The unknown function Sin,(< 13, i, t) is 
measurable photographically, or in principle is computable from the problem statement. 

By inspection of the dimensionless equations, we find that the velocity and pressure pro- 
files must have the form 

for a given impeller shape and location. The corresponding locus of the free surface is given by 

in which Re = D2NplP and Fr = DN2/g. For time-smoothed observations at large t, the depen- 
dence on t will disappear, as will the dependence on 6 for this axisymmetric tank geometry. 

These results provide the necessary conditions for the proposed model experiment: the 
two systems must be (i) geometrically similar (same values of R/D and H/D, same impeller 
geometry and location), and (ii) operated at the same values of the Reynolds and Froude 
numbers. Condition (ii) requires that 
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in which the kinematic viscosity v = p /p  is used. Normally both tanks will operate in the 
same gravitational field gl = gII, so that Eq. 3.7-41 requires 

Substitution of this into Eq. 3.7-40 gives the requirement 

This is an important result-namely, that the smaller tank (11) requires a fluid of smaller kine- 
matic viscosity to maintain dynamic similarity. For example, if we use a scale model with 
DII = :D,, then we need to use a fluid with kinematic viscosity vl, = vI/V% in the scaled-down 
experiment. Evidently the requirements for dynamic similarity are more stringent here than 
in the previous example, because of the additional dimensionless group Fr. 

In many practical cases, Eq. 3.7-43 calls for unattainably low values of vl,. Exact scale-up 
from a single model experiment is then not possible. In some circumstances, however, the ef- 
fect of one or more dimensionless groups may be known to be small, or may be predictable 
from experience with similar systems; in such situations, approximate scale-up from a single 
experiment is still fea~ible.~ 

This example shows the importance of including the boundary conditions in a dimen- 
sional analysis. Here the Froude number appeared only in the free-surface boundary condi- 
tion Eq. 3.7-36. Failure to use this condition would result in the omission of the restriction in 
Eq. 3.7-42, and one might improperly choose vl, = vl. If one did this, with Re,, = ReI, the 
Froude number in the smaller tank would be too large, and the vortex would be too deep, as 
shown by the dotted line in Fig. 3.7-3. 

EXAMPLE 3.7-3 Show that the mean axial gradient of the modified pressure 9 for creeping flow of a fluid of 
constant p and p through a tube of radius R, uniformly packed for a length L >> D, with 

Pressure Drop for solid particles of characteristic size D, << R, is 
Creeping Flow in a 
Packed Tube -- A@') - P(%) 

L 
- K(geom) (3.7-44) 

D; 

Here (-. .) denotes an average over a tube cross section within the packed length L, and the 
function K(geom) is a constant for a given bed geometry (i.e., a given shape and arrangement 
of the particles). 

SOLUTION We choose D, as the characteristic length and (v,) as the characteristic velocity. Then the i~ t e r -  
stitial fluid motion is determined by Eqs. 3.7-8 and 3.7-913, with ; = v/(v,) and 9 = 

(9 - 90)Dp/p(v,), along with no-slip conditions on the solid syrfaces and the modified pres- 
sure difference A(9) = (9,) - (9,). The solutions for ; and 9 in creeping flow (D,(v,)p/p 
+ 0) accordingly depend only on ;, 6 ,  and i for a given particle arrangement and shape. Then 
the mean axial gradient 

depends only on the bed-geometry as long as R and L are large relative to D,. Inserting the 
foregoing expression for @, we immediately obtain Eq. 3.7-44. 

For an introduction to methods for scale-up with incomplete dynamic similarity, see R. W. Powell, 
A n  Elementary Text in Hydraulics and Fluid Mechanics, Macmillan, New York (1951). 
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PROBLEMS 

QUESTIONS FOR DISCUSSION 

What is the physical meaning of the term Ax Ay(pv,)l, in Eq. 3.1-2? What is the physical mean- 
ing of (V . v)? of (V - pv)? 
By making a mass balance over a volume element (Ar)(rAO)(Az) derive the equation of conti- 
nuity in cylindrical coordinates. 
What is the physical meaning of the term Ax Ay(pv,v,)l, in Eq. 3.2-2? What is the physical 
meaning of [V . pwl? 
What happens when f is set equal to unity in Eq. 3.5-4? 
Equation B in Table 3.5-1 is not restricted to fluids with constant density, even though p is to 
the left of the substantial derivative. Explain. 
In the tangential annular flow problem in Example 3.5-3, would you expect the velocity pro- 
files relative to the inner cylinder to be the same in the following two situations: (i) the inner 
cylinder is fixed and the outer cylinder rotates with an angular velocity fl; (ii) the outer cylin- 
der is fixed and the inner cylinder rotates with an angular velocity -a? Both flows are pre- 
sumed to be laminar and stable. 
Suppose that, in Example 3.6-4, there were two immiscible liquids in the rotating beaker. 
What would be the shape of the interface between the two liquid regions? 
Would the system discussed in Example 3.6-5 be useful as a viscometer? 
In Eq. 3.6-55, explain by means of a carefully drawn sketch the choice of limits in the integra- 
tion and the meaning of each factor in the first integrand. 
What factors would need to be taken into account in designing a mixing tank for use on the 
moon by using data from a similar tank on earth? 

3A.1 Torque required to turn a friction bearing (Fig. 
3A.1). Calculate the required torque in lbf ft and power 
consumption in horsepower to turn the shaft in the friction 
bearing shown in the figure. The length of the bearing sur- 
face on the shaft is 2 in, and the shaft is rotating at 200 
rpm. The viscosity of the lubricant is 200 cp, and its den- 
sity is 50 lb,/ft3. Neglect the effect of eccentricity. 
Answers: 0.32 lbf. ft; 0.012 hp = 0.009 kW 

Fig. 3A.1. Friction 
L J bearing. 

3A.2 Friction loss in bearings? Each of two screws on a 
large motor-ship is driven by a 4000-hp engine. The shaft 
that connects the motor and the screw is 16 in. in diameter 

This problem was contributed by Prof. E. J. Crosby, 
University of Wisconsin. 

and rests in a series of sleeve bearings that give a 0.005 in. 
clearance. The shaft rotates at 50 rpm, the lubricant has a 
viscosity of 5000 cp, and there are 20 bearings, each 1 ft in 
length. Estimate the fraction of engine power expended in 
rotating the shafts in their bearings. Neglect the effect of 
the eccentricity. 
Answer: 0.1 15 

3A.3 Effect of altitude on air pressure. When standing 
at the mouth of the Ontonagon River on the south shore of 
Lake Superior (602 ft above mean sea level), your portable 
barometer indicates a pressure of 750 mm Hg. Use the 
equation of motion to estimate the barometric pressure at 
the top of Government Peak (2023 ft above mean sea level) 
in the nearby Porcupine Mountains. Assume that the tem- 
perature at lake Level is 70°F and that the temperature de- 
creases with increasing altitude at a steady rate of 3°F per 
1000 feet. The gravitational acceleration at the south shore 
of Lake Superior is about 32.19 ft/s2, and its variation with 
altitude may be neglected in this problem. 
Answer: 713 mm Hg = 9.49 X lo4 N/m2 

3A.4 Viscosity determination with a rotating-cylinder 
viscometer. It is desired to measure the viscosities of su- 
crose solutions of about 60% concentration by weight at 
about 20°C with a rotating-cylinder viscometer such as 
that shown in Fig. 3.5-1. This instrument has an inner 
cylinder 4.000 cm in diameter surrounded by a rotating 
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concentric cylinder 4.500 cm in diameter. The length L is 
4.00 cm. The viscosity of a 60% sucrose solution at 20°C is 
about 57 cp, and its density is about 1.29 g/cm3. 

On the basis of past experience it seems possible that 
end effects will be important, and it is therefore decided to 
calibrate the viscometer by measurements on some known 
solutions of approximately the same viscosity as those of 
the unknown sucrose solutions. 

Determine a reasonable value for the applied torque 
to be used in calibration if the torque measurements are re- 
liable within 100 dyne/cm and the angular velocity can be 
measured within 0.5%. What will be the resultant angular 
velocity? 

3A.5 Fabrication of a parabolic mirror. It is proposed to 
make a backing for a parabolic mirror, by rotating a pan of 
slow-hardening plastic resin at constant speed until it 
hardens. Calculate the rotational speed required to pro- 
duce a mirror of focal length f = 100 cm. The focal length is 
one-half the radius of curvature at the axis, which in turn 
is given by 

Answer: 21 .I rpm 

3A.6 Scale-up of an agitated tank. Experiments with a 
small-scale agitated tank are to be used to design a geo- 
metrically similar installation with linear dimensions 10 
times as large. The fluid in the large tank will be a heavy 
oil with p = 13.5 cp and p = 0.9 g/cm3. The large tank is to 
have an impeller speed of 120 rpm. 
(a) Determine the impeller speed for the small-scale 
model, in accordance with the criteria for scale-up given in 
Example 3.7-2. 
(b) Determine the operating temperature for the model if 
water is to be used as the stirred fluid. 
Answers: (a) 380 rpm, (b) T = 60°C 

3A.7 Air entrainment in a draining tank (Fig. 3A.7). A 
molasses storage tank 60 ft in diameter is to be built with a 
draw-off line 1 ft in diameter, 4 ft from the sidewall of the 

Fig. 3A.7. Draining of a molasses tank. 

tank and extending vertically upward 1 ft from the tank 
bottom. It is known from experience that, as molasses is 
withdrawn from the tank, a vortex will form, and, as the 
liquid level drops, this vortex will ultimately reach the 
draw-off pipe, allowing air to be sucked into the molasses. 
This is to be avoided. 

It is proposed to predict the minimum liquid level at 
which this entrainment can be avoided, at a draw-off rate 
of 800 gal/min, by a model study using a smaller tank. For 
convenience, water at 68OF is to be used for the fluid in the 
model study. 

Determine the proper tank dimensions and operating 
conditions for the model if the density of the molasses is 
1.286 g/cm3 and its viscosity is 56.7 cp. It may be assumed 
that, in either the full-size tank or the model, the vortex 
shape is dependent only on the amount of the liquid in the 
tank and the draw-off rate; that is, the vortex establishes it- 
self very rapidly. 

38.1 Flow between coaxial cylinders and concentric 
spheres. 
(a) The space between two coaxial cylinders is filled with 
an incompressible fluid at constant temperature. The radii 
of the inner and outer wetted surfaces are KR and R, re- 
spectively. The angular velocities of rotation of the inner 
and outer cylinders are ai and a,. Determine the velocity 
distribution in the fluid and the torques on the two cylin- 
ders needed to maintain the motion. 
(b) Repeat part (a) for two concentric spheres. 

Answers: 

(a) v, = - 

3B.2 Laminar flow in a triangular duct (Fig. 3B.2h2 
One type of compact heat exchanger is shown in Fig. 
3B.2(a). In order to analyze the performance of such an 
apparatus, it is necessary to understand the flow in a duct 
whose cross section is an equilateral triangle. This is done 
most easily by installing a coordinate system as shown in 
Fig. 3B.2(b). 
(a) Verify that the velocity distribution for the laminar 
flow of a Newtonian fluid in a duct of this type is given 

by 

An alternative formulation of the velocity profile is given 
by L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, 
Oxford, 2nd edition (19871, p. 54. 
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Fig. 3B.2. (a) Compact heat-exchanger element, showing 
channels of a triangular cross section; (b)  coordinate sys- 
tem for an equilateral-triangular duct. 

(b) From Eq. 3B.2-1 find the average velocity, maximum 
velocity, and mass flow rate. 

3B.3 Laminar flow in a square duct. 
(a) A straight duct extends in the z direction for a length L 
and has a square cross section, bordered by the lines x = 
?B and y = ?B. A colleague has told you that the velocity 
distribution is given by 

vz = - "'" [[I - ($)i][l - (:)I (38.34) 
4 d  

Since this colleague has occasionally given you wrong ad- 
vice in the past, you feel obliged to check the result. Does it 
satisfy the relevant boundary conditions and the relevant 
differential equation? 
(b) According to the review article by BerkerI3 the mass 
rate of flow in a square duct is given by 

Compare the coefficient in this expression with the coeffi- 
cient that one obtains from Eq. 3B.3-1. 

R. Berker, Handbuch der Physik, Vol. VIII/2, Springer, Berlin 
(1963); see pp. 67-77 for laminar flow in conduits of noncirmlar cross 
sections. See also W. E. Stewart, AlChE Journal, 8,425428 (1962). 

id in Fig. 3B.4. Creeping flow in the re- 
gion between two stationary con- 
centric spheres. 

3B.4 Creeping flow between two concentric spheres 
(Fig. 3B.4). A very viscous Newtonian fluid flows in the 
space between two concentric spheres, as shown in the fig- 
ure. It is desired to find the rate of flow in the system as a 
function of the imposed pressure difference. Neglect end 
effects and postulate that v, depends only on r and 8 with 
the other velocity components zero. 
(a) Using the equation of continuity, show that v, sin 8 = 

~ ( r ) ,  where u(r) is a function of r to be determined. 
(b) Write the Bcomponent of the equation of motion for 
this system, assuming the flow to be slow enough that the 
[V VV] term is negligible. Show that this gives 

(c) Separate this into two equations 

d 9  sin 8 - = B; = B (3B.4-2,3) 
dtl 

where B is the separation constant, and solve the two 
equations to get 

B = 
9, - 9, 

2 1n cot is 

u(r) = "' - "')' [(I - 6 )  + (1 - +)] (384-5) 
4p ln cot (s/2) 

where 9, and 9, are the values of the modified pressure at 
0 = E and 8 = .rr - E, respectively. 
(d) Use the results above to get the mass rate of flow 

g(P1 - g2)R3(1 - K ) ~ ~  
w = (3B.4-6) 

12p h cot (c?/2) 

3B.5 Parallel-disk viscometer (Fig. 3B.5). A fluid, whose 
viscosity is to be measured, is placed in the gap of thick- 
ness B between the two disks of radius R. One measures 
the torque T, required to turn the upper disk at an angular 
velocity cC1. Develop the formula for deducing the viscosity 
from these measurements. Assume creeping flow. 
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Disk at z = B rotates 
Fluid with viscosity with angular 
p and density p is 
held in place by 
surface tension 

J velOci'Y 
/Disk at z = 0 is fixed 

Both disks have 
radius R 
and R >> B 

Fig. 3B.5. Parallel-disk viscometer. 

(a) Postulate that for small values of fl the velocity pro- 
files have the form v, = 0, v, = 0, and v, = rf(z); why does 
this form for the tangential velocity seem reasonable? Pos- 
tulate further that 9 = 9(r, z). Write down the resulting 
simplified equations of continuity and motion. 
(b) From the 8-component of the equation of motion, ob- 
tain a differential equation for f(z). Solve the equation for 
f(z) and evaluate the constants of integration. This leads 
ultimately to the result v, = ar(z /B) .  Could you have 
guessed this result? 
(c) Show that the desired working equation for deducing 
the viscosity is p = 22BTZ/dR4. 
(d) Discuss the advantages and disadvantages of this in- 
strument. 

3B.6 Circulating axial flow in an annulus (Fig. 3B.6). A 
rod of radius KR moves upward with a constant velocity v, 
through a cylindrical container of inner radius R contain- 
ing a Newtonian liquid. The liquid circulates in the cylin- 
der, moving upward along the moving central rod and 
moving downward along the fixed container wall. Find 
the velocity distribution in the annular region, far from the 
end disturbances. Flows similar to this occur in the seals of 
some reciprocating machinery-for example, in the annu- 
lar space between piston rings. 

Rod of radius KR 
moves upward with 

velocity vo 

I I Cylinder of length L 
I I , , and inner radius R 
4 I 

I I  I (with L >> R) 

Fig. 3B.6. Circulating 
flow produced by an 
axially moving rod in a 
closed annular region. 

(a) First consider the problem where the annular region is 
quite narrow-that is, where K is just slightly less than 
unity. In that case the annulus may be approximated by a 
thin plane slit and the curvature can be neglected. Show 
that in this limit, the velocity distribution is given by 

where 6 = r / R .  
(b) Next work the problem without the thin-slit assump- 
tion. Show that the velocity distribution is given by 

3B.7 Momentum fluxes for creeping flow into a slot 
(Fig. 3.B-7). An incompressible Newtonian liquid is flow- 
ing very slowly into a thin slot of thickness 2B (in the y di- 
rection) and width W (in the z direction). The mass rate of 
flow in the slot is w. From the results of Problem 2B.3 it can 
be shown that the velocity distribution within the slot is 

at locations not too near the inlet. In the region outside the 
slot the components of the velocity for creepingflow are 

Equations 3B.7-1 to 4 are only approximate in the region 
near the slot entry for both x 2 0 and x 5 0. 

Fig. 3B.7. Flow of a liquid into a slot from a semi-infinite 
region x < 0. 



108 Chapter 3 The Equations of Change for Isothermal Systems 

(a) Find the components of the convective momentum 
flux p w  inside and outside the slot. 
(b) Evaluate the xx-component of p w  at x = -a, y = 0. 
(c) Evaluate the xy-component of p w  at x = -a, y = fa. 
(d) Does the total flow of kinetic energy through the plane 
x = -a equal the total flow of kinetic energy through the 
slot? 
(e)  Verify that the velocity distributions given in Eqs. 
3B.7-1 to 4 satisfy the relation (V . v) = 0. 
(f) Find the normal stress r,, at the plane y = 0 and also on 
the solid surface at x = 0. 
(g) Find the shear stress r,, on the solid surface at x = 0. 
Is this result surprising? Does sketching the velocity pro- 
file z:, vs, x at some plane y = a assist in understanding the 
result? 

3B.8 Velocity distribution for creeping flow toward a 
slot (Fig. 3B.7): It is desired to get the velocity distribu- 
tion given for the upstream region in the previous prob- 
lem. We postulate that v, = 0, v, = 0, v, = vr(r, O), and 9 = 

9(r, 8). 
(a) Show that the equation of continuity in cylindrical co- 
ordinates gives v, = f (O)/r, where f(8) is a function of 8 for 
which df/d@ = 0 at 0 = 0, and f = 0 at 8 = ~ / 2 .  
(b) Write the r- and 8-components of the creeping flow 
equation of motion, and insert the expression for f(0) 
from (a). 
(c) Differentiate the r-component of the equation of mo- 
tion with respect to 6 and the 8-component with respect to 
r. Show that this leads to 

(d) Solve this differential equation and obtain an expres- 
sion for f(0) containing three integration constants. 
(e) Evaluate the integration constants by using the two 
boundary conditions in (a) and the fact that the total mass- 
flow rate through any cylindrical surface must equal w. 
This gives 

2w c0s2 8 vr = -- (3B.8-2) 
.;rr Wpr 

(f) Next from the equations of motion in (b) obtain P(r, 0) as 

What is the physical meaning of 9,? 

(g) Show that the total normal stress exerted on the solid 
surface at 6 = r / 2  is 

(h) Next evaluate T ~ ,  on the same solid surface. 
(i) Show that the velocity profile obtained in Eq. 3B.8-2 is 
the equivalent to Eqs. 3B.7-2 and 3. 

3B.9 Slow transverse flow around a cylinder (see Fig. 
3.7-1). An incompressible Newtonian fluid approaches a 
stationary cylinder with a uniform, steady velocity v, in 
the positive x direction. When the equations of change 
are solved for creeping flow, the following expressions5 
are found for the pressure and velocity in the immediate 
vicinity of the cylinder (they are not valid at large 
distances): 

v, cos 8 
CP 7 - pgr sin 8 (3B.9-1) 

v, = Cum[+ In (i) - f + cos 8 (38.9-21 

v, = C v ,  - In - + - - - - sin 8 (3B.9-3) [: ( :(:)4 
Here p, is the pressure far from the cylinder at y = 0 and 

with the Reynolds number defined as Re = 2Rv,p/p. 
(a) Use these results to get the pressure p, the shear stress 
r,,, and the normal stress r,, at the surface of the cylinder. 
(b) Show that the x-component of the force per unit area 
exerted by the liquid on the cylinder is 

-plrZR cos 8 + ~ ~ ~ l ~ = ~  sin 8 . (3B.9-5) 

(c) Obtain the force F ,  = 2Cdpv, exerted in the x direc- 
tion on a length L of the cylinder. 

3B.10 Radial flow between parallel disks (Fig. 3B.10). 
A part of a lubrication system consists of two circular 
disks between which a lubricant flows radially. The flow 
takes place because of a modified pressure difference 
9, - 9, between the inner and outer radii r, and r2, 
respectively. 
(a) Write the equations of continuity and motion for this 
flow system, assuming steady-state, laminar, incompress- 
ible Newtonian flow. Consider only the region r, 5 r r r2 
and a flow that is radially directed. 

%Adapted from R. B. Bird, R. C. Armstrong, and 0. Hassager, 
Dynamics of Polymeric Liquids, Vol. 1, Wiley-Interscience, New See G. K. Batchelor, An Introduction to Fluid Dynamics, 
York, 2nd edition (1987), pp. 4243. Cambridge University Press (1967), pp. 244-246,261. 
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( Fluid in 

Radial flow outward ':= between disks 

- - - - - - - - 2 = +b 
C- r - - - - - - - - z = -b 

r = r2 r = r, 

Fig. 3B.10. Outward radial flow in the space between two 
parallel, circular disks. 

(b) Show how the equation of continuity enables one to 
simplify the equation of motion to give 

in which 4 = rv, is a function of z only. Why is 4 indepen- 
dent of r? 
(c) It can be shown that no solution exists for Eq. 3B.10-1 
unless the nonlinear term containing 4 is omitted. Omis- 
sion of this term corresponds to the "creeping flow as- 
sumption." Show that for creeping flow, Eq. 3B.10-1 can be 
integrated with respect to r to give 

(d) Show that further integration with respect to z gives 

(e) Show that the mass flow rate is 

(f) Sketch the curves 9(r) and vr(r, z). 

3B.11 Radial flow between two coaxial cylinders. Con- 
sider an incompressible fluid, at constant temperature, 
flowing radially between two porous cylindrical shells 
with inner and outer radii KR and R. 
(a) Show that the equation of continuity leads to v, = C/r, 
where C is a constant. 
(b) Simplify the components of the equation of motion to 
obtain the following expressions for the modified-pressure 
distribution: 

(c) Integrate the expression for dP/dr above to get 

(dl Write out all the nonzero components of T for this flow. 
(el Repeat the problem for concentric spheres. 

38.12 Pressure distribution in incompressible fluids. 
Penelope is staring at a beaker filled with a liquid, which 
for all practical purposes can be considered as incompress- 
ible; let its density be p,. She tells you she is trying to un- 
derstand how the pressure in the liquid varies with depth. 
She has taken the origin of coordinates at the liquid-air in- 
terface, with the positive z-axis pointing away from the liq- 
uid. She says to you: 

"If I simplify the equation of motion for an incom- 
pressible liquid at rest, I get 0 = -dp/dz - p ~ .  I can solve 
this and get p = pa,, - pgz. That seems reasonablethe 
pressure increases with increasing depth. 

"But, on the other hand, the equation of state for any 
fluid is p = p(p, 79, and if the system is at constant temper- 
ature, this just simplifies to p = p(p). And, since the fluid is 
incompressible, p = p(po), and p must be a constant 
throughout the fluid! How can that be?" 

Clearly Penelope needs help. Provide a useful expla- 
nation. 

3B.13 Flow of a fluid through a sudden contraction. 
(a) An incompressible liquid flows through a sudden con- 
traction from a pipe of diameter Dl into a pipe of smaller 
diameter D2. What does the Bernoulli equation predict for 
9, - 9,, the difference between the modified pressures 
upstream and downstream of the contraction? Does this 
result agree with experimental observations? 
(b) Repeat the derivation for the isothermal horizontal 
flow of an ideal gas through a sudden contraction. 

3B.14 Torricelli's equation for efflux from a tank (Fig. 
3B.14). A large uncovered tank is filled with a liquid to a 
height h. Near the bottom of the tank, there is a hole that 
allows the fluid to exit to the atmosphere. Apply 
Bernoulli's equation to a streamline that extends from the 
surface of the liquid at the top to a point in the exit 

Liquid surface 
at which 

vl = 0 and p = pat, 

Typical streamline 

Fluid exit at which 
v2 = Uefflux and 

P = Patm 

Fig. 3B.14. Fluid draining from a tank. Points "1" and "2" 
are on the same streamline. 
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stream just outside the vessel. Show that this leads to an 
efflux velocity v,,,,, = 1/2gh. This is known as Torricelli's 
equation. 

To get this result, one has to assume incompressibility 
(which is usually reasonable for most liquids), and that the 
height of the fluid surface is changing so slowly with time 
that the Bernoulli equation can be applied at any instant of 
time (the quasi-steady-state assumption). 

3B.15 Shape of free surface in tangential annular flow. 
(a) A liquid is in the annular space between two vertical 
cylinders of radii KR and R, and the liquid is open to the 
atmosphere at the top. Show that when the inner cylinder 
rotates with an angular velocity Cli, and the outer cylinder 
is fixed, the free liquid surface has the shape 

in which z, is the height of the liquid at the outer-cylinder 
wall, and 5 = r/R. 
(b) Repeat (a) but with the inner cylinder fixed and the 
outer cylinder rotating with an angular velocity Cl,. Show 
that the shape of the liquid surface is 

(c) Draw a sketch comparing these two liquid-surface 
shapes. 

3B.16 Flow in a slit with uniform cross flow (Fig. 3B.16). 
A fluid flows in the positive x-direction through a long flat 
duct of length L, width W, and thickness B, where L >> W 
>> B. The duct has porous walls at y = 0 and y = B, so 
that a constant cross flow can be maintained, with v, = v,, 
a constant, everywhere. Flows of this type are important 
in connection with separation processes using the sweep- 
diffusion effect. By carefully controlling the cross flow, 
one can concentrate the larger constituents (molecules, 
dust particles, etc.) near the upper wall. 

t t t t t t t t t  4 ,  - R 

X 
y = o  

t t t t t t t t t  

Fig. 38.16. Flow in a slit of length L, width W, and thick- 
ness B. The walls at y = 0 and y = B are porous, and there 
is a flow of the fluid in they direction, with a uniform 
velocity v, = v,. 

(a) Show that the velocity profile for the system is given by 

in which A = Bv,p/p. 
(b) Show that the mass flow rate in the x direction is 

(c) Verify that the above results simplify to those of Prob- 
lem 2B.3 in the limit that there is no cross flow at all (that 
is, A + 0). 
(dl A colleague has also solved this problem, but taking a 
coordinate system with y = 0 at the midplane of the slit, 
with the porous walls located at y = +b. His answer to 
part (a) above is 

ea'l - 
vx - -- 

rl sinh a! - cosh a 
(3B.16-3) 

(v,) (lla) sinh a - cosh a 

in which a = bv,p/p and rl = y/@. Is this result equivalent 
to Eq. 3B.16-I? 

3C.1 Parallel-disk compression viscometer6 (Fig. 3C.-1). 
A fluid fills completely the region between two circular 
disks of radius R. The bottom disk is fixed, and the upper 
disk is made to approach the lower one very slowly with a 
constant speed vo, starting from a height H, (and H, << R). 
The instantaneous height of the upper disk is H(t). It is de- 
sired to find the force needed to maintain the speed vo. 

This problem is inherently a rather complicated un- 
steady-state flow problem. However, a useful approximate 
solution can be obtained by making two simplifications in 

I 
Upper disk I I 

movesdown- 1 i I 
I ward slowly I I 

at constant I 
speed v,, 1 !I 

! "t ! H(t) 
I 

f l  
Lower disk I 1'17 I 

is fixed I k ~ 4  
Fig. 3C.1. Squeezing flow in a parallel-disk compression 
viscometer. 

J. R. Van Wazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, 
Viscosity and Flow Measurement, Wiley-Interscience, New York 
(1963), pp. 292-295. 
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the equations of change: (i) we assume that the speed v, is 
so slow that all terms containing time derivatives can be 
omitted; this is the so-called "quasi-steady-state" assump- 
tion; (ii) we use the fact that Ho < < R to neglect quite a few 
terms in the equations of change by order-of-magnitude 
arguments. Note that the rate of decrease of the fluid vol- 
ume between the disks is n-R2v,, and that this must equal 
the rate of outflow from between the disks, which is 
z~TRH(v,)I,,~. Hence 

We now argue that v,(r, z) will be of the order of magni- 
tude of ( ~ , ) l , = ~  and that v,(r, z )  is of the order of magnitude 
of v,, so that 

and hence Iv,l << u,. We may now estimate the order of 
magnitude of various derivatives as follows: as r goes 
from 0 to R, the radial velocity v, goes from zero to approx- 
imately (R/H)v,. By this kind of reasoning we get 

(a) By the above-outlined order-of-magnitude analysis, 
show that the continuity equation and the r-component of 
the equation of motion become (with g, neglected) 

continuity: 

motion 

with the boundary conditions 

B.C. 1: at z = 0, v, = 0, v, = 0 (3C.1-8) 

B.C.2: a tz=H(t ) ,  v,=O, v,=-vo (3C.1-9) 

B.C. 3: at r = R, P = Patm (3C.1-10) 

(b) From Eqs. 3C.1-7 to 9 obtain 

(c) Integrate Eq. 3C.1-6 with respect to z and substitute the 
result from Eq. 3.C.1-11 to get 

(d) Solve Eq. 3C.1-12 to get the pressure distribution 

(el Integrate [(p + T,,) - pat,] over the moving-disk surface 
to find the total force needed to maintain the disk motion: 

This result can be used to obtain the viscosity from the 
force and velocity measurements. 
(f) Repeat the analysis for a viscometer that is operated in 
such a way that a centered, circular glob of liquid never 
completely fills the space between the two plates. Let the 
volume of the sample be V and obtain 

(g) Repeat the analysis for a viscometer that is operated 
with constant applied force, F,. The viscosity is then to be 
determined by measuring H as a function of time, and the 
upper-plate velocity is not a constant. Show that 

3C.2 Normal stresses at solid surfaces for compress- 
ible fluids. Extend example 3.1-1 to compressible fluids. 
Show that 

r2, I Z e O  = ($p + ~ ) ( d  In p/dt)l,-, (3C.2-1) 

Discuss the physical significance of this result. 

3C.3 Deformation of a fluid line (Fig. 3C.3). A fluid is 
contained in the annular space between two cylinders of 
radii KR and R. The inner cylinder is made to rotate with a 
constant angular velocity of fli. Consider a line of fluid 
particles in the plane z = 0 extending from the inner cylin- 
der to the outer cylinder and initially located at 0 = 0, nor- 
mal to the two surfaces. How does this fluid line deform 
into a curve O(r, t)? What is the length, 1, of the curve after 
N revolutions of the inner cylinder? Use Eq. 3.6-32. 

I Answer: - = 
R 

I Fluid curve 

Inner cylinder 
Fixed outer rotating with angular 

cylinder velocity Qi 

Fig. 3C.3. Deformation of a fluid line in Couette flow. 
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3C.4 Alternative methods of solving the Couette vis- 
cometer problem by use of angular momentum concepts 
(Fig. 3.6-1). 
(a) By making a shell angular-momentum balance on a thin 
shell of thickness Ar, show that 

Next insert the appropriate expression for T,, in terms of 
the gradient of the tangential component of the velocity. 
Then solve the resulting differential equation with the 
boundary conditions to get Eq. 3.6-29. 
(b) Show how to obtain Eq. 3C.4-1 from the equation of 
change for angular momentum given in Eq. 3.4-1. 

3C.5 Two-phase interfacial boundary conditions. In 52.1, 
boundary conditions for solving viscous flow problems were 
given. At that point no mention was made of the role of inter- 
facial tension. At the interface between two immiscible fluids, 
I and 11, the following boundary condition should be used: 

This is essentially a momentum balance written for an in- 
terfacial element dS with no matter passing through it, and 
with no interfacial mass or viscosity. Here n' is the unit 
vector normal to dS and pointing into phase I. The quanti- 
ties R, and R, are the principal radii of curvature at dS, and 
each of these is positive if its center lies in phase I. The sum 
(l/R,) + (1/R2) can also be expressed as (V - n'). The quan- 
tity u is the interfacial tension, assumed constant. 
(a) Show that, for a spherical droplet of I at rest in a sec- 
ond medium 11, Laplace's equation 

relates the pressures inside and outside the droplet. Is the 
pressure in phase I greater than that in phase 11, or the re- 
verse? What is the relation between the pressures at a pla- 
nar interface? 
(b) Show that Eq. 3C.5-1 leads to the following dimension- 
less boundary condition 

in which hV = (k - ho)/lo is the dimensionless elevation of 
dS, and are dimensionless rate-of-deformation ten- 
sors, and I?, = R,/lo and R, = R2/lo are dimensionless radii 
of curvature. Furthermore 

In the above, the zero-subscripted quantities are the scale 
factors, valid in both phases. Idenhfy the dimensionless 
groups that appear in Eq. 3C.5-3. 
(c) Show how the result in (b) simplifies to Eq. 3.7-36 
under the assumptions made in Example 3.7-2. 

3D.1 Derivation of the equations of change by integral 
theorems (Fig. 3D.1). 
(a) A fluid is flowing through some region of 3-dimensional 
space. Select an arbitrary "blob of this fluid-that is, a 
region that is bounded by some surface S(t) enclosing a 
volume V(t), whose elements move with the local fluid ve- 
locity. Apply Newton's second law of motion to this sys- 
tem to get 

in which the terms on the right account for the surface and 
volume forces acting on the system. Apply the Leibniz for- 
mula for differentiating an integral (see §A.5), recognizing 
that at all points on the surface of the blob, the surface ve- 
locity is identical to the fluid velocity. Next apply the 
Gauss theorem for a tensor (see 5A.5) so that each term in 
the equation is a volume integral. Since the choice of the 
"blob" is arbitrary, all the integral signs may be removed, 
and the equation of motion in Eq. 3.2-9 is obtained. 
(b) Derive the equation of motion by writing a momen- 
tum balance over an arbitrary region of volume V and sur- 
face S, fixed in space, through which a fluid is flowing. In 
doing this, just parallel the derivation given in 53.2 for a 

L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, 
Oxford, 2nd edition (1987), Eq. 61.13. More general formulas 
including the excess density and viscosity have been developed 
by L. E. Scriven, Chern. Eng. Sci., 12,98-108 (1960). 

Fig. 3D.1. Moving "blob of fluid to which Newton's sec- 
ond law of motion is applied. Every element of the fluid 
surface dS(t) of the moving, deforming volume element 
V(t) moves with the local, instantaneous fluid velocity v(t). 
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rectangular fluid element. The Gauss theorem for a tensor 
is needed to complete the derivation. 

This problem shows that applying Newton's second law 
of motion to an arbitrary moving "blob of fluid is equivalent 
to setting up a momentum balance over an arbitrary fixed re- 
gion of space through which the fluid is moving. Both (a) and 
(b) give the same result as that obtained in 93.2. 
(c) Derive the equation of continuity using a volume ele- 
ment of arbitrary shape, both moving and fixed, by the 
methods outlined in (a) and (b). 

in which E is a third-order tensor whose components are 
the permutation symbol qjk (see 9A.2) and v = p/p  is the 
kinematic viscosity. 
(b) How do the equations in (a) simplify for two-dimen- 
sional flows? 

3D.3 Alternate form of the equation of motion.' Show 
that, for an incompressible Newtonian fluid with con- 
stant viscosity, the equation of motion may be put into 
the form 

3D.2 The equation of change for vorticity. 4V2p = p(o:wt - j: j )  (3D.3-2) 

(a) By taking the curl of the Navier-Stokes equation of where 
motion (in either the D/Dt form or the d / d t  form), obtain 

y = Vv + (Vv)+ and o = VV - ( V V ) ~  (3D.3-2) 
an equation for the vorticity, w = [V X vl of the fluid; this 
equation may be written in two ways: 

D 
- w = vV2w + [w ' Vv] 
Dt 

(3D.2-1) 

D 
- w = vV2w + [E:[(vv) (vv)]] (3D.2-2) ' P. G. Saffman, Vortex Dynamics, Cambridge University 
Dt Press, corrected edition (1995). 



Chapter 4 

Velocity Distributions with More 
Than One Independent Variable 

4 . 1  Time-dependent flow of Newtonian fluids 

~ 4 . 2 ~  Solving flow problems using a stream function 

94.3O Flow of inviscid fluids by use of the velocity potential 

S4.4O Flow near solid surfaces by boundary-layer theory 

In Chapter 2 we saw that viscous flow problems with straight streamlines can be solved 
by shell momentum balances. In Chapter 3 we introduced the equations of continuity 
and motion, which provide a better way to set up problems. The method was illustrated 
in S3.6, but there we restricted ourselves to flow problems in which only ordinary differ- 
ential equations had to be solved. 

In this chapter we discuss several classes of problems that involve the solutions of 
partial differential equations: unsteady-state flow (94.11, viscous flow in more than one 
direction (§4.2), the flow of inviscid fluids (94.3), and viscous flow in boundary layers 
(s4.4). Since all these topics are treated extensively in fluid dynamics treatises, we pro- 
vide here only an introduction to them and illustrate some widely used methods for 
problem solving. 

In addition to the analytical methods given in this chapter, there is also a rapidly ex- 
panding literature on numerical methods.' The field of computational fluid dynamics is 
already playing an important role in the field of transport phenomena. The numerical 
and analytical methods play roles complementary to one another, with the numerical 
methods being indispensable for complicated practical problems. 

4 . 1  TIME-DEPENDENT FLOW OF NEWTONIAN FLUIDS 

In 53.6 only steady-state problems were solved. However, in many situations the veloc- 
ity depends on both position and time, and the flow is described by partial differential 
equations. In this section we illustrate three techniques that are much used in fluid 
dynamics, heat conduction, and diffusion (as well as in many other branches of physics 
and engineering). In each of these techniques the problem of solving a partial differ- 
ential equation is converted into a problem of solving one or more ordinary differential 
equations. 

-- - 

R. W. Johnson (ed.), The Handbook of Fluid Dynamics, CRC Press, Boca Raton, Fla. (1998); 
C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics, Oxford University Press (1997). 
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The first example illustrates the method of combination of variables (or the method of 
similarity solutions). This method is useful only for semi-infinite regions, such that the ini- 
tial condition and the boundary condition at infinity may be combined into a single new 
boundary condition. 

The second example illustrates the method of separation of variables, in which the partial 
differential equation is split up into two or more ordinary differential equations. The so- 
lution is then an infinite sum of products of the solutions of the ordinary differential 
equations. These ordinary differential equations are usually discussed under the heading 
of "Sturm-Liouville" problems in intermediate-level mathematics textbooks.' 

The third example demonstrates the method of sinusoidal response, which is useful in 
describing the way a system responds to external periodic disturbances. 

The illustrative examples are chosen for their physical simplicity, so that the major 
focus can be on the mathematical methods. Since all the problems discussed here are lin- 
ear in the velocity, Laplace transforms can also be used, and readers familiar with this 
subject are invited to solve the three examples in this section by that technique. 

A semi-infinite body of liquid with constant density and viscosity is bounded below by a hor- 
izontal surface (the xz-plane). Initially the fluid and the solid are at rest. Then at time t = 0, 

Flow near a Wall the solid surface is set in motion in the positive x direction with velocity vo as shown in Fig. 
Suddenly Set in Motion 4.1-1. Find the velocity v, as a function of y and t. There is no pressure gradient or gravity 

force in the x direction, and the flow is presumed to be laminar. 

SOLUTION For this system v, = v,(y, t), v, = 0, and v, = 0. Then from Table B.4 we find that the equation 
of continuity is satisfied directly, and from Table B.5 we get 

t > O  
Fluid in 
unsteady 
flow Fig. 4.1-1. Viscous flow of a flu lid near a wall 

Un suddenly set in motion. 

See, for example, M. D. Greenberg, Foundations of Applied Mathematics, Prentice-Hall, Englewood 
Cliffs, N.J. (19781, g20.3. 
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in which v = p / p .  The initial and boundary conditions are 

I.C.: 

B.C. 1: 

B.C. 2: 

at t 5 0, v, = 0 for ally 

at y = 0, v, = v, for all t > 0 

at y = a, v, = 0 for all t > 0 

Next we introduce a dimensionless velocity 4 = v,/v,, so that Eq. 4.4-1 becomes 

with +(y, 0) = 0, +(O, t) = 1, and +(a, t) = 0. Since the initial and boundary conditions con- 
tain only pure numbers, the solution to Eq. 4.1-5 has to be of the form + = +(y, t; v). However, 
since 4 is a dimensionless function, the quantities y, t, and v must always appear in a dimen- 
sionless combination. The only dimensionless combinations of these three quantities are 
y/V% or powers or multiples thereof. We therefore conclude that 

This is the "method of combination of (independent) variables." The " 4  is included so that 
the final result in Eq. 4.1-14 will look neater; we know to do this only after solving the prob- 
lem without it. The form of the solution in Eq. 4.1-6 is possible essentially because there is no 
characteristic length or time in the physical system. 

We now convert the derivatives in Eq. 4.1-5 into derivatives with respect to the "com- 
bined variable" q as follows: 

* - d W r l - d 4  1 d2+ A d24 1 and - 
dy dTdy d 7 7 G  dy2 dq2 4vt 

Substitution of these expressions into Eq. 4.1-5 then gives 

This is an ordinary differential equation of the type given in Eq. C.l-8, and the accompanying 
boundary conditions are 

B.C. 1: 

B.C. 2: 

The first of these boundary conditions is the same as Eq. 4.1-3, and the second includes 
Eqs. 4.1-2 and 4. If now we let d#~/dq = $, we get a first-order separable equation for $, 
and it may be solved to give 

A second integration then gives 

The choice of 0 for the lower limit of the integral is arbitrary; another choice would lead 
to a different value of C,, which is still undetermined. Note that we have been careful 
to use an overbar for the variable of integration (7) to distinguish it from the q in the upper 
limit. 
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Fig. 4.1-2. Velocity distribution, in 
dimensionless form, for flow in the 
neighborhood of a wall suddenly 
set in motion. 

Application of the two boundary conditions makes it possible to evaluate the two inte- 
gration constants, and we get finally 

The ratio of integrals appearing here is called the error function, abbreviated erf 77 (see 9C.6). It 
is a well-known function, available in mathematics handbooks and computer software pro- 
grams. When Eq. 4.1-14 is rewritten in the original variables, it becomes 

in which erfc 7 is called the complementa y mor function. A plot of Eq. 4.1-15 is given in Fig. 4.1-2. 
Note that, by plotting the result in terms of dimensionless quantities, only one curve is needed. 

The complementary error function erfc 7 is a monotone decreasing function that goes 
from 1 to 0 and drops to 0.01 when 77 is about 2.0. We can use this fact to define a "boundary- 
layer thickness" 6 as that distance y for which v, has dropped to a value of 0 .01~~ .  This gives 
6 = 4 6  as a natural length scale for the diffusion of momentum. This distance is a measure 
of the extent to which momentum has "penetrated into the body of the fluid. Note that this 
boundary-layer thickness is proportional to the square root of the elapsed time. 

It is desired to re-solve the preceding illustrative example, but with a fixed wall at a distance b 
from the moving wall at y = 0. This flow system has a steady-state limit as t + m, whereas the 

Unsteady Laminar problem in Example 4.1-1 did not. 
Flow Between Two 
Parallel Plates SOLUTlON 

As in Example 4.1-1, the equation for the x-component of the velocity is 

The boundary conditions are now 

I.C.: 

B.C. 1: 

B.C. 2: 

a t t 5 0 ,  v,=O f o r O S y S b  

at y = 0, v, = v, for all t > 0 

at y = b, v, = 0 for all t > 0 
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It is convenient to introduce the following dimensionless variables: 

The choices for dimensionless velocity and position ensure that these variables will go from 0 
to 1. The choice of the dimensionless time is made so that there will be no parameters occur- 
ring in the transformed partial differential equation: 

The initial condition is C$ = 0 at r = 0, and the boundary conditions are 4 = 1 at 77 = 0 and 
+ = O a t q = l .  

We know that at infinite time the system attains a steady-state velocity profile +,(q) so 
that at 7 = a Eq. 4.1-21 becomes 

for the steady-state limiting profile. 
We then can write 

$47, 7) = +,(77) - 4t(77, 7) 

where 4, is the transient part of the solution, which fades out as time goes to infinity. Substi- 
tution of this expression into the original differential equation and boundary conditions then 
gives for 4, 

with 4, = 4, at T = 0, and 4, = 0 at q = 0 and 1. 
To solve Eq. 4.1-25 we use the "method of separation of (dependent) variables," in which 

we assume a solution of the form 

Substitution of this trial solution into Eq. 4.1-25 and then division by the product fg gives 

The left side is a function of T alone, and the right side is a function of 77 alone. This means that 
both sides must equal a constant. We choose to designate the constant as -c2 (we could equally 
well use c or +c2, but experience tells us that these choices make the subsequent mathematics 
somewhat more complicated). Equation 4.1-27 can then be separated into two equations 

These equations have the following solutions (see Eqs. C.l-1 and 3): 

g = A ~ - ~ ~ ~  

f = B sin cv + C cos CV 

in which A, B, and C are constants of integration. 
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We now apply the boundary and initial conditions in the following way: 

B.C. 1: Because 4, = 0 at q = 0, the function f must be zero at r ]  = 0. Hence C must be zero. 

B.C. 2: Because 4, = 0 at r] = 1, the function f must be zero at 77 = 1. This will be true if B = 0 
or if sin c is zero. The first choice would lead to f = 0 for all r] ,  and that would be physically 
unacceptable. Therefore we make the second choice, which leads to the requirement that c = 

0, ?r, +2r, +3r, - - - - We label these various admissible values of c (called "eigenvalues") as 
c, and write 

c, = nr, with n = 0, 21, +2, +3, - . . (4.1-32) 

There are thus many admissible functions f, (called "eigenfunctions") that satisfy Eq. 4.1-29 
and the boundary conditions; namely, 

f, = B, sin nrq, with n = 0, +I, -C2, k3, . . (4.1-33) 

The corresponding functions satisfying Eq. 4.1-28 are called gn and are given by 

I.C.: The combinations fng, satisfy the partial differential equation for 4, in Eq. 4.1-25, and 
so will any superposition of such products. Therefore we write for the solution of Eq. 
4.1-25 

+ m  

$t = D, exp(-n2.rr2d sin nrr] 
n = - m  

in which the expansion coefficients D, = AnBn have yet to be determined. In the sum, the term 
n = 0 does not contribute; also since sin(-n)q = -sin(+n)q, we may omit all the terms 
with negative values of n. Hence, Eq. 4.1-35 becomes 

m 

+t = x Dn exp(-n2r2r) sin nrq  
n = l  

According to the initial condition, 4, = 1 - r ]  at r = 0, so that 
m 

1 - r] = ,=I x D, sin nrr] 

We now have to determine all the Dn from this one equation! This is done by multiplying 
both sides of the equation by sin mrr], where m is an integer, and then integrating over the 
physically pertinent range from r] = 0 to r] = 1, thus: 

m 1 lo1 (1 - r ] )  sin mrqdr) = C D. sin nrr] sin rnrr]dr] 
n = l  0 

The left side gives l/m.rr; the integrals on the right side are zero when n f m and when n = 

m. Hence the initial condition leads to 

The final expression for the dimensionless velocity profile is obtained from Eqs. 4.1-24, 36, 
and 39 as 

m 

+(r], r) = (1 - r ] )  - x exp(-n2r2r) sin nrr] 
n = l  

The solution thus consists of a steady-state-limit term minus a transient term, which fades out 
with increasing time. 
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Those readers who are encountering the method of separation of variables for the 
first time will have found the above sequence of steps rather long and complicated. 
However, no single step in the development is particularly difficult. The final solution in 
Eq. 4.1-40 looks rather involved because of the infinite sum. Actually, except for very 
small values of the time, only the first few terms in the series contribute appreciably. 

Although we do not prove it here, the solution to this problem and that of the pre- 
ceding problem are closely related.* In the limit of vanishingly small time, Eq. 4.1-40 be- 
comes equivalent to Eq. 4.1-15. This is reasonable, since, at very small time, in this 
problem the fluid is in motion only very near the wall at y = 0, and the fluid cannot 
"feel" the presence of the wall at y = b. Since the solution and result in Example 4.1-1 are 
far simpler than those of this one, they are often used to represent the system if only 
small times are involved. This is, of course, an approximation, but a very useful one. It is 
often used in heat- and mass-transport problems as well. 

A semi-infinite body of liquid is bounded on one side by a plane surface (the xz-plane). Ini- 
tially the fluid and solid are at rest. At time t = 0 the solid surface is made to oscillate sinu- 

Unsteady Laminar soidally in the x direction with amplitude Xo and (circular) frequency o.  That is, the 
Flow near an displacement X of the plane from its rest position is 
Oscillating Plate 

X(t) = Xo sin ot (4.1-41) 

and the velocity of the fluid at y = 0 is then 

dX vx(O, t) = - = Xo w COS wt 
d t 

(4.1-42) 

We designate the amplitude of the velocity oscillation by vo = Xow and rewrite Eq. 4.1-42 as 

v,(O, t )  = v, cos wt = vo%{eiUt} (4.1-43) 

where %{z] means "the real part of z." 
For oscillating systems we are generally not interested in the complete solution, but only 

the "periodic steady state" that exists after the initial "transients" have disappeared. In this 
state all the fluid particles in the system will be executing sinusoidal oscillations with fre- 
quency w, but with phase and amplitude that are functions only of position. This "periodic 
steady state" solution may be obtained by an elementary technique that is widely used. Math- 
ematically it is an asymptotic solution for t + m. 

SOLUTION Once again the equation of motion is given by 

and the initial and boundary conditions are given by 

I.C.: 

B.C. 1: 

B.C. 2: 

at t 5 0, v, = 0 for all y 

at y = 0, v, = ~,%{e'"~) for all t > 0 

a t y = m ,  v,=O for all t > 0 

The initial condition will not be needed, since we are concerned only with the fluid response 
after the plate has been oscillating for a long time. 

We postulate an oscillatory solution of the form 

See H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition 
(1959), pp. 308-310, for a series solution that is particularly good for short times. 



s4.2 Solving Flow Problems Using a Stream Function 121 

Here vO is chosen to be a complex function of y, so that v,(y, t) will differ from v,(O, t) both in 
amplitude and phase. We substitute this trial solution into Eq. 4.1-44 and obtain 

Next we make use of the fact that, if %{z,w) = %{z2w}, where 2, and 2, are two complex quan- 
tities and w is an arbitrary complex quantity, then z, = 2,. Then Eq. 4.1-49 becomes 

with the following boundary conditions: 

B.C. 1: 

B.C. 2: 

Equation 4.1-50 is of the form of Eq. C.1-4 and has the solution 

v0 = C l e G y  + cze-Gy 

Since = t (1 /V'?)(l + i), this equation can be rewritten as 

v O  = CleGml+dY + c - v ' i z ( l + i ) y  2e 

The second boundary condition requires that C1 = 0, and the first boundary condition gives 
C, = v,. Therefore the solution to Eq. 4.1-50 is 

From this result and Eq. 4.1-48, we get 

or finally 

vJy, t) = voe-t/w/2v~ cos (ot - l/o/2vy) (4.1-57) 

In this expression, the exponential describes the attenuation of the oscillatory motion-that is, 
the decrease in the amplitude of the fluid oscillations with increasing distance from the plate. 
In the argument of the cosine, the quantity -wy is called the phase shift; that is, it de- 
scribes how much the fluid oscillations at a distance y from the wall are "out-of-step" with the 
oscillations of the wall itself. 

Keep in mind that Eq. 4.1-57 is not the complete solution to the problem as stated in Eqs. 
4.1-44 to 47, but only the "periodic-steady-state" solution. The complete solution is given in 
Problem 4D.1. 

$4.2 SOLVING FLOW PROBLEMS USING A STREAM FUNCTION 

Up to this point the examples and problems have been chosen so that there was only one 
nonvanishing component of the fluid velocity. Solutions of the complete Navier-Stokes 
equation for flow in two or three dimensions are more difficult to obtain. The basic pro- 
cedure is, of course, similar: one solves simultaneously the equations of continuity and 
motion, along with the appropriate initial and boundary conditions, to obtain the pres- 
sure and velocity profiles. 

However, having both velocity and pressure as dependent variables in the equation 
of motion presents more difficulty in multidimensional flow problems than in the sim- 
pler ones discussed previously. It is therefore frequently convenient to eliminate the 
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pressure by taking the curl of the equation of motion, after making use of the vector 
identity [v . Vv] = $V(V v) - [v x [V x v]], which is given in Eq. A.4-23. For fluids of 
constant viscosity and density, this operation gives 

This is the equation of change for the vorticity [V X vl; two other ways of writing it are 
given in Problem 3D.2. 

For viscous flow problems one can then solve the vorticity equation (a third-order 
vector equation) together with the equation of continuity and the relevant initial and 
boundary conditions to get the velocity distribution. Once that is known, the pressure 
distribution can be obtained from the Navier-Stokes equation in Eq. 3.5-6. This method 
of solving flow problems is sometimes convenient even for the one-dimensional flows 
previously discussed (see, for example, Problem 4B.4). 

For planar or axisymmetric flows the vorticity equation can be reformulated by in- 
troducing the stream function +. To do this, we express the two nonvanishing compo- 
nents of the velocity as derivatives of cC, in such a way that the equation of continuity is 
automatically satisfied (see Table 4.2-1). The component of the vorticity equation corre- 
sponding to the direction in which there is no flow then becomes a fourth-order scalar 
equation for +. The two nonvanishing velocity components can then be obtained after 
the equation for the scalar + has been found. The most important problems that can be 
treated in this way are given in Table 4.1-1.' 

The stream function itself is not without interest. Surfaces of constant + contain the 
streamlines: which in steady-state flow are the paths of fluid elements. The volumetric 
rate of flow between the surfaces + = and + = +2 is proportional to +2 - 

In this section we consider, as an example, the steady, creeping flow past a station- 
ary sphere, which is described by the Stokes equation of Eq. 3.5-8, valid for Re < < 1 (see 
the discussion right after Eq. 3.7-9). For creeping flow the second term on the left side of 
Eq. 4.2-1 is set equal to zero. The equation is then linear, and therefore there are many 
methods available for solving the p r ~ b l e m . ~  We use the stream function method based 
on Eq. 4.2-1. 

Use Table 4.2-1 to set up the differential equation for the stream function for the flow of a 
Newtonian fluid around a stationary sphere of radius R at Re << 1. Obtain the velocity and 

around pressure distributions when the fluid approaches the sphere in the positive z direction, as in 
a Sphere Fig. 2.6-1. 

' For a technique applicable to more general flows, see J. M. Robertson, Hydrodynamics in Theory and 
Application, Prentice-Hall, Englewood Cliffs, N.J. (1965), p. 77; for examples of three-dimensional flows 
using two stream functions, see Problem 4D.5 and also J. P. Ssrensen and W. E. Stewart, Chem. Eng. Sci., 
29,8194325 (1974). A. Lahbabi and H.-C. Chang, Chem. Eng. Sci., 40,434447 (1985) dealt with high-Re 
flow through cubic arrays of spheres, including steady-state solutions and transition to turbulence. 
W. E. Stewart and M. A. McClelland, AICkE Journal, 29,947-956 (1983) gave matched asymptotic 
solutions for forced convection in three-dimensional flows with viscous heating. 

See, for example, G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press 
(1967), S2.2. Chapter 2 of this book is an extensive discussion of the kinematics of fluid motion. 

The solution given here follows that given by L. M. Milne-Thomson, Theoretical Hydrodynamics, 
Macmillan, New York, 3rd edition (1955), pp. 555-557. For other approaches, see H. Lamb, Hydrodynamics, 
Dover, New York (1945), §§337,338. For a discussion of unsteady flow around a sphere, see R. Berker, in 
Handbuck der Pkysik, Volume VIII-2, Springer, Berlin (1963), §69; or H. Villat and J. Kravtchenko, 
Leqons sur les Fluides Visqueux, Gauthier-Villars, Paris (1943), Chapter VII. The problem of finding the 
forces and torques on objects of arbitrary shapes is discussed thoroughly by S. Kim and S. J. Karrila, 
Microkydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston (1991), Chapter 11. 
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SOLUTION For steady, creeping flow, the entire left side of Eq. D of Table 4.2-1 may be set equal to zero, 
and the equation for axisymmetric flow becomes 

or, in spherical coordinates 

[ a2  -+-- sin 0 a ( -- I d )I2, = 
dr2 r 2  do sin 0 do 

This is to be solved with the following boundary conditions: 

B.C. 1: 

B.C. 2: 

B.C. 3: 

at r  = R, 1 a* v,= +--=o 
r  sin 9 dr 

The first two boundary conditions describe the no-slip condition at the sphere surface. The 
third implies that v, + v, far from the sphere (this can be seen by recognizing that v, = v, cos 
8 and v, = -v, sin 8 far from the sphere). 

We now postulate a solution of the form 

since it will at least satisfy the third boundary condition in Eq. 4.2-6. When it is substituted 
into Eq. 4.2-4, we get 

The fact that the variable 0 does not appear in this equation suggests that the postulate in Eq. 
4.2-7 is satisfactory. Equation 4.2-8 is an "equidimensional" fourth-order equation (see Eq. 
C.1-14). When a trial solution of the form f(r) = Crn is substituted into this equation, we find 
that n may have the values -1,1,2, and 4. Therefore f(r) has the form 

To satisfy the third boundary condition, C4 must be zero, and C3 has to be -$urn. Hence the 
stream function is 

The velocity components are then obtained by using Table 4.2-1 as follows: 

The first two boundary conditions now give C1 = -$V,X~ and CZ = :V,R, SO that 

v = v  m( 1- -  $1 - + -  ;(:Y) - coso 

Vg = -V,(l - a (:) - a (:)') sin 0 

These are the velocity components given in Eqs. 2.6-1 and 2 without proof. 
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To get the pressure distribution, we substitute these velocity components into the r- and 
6-components of the Navier-Stokes equation (given in Table B.7). After some tedious manip- 
ulations we get 

These equations may be integrated (cf. Eqs. 3.6-38 to 41), and, when use is made of the bound- 
ary condition that as r -+ co the modified pressure 9 tends to po (the pressure in the plane z = 

0 far from the sphere), we get 

This is the same as the pressure distribution given in Eq. 2.6-4. 
In g2.6 we showed how one can integrate the pressure and velocity distributions over 

the sphere surface to get the drag force. That method for getting the force of the fluid on 
the solid is general. Here we evaluate the "kinetic force" F, by equating the rate of doing 
work on the sphere (force X velocity) to the rate of viscous dissipation within the fluid, 
thus 

Fp, = - I:T 1; 1; (~:Vv)&r sin Od6d+ 

Insertion of the function ( - ~ V V )  in spherical coordinates from Table B.7 gives 

Then the velocity profiles from Eqs. 4.2-13 and 14 are substituted into Eq. 4.2-19. When the in- 
dicated differentiations and integrations (lengthy!) are performed, one finally gets 

which is Stokes' law. 
As pointed out in g2.6, Stokes' law is restricted to Re < 0.1. The expression for the drag 

force can be improved by going back and including the [v . Vvl term. Then use of the method 
of matched asymptotic expansions leads to the following result4 

where y = 0.5772 is Euler's constant. This expression is good up to Re of about 1. 

' I. Proudman and J. R. A. Pearson, I. Fluid Mech. 2,237-262 (1957); W. Chester and D. R. Breach, 
1. Fluid. Mech. 37,751-760 (1969). 
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54.3 FLOW OF INVISCID FLUIDS BY USE 
OF THE VELOCITY POTENTIAL' 

Of course, we know that inviscid fluids (i.e., fluids devoid of viscosity) do not actually 
exist. However, the Euler equation of motion of Eq. 3.5-9 has been found to be useful 
for describing the flows of low-viscosity fluids at Re >> 1 around streamlined objects 
and gives a reasonably good description of the velocity profile, except very near the 
object and beyond the line of separation. 

Then the vorticity equation in Eq. 3D.2-1 may be simplified by omitting the term 
containing the kinematic viscosity. If, in addition, the flow is steady and two-dimen- 
sional, then the terms d/dt and [w . Vv] vanish. This means that the vorticity w = [Vx v] 
is constant along a streamline. If the fluid approaching a submerged object has no vortic- 
ity far away from the object, then the flow will be such that w = [V X vl will be zero 
throughout the entire flow field. That is, the flow will be irrotational. 

To summarize, if we assume that p = constant and [V X vl = 0, then we can expect 
to get a reasonably good description of the flow of low-viscosity fluids around sub- 
merged objects in two-dimensional flows. This type of flow is referred to as potential pow. 

Of course we know that this flow description will be inadequate in the neighbor- 
hood of solid surfaces. Near these surfaces we make use of a different set of assump- 
tions, and these lead to boundary-layer the0 y, which is discussed in s4.4. By solving the 
potential flow equations for the "far field and the boundary-layer equations for the 
"near field and then matching the solutions asymptotically for large Re, it is possible to 
develop an understanding of the entire flow field around a streamlined ~b jec t .~  

To describe potential flow we start with the equation of continuity for an incom- 
pressible fluid and the Euler equation for an inviscid fluid (Eq. 3.5-9): 

(continuity) (V-v) = 0 (4.3-1) 

(motion) 

In the equation of motion we have made use of the vector identity [v . Vv] = v;v2 - 
[V X [V X v11 (see Eq. A.4-23). 

For the two-dimensional, irrotational flow the statement that [V x v] = 0 is 

(irrotational) 

and the equation of continuity is 

(continuity) 

The equation of motion for steady, irrotational flow can be integrated to give 

(motion) ip(vz + 4) + P = constant (4.3-5) 

That is, the sum of the pressure and the kinetic and potential energy per unit volume is 
constant throughout the entire flow field. This is the Bernoulli equation for incompress- 
ible, potential flow, and the constant is the same for all streamlines. (This has to be con- 
trasted with Eq. 3.5-12, the Bernoulli equation for a compressible fluid in any kind of 
flow; there the sum of the three contributions is a different constant on each streamline.) 

R. H. Kirchhoff, Chapter 7 in Handbook of Fluid Dynamics (R. W. Johnson, ed.), CRC Press, Boca 
Raton, Fla. (1998). 

M. Van Dyke, Perturbation Methods in Fluid Dynamics, The Parabolic Press, Stanford, Cal. (1975). 
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We want to solve Eqs. 4.3-3 to 5 to obtain v,, v,, and 9 as functions of x and y. We 
have already seen in the previous section that the equation of continuity in two-dimen- 
sional flows can be satisfied by writing the components of the velocity in terms of a 
stream function $(x, y). However, any vector that has a zero curl can also be written as the 
gradient of a scalar function (that is, [V x vl = 0 implies that v = -V+). It is very conve- 
nient, then, to introduce a velocity potential $(x, y). Instead of working with the velocity 
components v, and v,, we choose to work with +(x, y) and +(x, y). We then have the fol- 
lowing relations: 

(stream function) 

(velocity potential) 

Now Eqs. 4.3-3 and 4.3-4 will automatically be satisfied. By equating the expressions for 
the velocity components we get 

These are the Cauchy-Riemann equations, which are the relations that must be satisfied by 
the real and imaginary parts of any analytic function3 w(z) = +(x, y) + i+(x, y), where z = 

x + iy. The quantity w(z) is called the complex potential. Differentiation of Eq. 4.3-10 with 
respect to x and Eq. 4.3-11 with respect to y and then adding gives V2$ = 0. Differentiat- 
ing with respect to the variables in reverse order and then substracting gives V2+ = 0. 
That is, both +(x, y) and +(x, y) satisfy the two-dimensional Laplace eq~at ion.~ 

As a consequence of the preceding development, it appears that any analytic func- 
tion w(z) yields a pair of functions +(x, y) and +(x, y) that are the velocity potential and 
stream function for some flow problem. Furthermore, the curves $(x, y) = constant and 
+(x, y) = constant are then the equipotential lines and streamlines for the problem. The ve- 
locity components are then obtained from Eqs. 4.3-6 and 7 or Eqs. 4.3-8 and 9 or from 

dw 
- = -v, + ivy (4.3-12) dz 

in which dw/dz is called the complex velocity. Once the velocity components are known, 
the modified pressure can then be found from Eq. 4.3-5. 

Alternatively, the equipotential lines and streamlines can be obtained from the in- 
verse function z(w) = x(+, $) + iy($, $), in which z(w) is any analytic function of w. Be- 
tween the functions x($, $) and y($, +) we can eliminate cC/ and get 

- - - - - - 

Some knowledge of the analytic functions of a complex variable is assumed here. Helpful 
introductions to the subject can be found in V. L. Streeter, E. B. Wylie, and K. W. Bedford, Fluid 
Mechanics, McGraw-Hill, New York, 9th ed. (1998), Chapter 8, and in M. D. Greenberg, Foundations of 
Applied Mathematics, Prentice-Hall, Englewood Cliffs, N.J. (1978), Chapters 11 and 12. 

Even for three-dimensional flows the assumption of irrotational flow still permits the definition of 
a velocity potential. When v = -V+ is substituted into (V . v) = 0, we get the three-dimensional Laplace 
equation V2+ = 0. The solution of this equation is the subject of "potential theory," for which there is an 
enormous literature. See, for example, P. M. Morse and H. Feshbach, Methods of Theoretical Physics, 
McGraw-Hill, New York (19531, Chapter 11; and J. M. Robertson, Hydrodynamics in Theory and 
Application, Prentice-Hall, Englewood Cliffs, N.J. (1965), which emphasizes the engineering applications. 
There are many problems in flow through porous media, heat conduction, diffusion, and electrical 
conduction that are described by Laplace's equation. 
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EXAMPLE 4.3-1 

Potential Flow around 
a Cylinder 

SOLUTION 

Similar elimination of 4 gives 

Setting 4 = a constant in Eq. 4.3-13 gives the equations for the equipotential lines for 
some flow problem, and setting $ = constant in Eq. 4.3-14 gives equations for the stream- 
lines. The velocity components can be obtained from 

Thus from any analytic function w(z), or its inverse z(w), we can construct a flow net 
with streamlines $ = constant and equipotential lines 4 = constant. The task of finding 
w(z) or Z(W) to satisfy a given flow problem is, however, considerably more difficult. 
Some special methods are a~ailable"~ but it is frequently more expedient to consult a 
table of conformal  mapping^.^ 

In the next two illustrative examples we show how to use the complex potential w(z) 
to describe the potential flow around a cylinder, and the inverse function z(w) to solve 
the problem of the potential flow into a channel. In the third example we solve the flow 
in the neighborhood of a corner, which is treated further in s4.4 by the boundary-layer 
method. A few general comments should be kept in mind: 

The streamlines are everywhere perpendicular to the equipotential lines. This 
property, evident from Eqs. 4.3-10,11, is useful for the approximate construction 
of flow nets. 

Streamlines and equipotential lines can be interchanged to get the solution of 
another flow problem. This follows from (a) and the fact that both 4 and $ are 
solutions to the two-dimensional Laplace equation. 

Any streamline may be replaced by a solid surface. This follows from the 
boundary condition that the normal component of the velocity of the fluid is 
zero at a solid surface. The tangential component is not restricted, since in po- 
tential flow the fluid is presumed to be able to slide freely along the surface (the 
complete-slip assumption). 

(a) Show that the complex potential 

describes the potential flow around a circular cylinder of radius R, when the approach veloc- 
ity is v, in the positive x direction. 

(b) Find the components of the velocity vector. 

(c) Find the pressure distribution on the cylinder surface, when the modified pressure far 
from the cylinder is 9,. 

(a) To find the stream function and velocity potential, we write the complex potential in the 
form w(z) = +(x ,  y) + i$(x, y): 

J. Fuka, Chapter 21 in K. Rektorys, Survey of Applicable Mathematics, MIT Press, Cambridge, Mass. 
(1969). 

H. Kober, Dictionary of Conformal Representations, Dover, New York, 2nd edition (1957). 



94.3 Flow of Inviscid Fluids by Use of the Velocity Potential 129 

Hence the stream function is 

To make a plot of the streamlines it is convenient to rewrite Eq. 4.3-18 in dimensionless form 

in which q = cl//v,R, X = x/R, and Y = y/R. 
In Fig. 4.3-1 the streamlines are plotted as the curves ? = constant. The streamline 9 = 0 

gives a unit circle, which represents the surface of the cylinder. The streamline = -: goes 
through the point X = 0, Y = 2, and so on. 

(b) The velocity components are obtainable from the stream function by using Eqs. 4.3-6 and 
7. They may also be obtained from the complex velocity according to Eq. 4.3-12, as follows: 

(COS 20 - i sin 20) 

Therefore the velocity components as function of position are 

(c) On the surface of the cylinder, v = R, and 

v2 = 7.7; + v; 
= v?[(l - cos 2012 + (sin 28)'] 

= 4v5 sin2 13 

When 0 is zero or T, the fluid velocity is zero; such points are known as stagnation points. 
From Eq. 4.3-5 we know that 

Then from the last two equations we get the pressure distribution on the surface of the cylinder 

Fig. 4.3-1. The streamlines for the potential 
flow around a cylinder according to Eq. 4.3-19. 
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Note that the modified pressure distribution is symmetric about the x-axis; that is, for poten- 
tial flow there is no form drag on the cylinder (dfAlembert's para do^).^ Of course, we know 
now that this is not really a paradox, but simply the result of the fact that the inviscid fluid 
does not permit applying the no-slip boundary condition at the interface. 

Show that the inverse function 

Flow Into a Z(W)  = - w b  + + exp(m/bv,) 
11, 

(4.3-26) 
Rectangular Channel 

represents the potential flow into a rectangular channel of half-width b. Here v, is the magni- 
tude of the velocity far downstream from the entrance to the channel. 

SOLUTION First we introduce dimensionless distance variables 

and the dimensionless quantities 

The inverse function of Eq. 4.3-26 may now be expressed in terms of dimensionless quantities 
and split up into real and imaginary parts 

Therefore 

We can now set q equal to a constant, and the streamline Y = Y(X) is expressed parametrically 
in @. For example, the streamline T = 0 is given by 

As @ goes from -a, to +a, X also goes from -m to + m; hence the X-axis is a streamline. 
Next, the streamline 9 = n- is given by 

X = @ - e '  Y = n -  (4.3-34,35) 

As @ goes from - to + a,, X goes from - m to -1 and then back to -a; that is, the stream- 
line doubles back on itself. We select this streamline to be one of the solid walls of the rectan- 
gular channel. Similarly, the streamline ? = -T is the other wall. The streamlines q = C, 
where -n- < C < T, then give the flow pattern for the flow into the rectangular channel as 
shown in Fig. 4.3-2. 

Next, from Eq. 4.3-29 the derivative -dz/dw can be found: 

Comparison of this expression with Eq. 4.3-15 gives for the velocity components 

vyvm 
35 = -(I + e'cos P) -- - - - (e@ sin *) (4.3-37) 

v2 v2 

These equations have to be used in conjunction with Eqs. 4.3-30 and 31 to eliminate @ and ? 
in order to get the velocity components as functions of position. 

Hydrodynamic paradoxes are discussed in G. Birkhoff, Hydrodynamics, Dover, New York (1955). 
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Flow Near a Corner8 

SOLUTION 

Figure 4.3-3 shows the potential flow in the neighborhood of two walls that meet at a cor- 
ner at 0. The flow in the neighborhood of this corner can be described by the complex 
potential 

YA Fig. 4.3-2. The streamlines for the 

in which c is a constant. We can now consider two situations: (i) an "interior corner flow," 
with a > 1; and (ii) an "exterior corner flow," with a < 1. 

(a) Find the velocity components. 

(b) Obtain the tangential velocity at both parts of the wall. 

(c) Describe how to get the streamlines. 

(d) How can this result be applied to the flow around a wedge? 

- - -- -- -_ --- - . 
Y=+T \ pG+-Y= 

+ ---------- -- I * -------- --- 
Y=O 

-I--- 
< I 

(a) The velocity components are obtained from the complex velocity 

, potential flow into a rectangular channel, 
/ 

/ / 
as predicted from potential flow theory in 

/ 
/ Eqs. 4.3-30 and 31. A more realistic flow 

, I +I// 
. _ pattern is shown in Fig. 4.3-5. 

t 

Y, - - - - - - - - - + 
* 

(ii) Fig. 4.3-3. Potential flow near a corner. On 
the left portion of the wall, v, = - c F 1 ,  and 
on the right, v, = +cua-'. (i) Interior-corner 
flow, with a > 1; and (ii) exterior-corner flow, 
with a < 1. 

+ - - - - - - - - - - X 
. 

'. 
\ 

_/--- 
\ 
\ ---- \ 

\ 

' R. L. Panton, Compressible Flow, Wiley, New York, 2nd edition (1996). 
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Fig. 4.3-4. Potential flow along a wedge. On 
- the upper surface of the wedge, v, = cxa-' - 

_ _ - _ _ - - -  cxP"'-P). The quantities a and P are related by 
------- P = (2/a)(a - 1). 

------------ 

Streamlines -. . 

Hence from Eq. 4.3-12 we get 

v, = +cara-' cos (a - 1)6 

v, = -cara-' sin (a - 1)6 

(b) The tangential velocity at the walls is 

at 0 = 0: ZIx = vr = Carn-l = C(yp-l  

at 0 = r/a: v, = v, cos 0 + vy sin 6 

= +cara-' cos (a - 1)6 cos 6 - cara-' sin (a - 1)6 sin 0 

= cara-' COS a6 
- - -cays-' (4.3-43) 

Hence, in Case (i), the incoming fluid at the wall decelerates as it approaches the junction, and 
the departing fluid accelerates as it moves away from the junction. In Case (ii) the velocity 
components become infinite at the corner as a - 1 is then negative. 

(c) The complex potential can be decomposed into its real and imaginary parts 

w = 4 + it,b = -cua(cos a6 + i sin a61 (4.3-44) 

Hence the stream function is 

1C, = -cyn sin a0 (4.3-45) 

To get the streamlines, one selects various values for the stream function-say, $,, $,, t,b, . , 
-and then for each value one plots r as a function of 0. 

(d) Since for ideal flow any streamline may be replaced by a wall, and vice versa, the results 
found here for a > 0 describe the inviscid flow over a wedge (see Fig. 4.3-4). We make use of 
this in Example 4.4-3. 

A few words of warning are in order concerning the applicability of potential-flow 
theory to real systems: 

a. For the flow around a cylinder, the streamlines shown in Fig. 4.3-1 do not con- 
form to any of the flow regimes sketched in Fig. 3.7-2. 

b. For the flow into a channel, the predicted flow pattern of Fig. 4.3-2 is unrealistic 
inside the channel and just upstream from the channel entrance. A much better 
approximation to the actual behavior is shown in Fig. 4.3-5. 

Both of these failures of the elementary potential theory result from the phenomenon of 
separation: the departure of streamlines from a boundary surface. 

Separation tends to occur at sharp corners of solid boundaries, as in channel flow, 
and on the downstream sides of bluff objects, as in the flow around a cylinder. Gener- 
ally, separation is likely to occur in regions where the pressure increases in the direction 
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Fig. 4.3-5. Potential flow into a rectangular channel 
with separation, as calculated by H. von Helmholtz, 
Phil. Mag., 36,337-345 (1868). The streamlines for 
!P = -+r separate from the inner surface of the channel. 
The velocity along this separated streamline is con- 
stant. Between the separated streamline and the wall 

X is an empty region. 

Y=-7r 

of flow. Potential-flow analyses are not useful in the separated region. They can, how- 
ever, be used upstream of this region if the location of the separation streamline is known. 
Methods of making such calculations have been highly developed. Sometimes the posi- 
tion of the separation streamline can be estimated successfully from potential-flow the- 
ory. This is true for flow into a channel, and, in fact, Fig. 4.3-5 was obtained in this way.9 
For other systems, such as the flow around the cylinder, the separation point and separa- 
tion streamline must be located by experiment. Even when the position of the separation 
streamline is not known, potential flow solutions may be valuable. For example, the flow 
field of Ex. 4.3-1 has been found useful for estimating aerosol impaction coefficients on 
cylinders.1° This success is a result of the fact that most of the particle impacts occur near 
the forward stagnation point, where the flow is not affected very much by the position of 
the separation streamline. Valuable semiquantitative conclusions concerning heat- and 
mass-transfer behavior can also be made on the basis of potential flow calculations ig- 
noring the separation phenomenon. 

The techniques described in this section all assume that the velocity vector can be 
written as the gradient of a scalar function that satisfies Laplace's equation. The equation 
of motion plays a much less prominent role than for the viscous flows discussed previ- 
ously, and its primary use is for the determination of the pressure distribution once the 
velocity profiles are found. 

54.4 FLOW NEAR SOLID SURFACES 
BY BOUNDARY-LAYER THEORY 

The potential flow examples discussed in the previous section showed how to predict 
the flow field by means of a stream function and a velocity potential. The solutions for 
the velocity distribution thus obtained do not satisfy the usual "no-slip" boundary con- 
dition at the wall. Consequently, the potential flow solutions are of no value in describ- 
ing the transport phenomena in the immediate neighborhood of the wall. Specifically, 
the viscous drag force cannot be obtained, and it is also not possible to get reliable de- 
scriptions of interphase heat- and mass-transfer at solid surfaces. 

To describe the behavior near the wall, we use boundary-layer the0 y. For the descrip- 
tion of a viscous flow, we obtain an approximate solution for the velocity components in 
a very thin boundary layer near the wall, taking the viscosity into account. Then we 
"match this solution to the potential flow solution that describes the flow outside the 

H. von Helmholtz, Phil Mag. (4), 36,337-345 (1868). Herman Ludwig Ferdinand von Helmholtz 
(1821-1894) studied medicine and became an army doctor; he then served as professor of medicine and 
later as professor of physics in Berlin. 

lo  W. E. Ranz, Principles of Inertial Impaction, Bulletin #66, Department of Engineering Research, 
Pennsylvania State University, University Park, Pa. (1956). 
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boundary layer. The success of the method depends on the thinness of the boundary 
layer, a condition that is met at high Reynolds number. 

We consider the steady, two-dimensional flow of a fluid with constant p and p 
around a submerged object, such as that shown in Fig. 4.4-1. We assert that the main 
changes in the velocity take place in a very thin region, the boundary layer, in which the 
curvature effects are not important. We can then set up a Cartesian coordinate system 
with x pointing downstream, and y perpendicular to the solid surface. The continuity 
equation and the Navier-Stokes equations then become: 

dv, dvy -+ - -=o  
dx dy 

Some of the terms in these equations can be discarded by order-of-magnitude argu- 
ments. We use three quantities as "yardsticks": the approach velocity v,, some linear di- 
mension 1, of the submerged body, and an average thickness 60 of the boundary layer. 
The presumption that So << lo allows us to make a number of rough calculations of or- 
ders of magnitude. 

Since vx varies from zero at the solid surface to v, at the outer edge of the boundary 
layer, we can say that 

where 0 means "order of magnitude of." Similarly, the maximum variation in v, over 
the length lo of the surface will be v,, so that 

Here we have made use of the equation of continuity to get one more derivative (we are 
concerned here only with orders of magnitude and not the signs of the quantities). Inte- 
gration of the second relation suggests that vy = 0((6,/1,)v,) << v,. The various terms in 
Eq. 4.4-2 may now be estimated as 

v - - = O -  v - = O - -  d2vx d2v, (3; 2 ((r) - = O ( t )  - = O($) (4.4-6) " dx dx2 dy2 

Approximate outer limit 
of boundary layer where 

V ,  + VJX)  

Fig. 4.4-1. Coordinate system 
for the two-dimensional flow 
around a submerged object. 
The boundary-layer thickness 
is greatly exaggerated for pur- 
poses of illustration. Because 
the boundary layer is in fact 
quite thin, it is permissible to 
use rectangular coordinates lo- 
cally along the curved surface. 
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This suggests that d2vX/dx2 << d2vx/dy2, SO that the former may be safely neglected. In 
the boundary layer it is expected that the terms on the left side of Eq. 4.4-2 should be of 
the same order of magnitude as those on the right side, and therefore 

The second of these relations shows that the boundary-layer thickness is small compared 
to the dimensions of the submerged object in high-Reynolds-number flows. 

Similarly it can be shown, with the help of Eq. 4.4-7, that three of the derivatives in 
Eq. 4.4-3 are of the same order of magnitude: 

Comparison of this result with Eq. 4.4-6 shows that d 9 / d y  << dP/dx. This means that 
the y-component of the equation of motion is not needed and that the modified pressure 
can be treated as a function of x alone. 

As a result of these order-of-magnitude arguments, we are left with the Prandtl 
boundary layer equations:' 

(continuity) 

(motion) 

The modified pressure 9(x) is presumed known from the solution of the corresponding 
potential-flow problem or from experimental measurements. 

The usual boundary conditions for these equations are the no-slip condition (v, = 0 
at y = O), the condition of no mass transfer from the wall (vy = 0 at y = O), and the 
statement that the velocity merges into the external (potential-flow) velocity at the 
outer edge of the boundary layer (vx(x, y) -, v,(x)). The function v,(x) is related to 9(x) 
according to the potential-flow equation of motion in Eq. 4.3-5. Consequently the term 
-(1 /p)(dY /dx) in Eq. 4.4-10 can be replaced by v,(dv,/dx) for steady flow. Thus Eq. 4.4-10 
may also be written as 

dv, dv, dv, d2v, 
vx-+v -=v,-+ V- dx Y dy dx ay2 

The equation of continuity may be solved for v, by using the boundary condition that 
v, = 0 at y = 0 (i.e., no mass transfer), and then this expression for v, may be substituted 
into Eq. 4.4-11 to give 

Y dv, dv, d2v, 
vX3- dx (/, iildy)%= v e Z +  v2 

This is a partial differential equation for the single dependent variable vx. 

' Ludwig Prandtl(18751953) (pronounced "Prahn-t'l), who taught in Hannover and Gottingen and 
later served as the Director of the Kaiser Wilhelm Institute for Fluid Dynamics, was one of the people 
who shaped the future of his field at the beginning of the twentieth century; he made contributions to 
turbulent flow and heat transfer, but his development of the boundary-layer equations was his crowning 
achievement. L. Prandtl, Verhandlungen des III Internationalen Mathematiker-Kongresses (Heidelberg, 19041, 
Leipzig, pp. 484-491; L. Prandtl, Gesammelte Abhandlungen, 2, Springer-Verlag, Berlin (1961), pp. 575-584. 
For an introductory discussion of matched asymptotic expressions, see D. J. Acheson, Elementary Fluid 
Mechanics," Oxford University Press (1990), pp. 269-271. An exhaustive discussion of the subject may be 
found in M. Van Dyke, Perturbation Methods in Fluid Dynamics, The Parabolic Press, Stanford, Cal. (1975). 
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This equation may now be multiplied by p and integrated from y = 0 to y = to 
give the van Ka'rmhn momentum balance2 

Here use has been made of the condition that v,(x, y) -+ v,(x) as y -+ a. The quantity on 
the left side of Eq. 4.4-13 is the shear stress exerted by the fluid on the wall: -~,,l~=~. 

The original Prandtl boundary-layer equations, Eqs. 4.4-9 and 10, have thus been 
transformed into Eq. 4.4-11, Eq. 4.4-12, and Eq. 4.4-13, and any of these may be taken as 
the starting point for solving two-dimensional boundary-layer problems. Equation 4.4- 
13, with assumed expressions for the velocity profile, is the basis of many "approximate 
boundary-layer solutions" (see Example 4.4-1). On the other hand, the analytical or nu- 
merical solutions of Eqs. 4.4-11 or 12 are called "exact boundary-layer solutions" (see Ex- 
ample 4.4-2). 

The discussion here is for steady, laminar, two-dimensional flows of fluids with con- 
stant density and viscosity. Corresponding equations are available for unsteady flow, 
turbulent flow, variable fluid properties, and three-dimensional boundary 

Although many exact and approximate boundary-layer solutions have been ob- 
tained and applications of the theory to streamlined objects have been quite successful, 
considerable work remains to be done on flows with adverse pressure gradients (i.e., 
positive dP/dx) in Eq. 4.4-10, such as the flow on the downstream side of a blunt object. 
In such flows the streamlines usually separate from the surface before reaching the rear 
of the object (see Fig. 3.7-2). The boundary-layer approach described here is suitable for 
such flows only in the region upstream from the separation point. 

Use the von K5rm6n momentum balance to estimate the steady-state velocity profiles near a 
semi-infinite flat plate in a tangential stream with approach velocity v, (see Fig. 4.4-2). For 

Laminar a this system the potential-flow solution is v, = a,. 
Flat Plate (Approximate 
Solution) 

Fluid approaches with 
uniform velocity v, - 

Fig. 4.4-2. Boundary-layer 
development near a flat 
plate of negligible thickness. 

Th. von Ksrmin, Zeits, fur angew. Math. u. Mech., 1,233-252 (1921). Hungarian-born Theodor von 
K h 6 n  taught in Gottingen, Aachen, and California Institute of Technology; he contributed much to the 
theory of turbulence and aerodynamics. 

H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer Verlag, Berlin, 8th edition (2000). 
L. Rosenhead, Laminar Boundary Layers, Oxford University Press, London (1963). 
K. Stewartson, The Theory of Laminar Bounday Layers in Compressible Fluids, Oxford University 

Press (1964). 
' W. H. Dorrance, Viscous Hypersonic Flow, McGraw-Hill, New York (1962). 
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SOLUTION We know intuitively what the velocity profile vx(y) looks like. Hence we can guess a form for 
ux(y) and substitute it directly into the von Karmiin momentum balance. One reasonable choice 
is to let v,(y) by a function of y/6, where S(x) is the "thickness" of the boundary layer. The 
function is so chosen that u, = 0 at y = 0 and v, = v, at y = 6.  This is tantamount to assuming 
geometrical similarity of the velocity profiles for various values of x. When this assumed pro- 
file is substituted into the von Khrman momentum balance, an ordinary differential equation 
for the boundary-layer thickness 6(x) is obtained. When this equation has been solved, the 6(x) 
so obtained can then be used to get the velocity profile and other quantities of interest. 

For the present problem a plausible guess for the velocity distribution, with a reasonable 
shape, is 

for 0 5 y r 6(x) (boundary-layer region) (4.4-14) 

ux -- - 1 for y r 6(x) (potential flow region) (4.4-15) 
urn 

This is "reasonable" because this velocity profile satisfies the no-slip condition at y = 0, and 
dv,/dy = 0 at the outer edge of the boundary layer. Substitution of this profile into the von 
KArmBn integral balance in Eq. 4.4-13 gives 

This first-order, separable differential equation can now be integrated to give for the bound- 
ary-layer thickness 

I 7 

Therefore, the boundary-layer thickness increases as the square root of the distance from the up- 
stream end of the plate. The resulting approximate solution for the velocity distribution is then 

From this result we can estimate the drag force on a plate of finite size wetted on both sides. 
For a plate of width Wand length L, integration of the momentum flux over the two solid sur- 
faces gives: 

The exact solution, given in the next example, gives the same result, but with a numerical co- 
efficient of 1.328. Both solutions predict the drag force within the scatter of the experimental 
data. However, the exact solution gives somewhat better agreement with the measured veloc- 
ity profiles3 This additional accuracy is essential for stability calculations. 

Obtain the exact solution for the problem given in the previous example. 

Laminar Flow along SOLUTION 
a Flat Plate (Exact 
~olution)' This problem may be solved by using the definition of the stream function in Table 4.2-1. In- 

serting the expressions for the velocity components in the first row of entries, we get 

-- - - 

This problem was treated originally by H. Blasius, Zeits. Math. Phys., 56,l-37 (1908). 
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The boundary conditions for this equation for $(x, y) are 

B.C. 1: a+ aty=O, -=v ,=O for x 2 0 dx 
(4.4-21) 

B.C. 2: aty=O, -- d" -u, = 0 fo rx2O (4.4-22) 
JY 

B.C. 3: a* - asy+m, -- -vx + -urn for x 2 0 (4.4-23) 
dy 

B.C. 4: a* - atx=O, --  -vx = -u, for y > 0 (4.4-24) 
JY 

Inasmuch as there is no characteristic length appearing in the above relations, the 
method of combination of independent variables seems appropriate. By dimensional argu- 
ments similar to those used in Example 4.1-1, we write 

The factor of 2 is included to avoid having any numerical factors occur in the differential 
equation in Eq. 4.4-27. The stream function that gives the velocity distribution in Eq. 4.4-25 is 

This expression for the stream function is consistent with Eq. 4.4-25 as may be seen by using 
the relation u, = -d+/dy (given in Table 4.2-1). Substitution of Eq. 4.4-26 into Eq. 4.4-20 gives 

Substitution into the boundary conditions gives 

B.C. 1 and 2: 

B.C. 3 and 4: 

a t q = 0 ,  f = O  and f t = O  

ass-+ m, f l + l  

Thus the determination of the flow field is reduced to the solution of one third-order ordinary 
differential equation. 

This equation, along with the boundary conditions given, can be solved by numerical in- 
tegration, and accurate tables of the solution are a~a i lab le .~ ,~  The problem was originally 
solved by Blasius7 using analytic approximations that proved to be quite accurate. A plot of 
his solution is shown in Fig. 4.4-3 along with experimental data taken subsequently. The 
agreement between theory and experiment is remarkably good. 

The drag force on a plate of width W and length L may be calculated from the dimen- 
sionless velocity gradient at the wall, f "(0) = 0.4696 . . . as follows: 

This result has also been confirmed e~perimentally.~,~ 
Because of the approximations made in Eq. 4.4-10, the solution is most accurate at 

large local Reynolds numbers; that is, Re, = xv,/v >> 1. The excluded region of lower 
Reynolds numbers is small enough to ignore in most drag calculations. More complete 
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Fig. 4.4-3. Predicted and observed velocity profiles for tangential laminar flow along a 
flat plate. The solid line represents the solution of Eqs. 4.4-20 to 24, obtained by Blasius 
[see H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (1979), 
p. 1371. 

analyses8 indicate that Eq. 4.4-30 is accurate to within 3% for Lv,/v 2 lo4 and within 0.3% 
for Lv,/v 2 lo6. 

The growth of the boundary layer with increasing x eventually leads to an unstable 
situation, and turbulent flow sets in. The transition is found to begin somewhere in the 
range of local Reynolds number of Re, = xv,/v 2 3 X 10' to 3 X loh, depending on the 
uniformity of the approaching streams8 Upstream of the transition region the flow re- 
mains laminar, and downstream it is turbulent. 

We now want to treat the boundary-layer problem analogous to Example 4.3-3, namely the 
flow near a corner (see Fig. 4.3-4). If cr > 1, the problem may also be interpreted as the flow 

near a Corner along a wedge of included angle Pn-, with a = 2/(2 - P). For this system the external flow v, 
is known from Eqs. 4.3-42 and 43, where we found that 

This was the expression that was found to be valid right at the wall (i.e., at y = 0). Here, it 
is assumed that the boundary layer is so thin that using the wall expression from ideal 
flow is adequate for the outer limit of the boundary-layer solution, at least for small values 
of x .  

Y. H. Kuo, 1. Math. Phys., 32,83-101 (1953); I. Imai,]. Aero. Sci., 24,155-156 (1957). 
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SOLUTION 

Fig. 4.4-4. Velocity profile for 
wedge flow with included 
angle prr. Negative values of 
p correspond to the flow 
around an "external corner" 
[see Fig. 4.3-4(ii)I with slip at 
the wall upstream of the 
corner. 

We now have to solve Eq. 4.4-11, using Eq. 4.4-31 for v,(x). When we introduce the stream 
function from the first row of Table 4.2-1, we obtain the following differential equation for +: 

which corresponds to Eq. 4.4-20 with the term v,(dv,/dx) added. It was discovered9 that this 
equation can be reduced to a single ordinary differential equation by introducing a dimen- 
sionless stream function f(q) by 

*(x, y) = V ' Z T ~ ~ X " ' ~  (4.4-33) 

in which the independent variable is 

Then Eq. 4.4-32 becomes the Falkner-Skan equation9 

This equation has been solved numerically with the appropriate boundary conditions, and 
the results are shown in Fig. 4.4-4. 

It can be seen that for positive values of p, which corresponds to the systems shown in 
Fig. 4.3-4(a) and Fig. 4.3-5, the fluid is accelerating and the velocity profiles are stable. For 
negative values of p, down to p = -0.199, the flows are decelerating but stable, and no sepa- 
ration occurs. However, if p > -0.199, the velocity gradient at the wall becomes zero, and 
separation of the flow occurs. Therefore, for the interior corner flows and for wedge flows, 
there is no separation, but for the exterior corner flows, separation may occur. 

QUESTIONS FOR DISCUSSION 

1. For what types of problems is the method of combination of variables useful? The 
method of separation of variables? 

2. Can the flow near a cylindrical rod of infinite length suddenly set in motion in the 
axial direction be described by the method in Example 4.1-l? 

V. M. Falkner and S. W. Skan, Phil. Mag., 12,865-896 (1931); D. R. Hartree, Proc. Camb. Phil. Soc., 
33, Part 11,223-239 (1937); H. Rouse (ed.), Advanced Mechanics of Fluids, Wiley, New York (19591, Chapter 
VII, Sec. D; H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer-Verlag, Berlin (2000), pp. 
169-173 (isothermal), 220-221 (nonisothermal); W. E. Stewart and R. Prober, Int. J .  Heat Mass Transfer, 5, 
1149-1163 (1962); 6,221-229,872 (1963), include wedge flow with heat and mass transfer. 



Problems 141 

3. What happens in Example 4.1-2 if one tries to solve Eq. 4.1-21 by the method of sepa- 
ration of variables without first recognizing that the solution can be written as the 
sum of a steady-state solution and a transient solution? 

4. What happens if the separation constant after Eq. 4.1-27 is taken to be c or c2 instead of 
-c2? 

5. Try solving the problem in Example 4.1-3 using trigonometric quantities in lieu of 
complex quantities. 

6.  How is the vorticity equation obtained and how may it be used? 
7. How is the stream function defined, and why is it useful? 
8. In what sense are the potential flow solutions and the boundary-layer flow solutions 

complementary? 
9. List all approximate forms of the equations of change encountered thus far, and indi- 

cate their range of applicability. 

PROBLEMS 4A.1 Time for attainment of steady state in tube flow. 
(a) A heavy oil, with a kinematic viscosity of 3.45 X m2/s, is at rest in a long vertical tube 
with a radius of 0.7 cm. The fluid is suddenly allowed to flow from the bottom of the tube by 
virtue of gravity. After what time will the velocity at the tube center be within 10% of its final 
value? 
(b) What is the result if water at 68OF is used? 
Note: The result shown in Fig. 4D.2 should be used. 
Answers: (a) 6.4 X lop2 s; (b) 0.22 s 

4A.2 Velocity near a moving sphere. A sphere of radius R is falling in creeping flow with a termi- 
nal velocity v, through a quiescent fluid of viscosity p. At what horizontal distance from the 
sphere does the velocity of the fluid fall to 1% of the terminal velocity of the sphere? 
Answer: About 37 diameters 

4A.3 Construction of streamlines for the potential flow around a cylinder. Plot the streamlines for 
the flow around a cylinder using the information in Example 4.3-1 by the following procedure: 
(a) Select a value of = C (that is, select a streamline). 
(b) Plot Y = C + K (straight lines parallel to the X-axis) and Y = K(X~ + Y2) (circles with ra- 
dius 1 /2K, tangent to the X-axis at the origin). 
(c) Plot the intersections of the lines and circles that have the same value of K. 
(d) Join these points to get the streamline for = C. 
Then select other values of C and repeat the process until the pattern of streamlines is clear. 

4A.4 Comparison of exact and approximate profiles for flow along a flat plate. Compare the val- 
ues of v,/v, obtained from Eq. 4.4-18 with those from Fig. 4.4-3, at the following values of 
yG: (a) 1.5, (b) 3.0, (c) 4.0. Express the results as the ratio of the approximate to the exact 
values. 
Answers: (a) 0.96; (b) 0.99; (c) 1.01 

4A.5 Numerical demonstration of the von Klirmin momentum balance. 
(a) Evaluate the integrals in Eq. 4.4-13 numerically for the Blasius velocity profile given in 
Fig. 4.4-3. 
(b) Use the results of (a) to determine the magnitude of the wall shear stress T,,(,=~ 
(c) Calculate the total drag force, F,, for a plate of width W and length L, wetted on both 
sides. Cornparme your result with that obtained in Eq. 4.4-30. 
Answers: (a) lo pv,(v, - v,)dy = 0.664- 

IOm p(o, - vJdy = 1 . 7 3 e  
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Use of boundary-layer formulas. Air at 1 atm and 20°C flows tangentially on both sides of a 
thin, smooth flat plate of width W = 10 ft, and of length L = 3 ft in the direction of the flow. 
The velocity outside the boundary layer is constant at 20 ft/s. 
(a) Compute the local Reynolds number Re, = xvm/v at the trailing edge. 
(b) Assuming laminar flow, compute the approximate boundary-layer thickness, in inches, at 
the trailing edge. Use the results of Example 4.4-1. 
(c) Assuming laminar flow, compute the total drag of the plate in lbf. Use the results of Exam- 
ples 4.4-1 and 2. 

Entrance flow in conduits. 
(a) Estimate the entrance length for laminar flow in a circular tube. Assume that the boundary- 
layer thickness 6 is given adequately by Eq. 4.4-17, with v, of the flat-plate problem corre- 
sponding to v,,, in the tube-flow problem. Assume further that the entrance length L, can be 
taken to be the value of x at which 6 = R. Compare your result with the expression for L, cited 
in 52.3-namely, L, = 0.0350 Re. 
(b) Rewrite the transition Reynolds number xvm/v = 3.5 X lo5 (for the flat plate) by inserting 
6 from Eq. 4.4-17 in place of x as the characteristic length. Compare the quantity 6vm/v thus 
obtained with the corresponding minimum transition Reynolds number for the flow through 
long smooth tubes. 
(c) Use the method of (a) to estimate the entrance length in the flat duct shown in Fig. 4C.1. 
Compare the result with that given in Problem 4C.l(d). 

Flow of a fluid with a suddenly applied constant wall stress. In the system studied in Ex- 
ample 4.1-1, let the fluid be at rest before t = 0. At time t = 0 a constant force is applied to the 
fluid at the wall in the positive x direction, so that the shear stress r,, takes on a new constant 
value r0 at y = 0 for t > 0. 
(a) Differentiate Eq. 4.1-1 with respect to y and multiply by -p  to obtain a partial differential 
equation for ryw( y, t). 

(b) Write the boundary and initial conditions for this equation. 
(c) Solve using the method in Example 4.1-1 to obtain 

(d) Use the result in (c) to obtain the velocity profile. The following relation7 will be helpful 

Flow near a wall suddenly set in motion (approximate solution) (Fig. 48.2). Apply a proce- 
dure like that of Example 4.4-1 to get an approximate solution for Example 4.1.1. 
(a) Integrate Eq. 4.4-1 over y to get 

Make use of the boundary conditions and the Leibniz rule for differentiating an integral 
(Eq. C.3-2) to rewrite Eq. 4B.2-1 in the form 

Interpret this result physically. 

' A useful summary of error functions and their properties can be found in H. S. Carslaw and 
J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition (1959), Appendix 11. 
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Fig. 4B.2. Comparison 
of true and approximate 
velocity profiles near a 
wall suddenly set in mo- 
tion with velocity vo. 

vo - vo - 
(a) True solution (b) Boundary-layer approximation 

(b) We know roughly what the velocity profiles look like. We can make the following reason- 
able postulate for the profiles: 

Here 6(t) is a time-dependent boundary-layer thickness. Insert this approximate expression 
into Eq. 4B.2-2 to obtain 

(c) Integrate Eq. 4B.2-5 with a suitable initial value of 6(t), and insert the result into Eq. 4B.2-3 
to get the approximate velocity profiles. 
(d) Compare the values of v,/v, obtained from (c) with those from Eq. 4.1-15 at y/l/4vt = 
0.2,0.5, and 1.0. Express the results as the ratio of the approximate value to the exact value. 
Answer (d) 1.015,1.026,0.738 

4B.3 Creeping flow around a spherical bubble. When a liquid flows around a gas bubble, circula- 
tion takes place within the bubble. This circulation lowers the interfacial shear stress, and, to a 
first approximation, we may assume that it is entirely eliminated. Repeat the development of 
Ex. 4.2-1 for such a gas bubble, assuming it is spherical. 
(a) Show that B.C. 2 of Ex. 4.2-1 is replaced by 

B.C. 2: 

and that the problem set-up is otherwise the same. 
(b) Obtain the following velocity components: 

(c) Next obtain the pressure distribution by using the equation of motion: 

p = po - pgh - - - cos 8 ('Y) (: r 
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(dl Evaluate the total force of the fluid on the sphere to obtain 

This result may be obtained by the method of 52.6 or by integrating the z-component of -[n - IT] 

over the sphere surface (n being the outwardly directed unit normal on the surface of the 
sphere). 

48.4 Use of the vorticity equation. 
(a) Work Problem 2B.3 using the y-component of the vorticity equation (Eq. 3D.2-1) and the 
following boundary conditions: at x = ? B, v, = 0 and at x = 0, v, = v,,,. Show that this 
leads to 

Then obtain the pressure distribution from the z-component of the equation of motion. 
(b) Work Problem 3B.6(b) using the vorticity equation, with the following boundary con- 
ditions: at r = R, v, = 0 and at r = KR, v, = vO. In addition an integral condition is needed 
to state that there is no net flow in the z direction. Find the pressure distribution in the 
system. 
(c) Work the following problems using the vorticity equation: 2B.6,2B.7,3B.lf 3B.1Or3B.16. 

4B.5 Steady potential flow around a stationary ~ p h e r e . ~  In Example 4.2-1 we worked through the 
creeping flow around a sphere. We now wish to consider the flow of an incompressible, invis- 
cid fluid in irrotational flow around a sphere. For such a problem, we know that the velocity 
potential must satisfy Laplace's equation (see text after Eq. 4.3-11). 
(a) State the boundary conditions for the problem. 
(b) Give reasons why the velocity potential 4 can be postulated to be of the form +(r, 6) = 

f(r) cos 19. 
(c) Substitute the trial expression for the velocity potential in (b)  into Laplace's equation for 
the velocity potential. 
(d) Integrate the equation obtained in (c) and obtain the function f(r) containing two con- 
stants of integration; determine these constants from the boundary conditions and find 

1 R  4 = -ZJ,R[(;) + (?)i] cos I9 

(el Next show that 

,, = 4 1  - (;)i] cos I9 

ve = -v.[l + f (:r] sin 6 

(f) Find the pressure distribution, and then show that at the sphere surface 

9 - 9, = $pvi(l - sin2 8) (4B.5-4) 

4B.6 Potential flow near a stagnation point (Fig. 4B.6). 
(a) Show that the complex potential w = -v , ?~  describes the flow near a plane stagnation point. 
(b) Find the velocity components v,(x, y) and v,(x, y). 
(c) Explain the physical significance of v,. 

L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Boston, 2nd edition (1987), pp. 21-26, 
contains a good collection of potential-flow problems. 
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Y Fig. 4B.6. Two-dimensional potential flow 
near a stagnation point. 

X 

'stagnation point 

4B.7 Vortex flow. 
(a) Show that the complex potential w = (ir/27r) In z describes the flow in a vortex. Verify 
that the tangential velocity is given by vo = r/2777 and that v, = 0. This type of flow is some- 
times called a free vortex. Is this flow irrotational? 
(b) Compare the functional dependence of v, on r in (a) with that which arose in Example 
3.6-4. The latter kind of flow is sometimes called a forced vortex. Actual vortices, such as those 
that occur in a stirred tank, have a behavior intermediate between these two idealizations. 

48.8 The flow field about a line source. Consider the symmetric radial flow of an incompressible, in- 
viscid fluid outward from an infinitely long uniform source, coincident with the z-axis of a cylin- 
drical coordinate system. Fluid is being generated at a volumetric rate r per unit length of source. 
(a) Show that the Laplace equation for the velocity potential for this system is 

(b) From this equation find the velocity potential, velocity, and pressure as functions of position: 

where 9, is the value of the modified pressure far away from the source. 
(c) Discuss the applicability of the results in (b) to the flow field about a well drilled into a 
large body of porous rock. 
(d) Sketch the flow net of streamlines and equipotential lines. 

4B.9 Checking solutions to unsteady flow problems. 
(a) Verify the solutions to the problems in Examples 4.1-1,2, and 3 by showing that they sat- 
isfy the partial differential equations, initial conditions, and boundary conditions. To show 
that Eq. 4.1-15 satisfies the differential equation, one has to know how to differentiate an inte- 
gral using the Leibniz formula given in gC.3. 
(b) In Example 4.1-3 the initial condition is not satisfied by Eq. 4.1-57. Why? 

4C.1 Laminar entrance flow in a slit? (Fig. 4C.1). Estimate the velocity distribution in the entrance 
region of the slit shown in the figure. The fluid enters at x = 0 with v, = 0 and v, = (v,), where 
(v,) is the average velocity inside the slit. Assume that the velocity distribution in the entrance 
region 0 < x < L, is 

(boundary layer region, 0 < y < 6) 

V" - 1 - - (potential flow region, S < y < B) (4C. 1 -2) 
Ve 

in which 6 and v, are functions of x, yet to be determined. 

A numerical solution to this problem using the Navier-Stokes equation has been given by Y. L. 
Wang and P. A. Longwell, AKhE Journal, 10,323-329 (1964). 
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= 2~ Fig. 4C.1. Entrance flow into a slit. 

y = B  

y = o  

(a) Use the above two equations to get the mass flow rate w through an arbitrary cross sec- 
tion in the region 0 < x < L,. Then evaluate w from the inlet conditions and obtain 

(b) Next use Eqs. 4.4-13,4C.1-1, and 4C.1-2 with replaced by B (why?) to obtain a differen- 
tial equation for the quantity A = S/B: 

(c) Integrate this equation with a suitable initial condition to obtain the following relation be- 
tween the boundary-layer thickness and the distance down the duct: 

(dl Compute the entrance length L, from Eq. 4C.1-5, where LC is that value of x for which 
S(x) = B. 
(e) Using potential flow theory, evaluate 9 - 9, in the entrance region, where go is the value 
of the modified pressure at x = 0. 
Answers: (d) L, = 0.104(v,)B2/v; (e) 9 - 9 - 

O-2 

Torsional oscillatory viscometer (Fig. 4C.2). In the torsional oscillatory viscometer, the fluid 
is placed between a "cup" and "bob as shown in the figure. The cup is made to undergo 
small sinusoidal oscillations in the tangential direction. This motion causes the bob, sus- 
pended by a torsion wire, to oscillate with the same frequency, but with a different amplitude 

Torsion wire 

r 
"Bob 

"Cup" 

%arced oscillation of 
1 outer CYlinder Fig. 4C.2. Sketch of a torsional oscillatory viscometer. 
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and phase. The amplitude ratio (ratio of amplitude of output function to input function) and 
phase shift both depend on the viscosity of the fluid and hence can be used for determining 
the viscosity. It is assumed throughout that the oscillations are of small amplitude. Then the 
problem is a linear one, and it can be solved either by Laplace transform or by the method 
outlined in this problem. 
(a) First, apply Newton's second law of motion to the cylindrical bob for the special case that 
the annular space is completely evacuated. Show that the natural frequency of the system is 
o, = l/iTTI, in which I is the moment of inertia of the bob, and k is the spring constant for the 
torsion wire. 
(b) Next, apply Newton's second law when there is a fluid of viscosity p in the annular 
space. Let OR be the angular displacement of the bob at time t ,  and v, be the tangential velocity 
of the fluid as a function of r and t. Show that the equation of motion of the bob is 

If the system starts from rest, we have the initial conditions 

I.C.:  OR att=O, O R = O  and - = O  
dt 

(4C.2-2) 

(c) Next, write the equation of motion for the fluid along with the relevant initial and bound- 
ary conditions: 

(Fluid) 

LC.: 

B.C. 1: at r = R, v, = R-- 
dt 

(4C.2-5) 

B.C. 2: at r = aR, do,, v, = aR- 
at 

(4C.2-6) 

The function OaR(t) is a specified sinusoidal function (the "input"). Draw a sketch showing OQR 
and OR as functions of time, and defining the amplitude ratio and the phase shift. 
(d) Simplify the starting equations, Eqs. 4C.2-1 to 6, by making the assumption that a is only 
slightly greater than unity, so that the curvature may be neglected (the problem can be solved 
without making this assumption4). This suggests that a suitable dimensionless distance vari- 
able is x = (r - R)/[(a - 1)Rl. Recast the entire problem in dimensionless quantities in such a 
way that 1 /o, = a is used as a characteristic time, and so that the viscosity appears in just 
one dimensionless group. The only choice turns out to be: 

time: T =  $t (4C.2-7) 

velocity: 

viscosity: 

2.rrR4Lp(a - 1) 
reciprocal of moment of inertia: A = 

I 

H. Markovitz, J. Appl. Phys., 23,1070-1077 (1952) has solved the problem without assuming a 
small spacing between the cup and bob. The cup-and-bob instrument has been used by L. J. Wittenberg, 
D. Ofte, and C. F. Curtiss, J .  Chem. Phys., 48,3253-3260 (1968), to measure the viscosity of liquid 
plutonium alloys. 
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Show that the problem can now be restated as follows: 

(bob) 

(fluid) 

From these two equations we want to get 6, and 4 as functions of x and 7, with M and A as 
parameters. 
(e) Obtain the "sinusoidal steady-state" solution by taking the input function BQR (the dis- 
placement of the cup) to be of the form 

in which G = @/on = wV!% is a dimensionless frequency. Then postulate that the bob and 
fluid motions will also be sinusoidal, but with different amplitudes and phases: 

= %{6ieiGr] (6; is complex) (4C.2-14) 

4 ( ~ ,  7) = %(40(x)e~Z;7) is complex) (4C.2-15) 

Verify that the amplitude ratio is given by IB;J /6&, where 1 .  . .I indicates the absolute magni- 
tude of a complex quantity. Further show that the phase angle a is given by tan a = 
3{0i{/M{Bf;j, where % and 3 stand for the real and imaginary parts, respectively. 
(f) Substitute the postulated solutions of (e) into the equations in (d) to obtain equations for 
the complex amplitudes 6 h n d  4". 
(g) Solve the equation for +"(XI and verify that 

(h) Next, solve the 6; equation to obtain 

from which the amplitude ratio lBil /6iR and phase shift a can be found. 
(i) For high-viscosity fluids, we can seek a power series by expanding the hyperbolic func- 
tions in Eq. 4C.2-17 to get a power series in 1 /M. Show that this leads to 

From this, find the amplitude ratio and the phase angle. 
(j) Plot l6;l /6iR versus G for p/p = 10 cm2/s, L = 25 cm, R = 5.5 cm, I = 2500 gm/cm2, k = 4 X 

lo6 dyn cm. Where is the maximum in the curve? 

4C.3 Darcy's equation for flow through porous media. For the flow of a fluid through a porous 
medium, the equations of continuity and motion may be replaced by 

smoothed continuity equation dp 
6 - = -(V ' pvo) 

d t 
(4C.3-1) 

Darcy's equation5 K 
vo = -, (Vp - pg) (4C.3-2) 

' Henry Philibert Gaspard Darcy (1803-1858) studied in Paris and became famous for designing 
the municipal water-supply system in Dijon, the city of his birth. H. Darcy, Les Fontaines Publiques de la 
Ville de Dijon, Victor Dalmont, Paris (1856). For further discussions of "Darcy's law," see J. Happel and 
H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nihjoff, Dordrecht (1983); and H. Brenner 
and D. A. Edwards, Macrofransporf Processes, Butterworth-Heinemann, Boston (1993). 
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in which E, the porosity, is the ratio of pore volume to total volume, and K is the permeability of 
the porous medium. The velocity v, in these equations is the superficial velocity, which is de- 
fined as the volume rate of flow through a unit cross-sectional area of the solid plus fluid, av- 
eraged over a small region of space-small with respect to the macroscopic dimensions in the 
flow system, but large with respect to the pore size. The density and pressure are averaged 
over a region available to flow that is large with respect to the pore size. Equation 4C.3-2 was 
proposed empirically to describe the slow seepage of fluids through granular media. 

When Eqs. 4C.3-1 and 2 are combined we get 

for constant viscosity and permeability. This equation and the equation of state describe the 
motion of a fluid in a porous medium. For most purposes we may write the equation of state as 

in which p,, is the fluid density at unit pressure, and the following parameters have been given:6 

1. Incompressible liquids m=O p = O  
2. Compressible liquids m = O  p f O  
3. Isothermal expansion of gases /3 = 0 m = 1 
4. Adiabatic expansion of gases /3 = 0 m = C,/Cp = I / y  

Show that Eqs. 4C.3-3 and 4 can be combined and simplified for these four categories to give 
(for gases it is customary to neglect the gravity terms since they are small compared with the 
pressure terms): 

Case 1. V 2 8  = 0 (4C.3-5) 

Case 2. 

Case 3. 

Case 4. 

Note that Case 1 leads to Laplace's equation, Case 2 without the gravity term leads to the heat- 
conduction or diffusion equation, and Cases 3 and 4 lead to nonlinear  equation^.^ 

4C.4 Radial flow through a porous medium (Fig. 4C.4). A fluid flows through a porous cylindri- 
cal shell with inner and outer radii R, and R,, respectively. At these surfaces, the pressures 
are known to be p, and p,, respectively. The length of the cylindrical shell is h. 

Porous medium Fluid 
/ I 

I I 

--- I 1 
fZL----7;i--+ w = mass 
.-+ I I J-- + rate of flow 

---- 1 ------ Y 
I 

1 
I 

\ Fig. 4C.4. Radial flow 
I \ 2 through a porous 

Pressure pl Pressure p2 medium. 

ti M. Muskat, Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill(1937). 
For the boundary condition at a porous surface that bounds a moving fluid, see G. S. Beavers and 

D. D. Joseph, J. Fluid Mech., 30,197-207 (1967) and G. S. Beavers, E. M. Sparrow, and B. A. Masha, AIChE 
Journal, 20,596-597 (1974). 
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(a) Find the pressure distribution, radial flow velocity, and mass rate of flow for an incom- 
pressible fluid. 
(b) Rework (a) for a compressible liquid and for an ideal gas. 

9 - 9, - ln (r/RJ K 9 2  - 91 zm~h(p2 - p1)p 
- Answers: (a) vOr = -- w = 

g2 - 9, In (R,/R,) Pr In (R2/Rl) p In (R2/R,) 

4D.1 Flow near an oscillating wa1L8 Show, by using Laplace transforms, that the complete solu- 
tion to the problem stated in Eqs. 4.1-44 to 47 is 

4D.2 Start-up of laminar flow in a circular tube (Fig. 4D.2). A fluid of constant density and viscos- 
ity is contained in a very long pipe of length L and radius R. Initially the fluid is at rest. At 
time t = 0, a pressure gradient (Yo - YL)/L is imposed on the system. Determine how the ve- 
locity profiles change with time. 

Tube center = 00 
Tube wall 

\ 

Fig. 4D.2. Velocity distribution for the unsteady flow re- 
sulting from a suddenly impressed pressure gradient in a 
circular tube [P. Szymanski, J. Math. Pures Appl., Series 9, 
11,67-107 (1932)l. 

(a) Show that the relevant equation of motion can be put into dimensionless form as follows: 

in which 5 = ?/A, r = pt/pR2, and 4 = [(Yo - 9L)R2/4pLl-'v,. 
(b) Show that the asymptotic solution for large time is 4, = 1 - t2.  Then define 4, by +((, r) = 

+m(t) - +r(e, r), and solve the partial differential equation for 4, by the method of separation 
of variables. 
(c) Show that the final solution is 

in which J,@ is the nth order Bessel function of t ,  and the a, are the roots of the equation 
Jo(an) = 0. The result is plotted in Fig. 4D.2. 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in  Solids, Oxford University Press, 2nd edition 
(1959), p. 319, Eq. (a), with E = $.rr and G = KU'. 
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Fig. 4D.3. Rotating disk in a circular tube. 

Flows in the disk-and-tube system (Fig. 4D.3): 

(a) A fluid in a circular tube is caused to move tangentially by a tightly fitting rotating disk at 
the liquid surface at z = 0; the bottom of the tube is located at z = L. Find the steady-state veloc- 
ity distribution v&r, z), when the angular velocity of the disk is a. Assume that creeping flow 
prevails throughout, so that there is no secondary flow. Find the limit of the solution as L + a. 

(b) Repeat the problem for the unsteady flow. The fluid is at rest before t = 0, and the disk 
suddenly begins to rotate with an angular velocity at t = 0. Find the velocity distribution 
vJr, Z, t) for a column of fluid of height L. Then find the solution for the limit as L ;. a. 
(c) If the disk is oscillating sinusoidally in the tangential direction with amplitude a,, obtain 
the velocity distribution in the tube when the "oscillatory steady state" has been attained. Re- 
peat the problem for a tube of infinite length. 

Unsteady annular flows. 
(a) Obtain a solution to the Navier-Stokes equation for the start-up of axial annular flow by a 
sudden impressed pressure gradient. Check your result against the published s~lut ion. '~  
(b) Solve the Navier-Stokes equation for the unsteady tangential flow in an annulus. The fluid 
is at rest for t < 0. Starting at t = 0 the outer cylinder begins rotating with a constant angular 
velocity to cause laminar flow for t > 0. Compare your result with the published solution." 

Stream functions for three-dimensional flow. 
(a) Show that the velocity functions pv = [V X A] and pv = [(V+') X (V+JI both satisfy the 
equation of continuity identically for steady flow. The functions +,, +*, and A are arbitrary, 
except that their derivatives appearing in (V . pv) must exist. 

(b) Show that the expression A/p = S3+/h3 reproduces the velocity components for the four 
incompressible flows of Table 4.2-1. Here h, is the scale factor for the third coordinate (see 
5A.7). (Read the general vector v of Eq. A.7-18 here as A.) 
(c) Show that the streamlines of [(Vfi,) X (Vfi2)I are given by the intersections of the surfaces rCI, 
= constant and fi2 = constant. Sketch such a pair of surfaces for the flow in Fig. 4.3-1. 
(d) Use Stokes' theorem (Eq. A.5-4) to obtain an expression in terms of A for the mass flow 
rate through a surface S bounded by a closed curve C. Show that the vanishing of v on C does 
not imply the vanishing of A on C. 

W .  Hort, Z. tech. Phys., 10,213 (1920); C. T. Hill, J. D. Huppler, and R. B. Bird, Chem. Engr. Sci., 21, 
815-817 (1966). 

lo W. Miiller, Zeits. fur angew. Math. u. Mech., 16,227-228 (1936). 
" R. B. Bird and C. F. Curtiss, Chem. Engr. Sci, 11,108-113 (1959). 



Chapter 3 

Velocity Distributions 
in Turbulent Flow 
5 . 1  Comparisons of laminar and turbulent flows 

55.2 Time-smoothed equations of change for incompressible fluids 

55.3 The time-smoothed velocity profile near a wall 

55.4 Empirical expressions for the turbulent momentum flux 

55.5 Turbulent flow in ducts 

55.6' Turbulent flow in jets 

In the previous chapters we discussed laminar flow problems only. We have seen that 
the differential equations describing laminar flow are well understood and that, for a 
number of simple systems, the velocity distribution and various derived quantities can 
be obtained in a straightforward fashion. The limiting factor in applying the equations of 
change is the mathematical complexity that one encounters in problems for which there 
are several velocity components that are functions of several variables. Even there, with 
the rapid development of computational fluid dynamics, such problems are gradually 
yielding to numerical solution. 

In this chapter we turn our attention to turbulent flow. Whereas laminar flow is 
orderly, turbulent flow is chaotic. It is this chaotic nature of turbulent flow that poses 
all sorts of difficulties. In fact, one might question whether or not the equations of 
change given in Chapter 3 are even capable of describing the violently fluctuating mo- 
tions in turbulent flow. Since the sizes of the turbulent eddies are several orders of 
magnitude larger than the mean free path of the molecules of the fluid, the equations 
of change are applicable. Numerical solutions of these equations are obtainable and 
can be used for studying the details of the turbulence structure. For many purposes, 
however, we are not interested in having such detailed information, in view of the 
computational effort required. Therefore, in this chapter we shall concern ourselves 
primarily with methods that enable us to describe the time-smoothed velocity and 
pressure profiles. 

In s5.1 we start by comparing the experimental results for laminar and turbulent 
flows in several flow systems. In this way we can get some qualitative ideas about the 
main differences between laminar and turbulent motions. These experiments help to de- 
fine some of the challenges that face the fluid dynamicist. 

In 55.2 we define several fime-smoothed quantities, and show how these definitions 
can be used to time-average the equations of change over a short time interval. These 
equations describe the behavior of the time-smoothed velocity and pressure. The time- 
smoothed equation of motion, however, contains the turbulent momentum flux. This flux 
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cannot be simply related to velocity gradients in the way that the momentum flux is 
given by Newton's law of viscosity in Chapter 1. At the present time the turbulent mo- 
mentum flux is usually estimated experimentally or else modeled by some type of em- 
piricism based on experimental measurements. 

Fortunately, for turbulent flow near a solid surface, there are several rather general 
results that are very helpful in fluid dynamics and transport phenomena: the Taylor se- 
ries development for the velocity near the wall; and the logarithmic and power law ve- 
locity profiles for regions further from the wall, the latter being obtained by dimensional 
reasoning. These expressions for the time-smoothed velocity distribution are given in 
s5.3. 

In the following section, 55.4, we present a few of the empiricisms that have been 
proposed for the turbulent momentum flux. These empiricisms are of historical interest 
and have also been widely used in engineering calculations. When applied with proper 
judgment, these empirical expressions can be useful. 

The remainder of the chapter is devoted to a discussion of two types of turbulent 
flows: flows in closed conduits (55.5) and flows in jets (55.6). These flows illustrate the 
two classes of flows that are usually discussed under the headings of wall turbulence and 
free turbulence. 

In this brief introduction to turbulence we deal primarily with the description of the 
fully developed turbulent flow of an incompressible fluid. We do not consider the theo- 
retical methods for predicting the inception of turbulence nor the experimental tech- 
niques devised for probing the structure of turbulent flow. We also give no discussion of 
the statistical theories of turbulence and the way in which the turbulent energy is distrib- 
uted over the various modes of motion. For these and other interesting topics, the reader 
should consult some of the standard books on turbulence.l4 There is a growing litera- 
ture on experimental and computational evidence for "coherent structures" (vortices) in 
turbulent flows.7 

Turbulence is an important subject. In fact, most flows encountered in engineering 
are turbulent and not laminar! Although our understanding of turbulence is far from sat- 
isfactory, it is a subject that must be studied and appreciated. For the solution to indus- 
trial problems we cannot get neat analytical results, and, for the most part, such 
problems are attacked by using a combination of dimensional analysis and experimental 
data. This method is discussed in Chapter 6. 

' S. Corrsin, "Turbulence: Experimental Methods," in Handbuch der Physik, Springer, Berlin (19631, 
Vol. VIII/2. Stanley Corrsin (1920-1986), a professor at The Johns Hopkins University, was an excellent 
experimentalist and teacher; he studied the interaction between chemical reactions and turbulence and 
the propagation of the double temperature correlations. 

A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition 
(1976); see also A. A. Townsend in Handbook of Fluid Dynamics (V. L. Streeter, ed.), McGraw-Hill(1961) 
for a readable survey. 

J. 0 .  Hinze, Turbulence, McGraw-Hill, New York, 2nd edition (1975). 
H. Tennekes and J. L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, Mass. (1972); 

Chapters 1 and 2 of this book provide an introduction to the physical interpretations of turbulent flow 
phenomena. 

M. Lesieur, La Turbulence, Presses Universitaires de Grenoble (1994); this book contains beautiful 
color photographs of turbulent flow systems. 

Several books that cover material beyond the scope of this text are: W. D. McComb, The Physics of 
Fluid Turbulence, Oxford University Press (1990); T. E. Faber, Fluid Dynamics for Physicists, Cambridge 
University Press (1995); U. Frisch, Turbulence, Cambridge University Press (1995). 

P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems, and 
Symmetry, Cambridge University Press (1996); F. Waleffe, Phys. Rev. Lett., 81,41404148 (1998). 
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5.1 COMPARISONS OF LAMINAR AND TURBULENT FLOWS 

Before discussing any theoretical ideas about turbulence, it is important to summarize 
the differences between laminar and turbulent flows in several simple systems. Specifi- 
cally we consider the flow in conduits of circular and triangular cross section, flow along 
a flat plate, and flows in jets. The first three of these were considered for laminar flow in 
52.3, Problem 3B.2, and 54.4. 

Circular Tubes 

For the steady, fully developed, laminar flow in a circular tube of radius R we know that 
the velocity distribution and the average velocity are given by 

vz 
2 

-- - 1 - (a) and - ( )  - - - I (Re < 2100) 
Vz ,  ma, Vz,max 2 

and that the pressure drop and mass flow rate w are linearly related: 

For turbulent flow, on the other hand, the velocity is fluctuating with time chaotically at 
each point in the tube. We can measure a "time-smoothed velocity" at each point with, 
say, a Pitot tube. This type of instrument is not sensitive to rapid velocity fluctuations, 
but senses the velocity averaged over several seconds. The time-smoothed velocity 
(which is defined in the next section) will have a z-component represented by G, and its 
shape and average value will be given very roughly by1 

This $-power expression for the velocity distribution is too crude to give a realistic veloc- 
ity derivative at the wall. The laminar and turbulent velocity profiles are compared in 
Fig. 5.1-1. 

Tube wall 

Fig. 5.1-1. Qualitative comparison of lami- 
nar and turbulent velocity profiles. For a 
more detailed description of the turbulent 

1 0  0.8 0.6 0.4 0.2 1 0.2 0.4 0.6 0-8 1.0 velocity distributionnear the wall, see 
r/R - Fig. 5.5-3. 

' H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (1979), Chapter XX 
(tube flow), Chapters VII and XXI (flat plate flow), Chapters IX and XXIIV (jet flows). 
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Over the same range of Reynolds numbers the mass rate of flow and the pressure 
drop are no longer proportional but are related approximately by 

The stronger dependence of pressure drop on mass flow rate for turbulent flow results 
from the fact that more energy has to be supplied to maintain the violent eddy motion in 
the fluid. 

The laminar-turbulent transition in circular pipes normally occurs at a critical 
Reynolds number of roughly 2100, although this number may be higher if extreme care is 
taken to eliminate vibrations in the system.' The transition from laminar flow to turbu- 
lent flow can be demonstrated by the simple experiment originally performed by 
Reynolds. One sets up a long transparent tube equipped with a device for injecting a 
small amount of dye into the stream along the tube axis. When the flow is laminar, the 
dye moves downstream as a straight, coherent filament. For turbulent flow, on the other 
hand, the dye spreads quickly over the entire cross section, similarly to the motion of 
particles in Fig. 2.0-1, because of the eddying motion (turbulent diffusion). 

Noncircular Tubes 

For developed laminar flow in the triangular duct shown in Fig. 3B.2(b), the fluid parti- 
cles move rectilinearly in the z direction, parallel to the walls of the duct. By contrast, in 
turbulent flow there is superposed on the time-smoothed flow in the z direction (the pri- 
m a y  pow) a time-smoothed motion in the xy-plane (the secondary flow). The secondary 
flow is much weaker than the primary flow and manifests itself as a set of six vortices 
arranged in a symmetric pattern around the duct axis (see Fig. 5.1-2). Other noncircular 
tubes also exhibit secondary flows. 

Flat Plate 

In s4.4 we found that for the laminar flow around a flat plate, wetted on both sides, the 
solution of the boundary layer equations gave the drag force expression 

F = 1.328- (laminar) 0 < Re, < 5 X lo5 (5.1-7) 

in which ReL = Lvmp/,x is the Reynolds number for a plate of length L; the plate width is 
W, and the approach velocity of the fluid is v,. 

Fig. 5.1-2. Sketch showing the secondary flow patterns 
for turbulent flow in a tube of triangular cross section 
[H. Schlichting, Bounda y-Layer Theo y, McGraw-Hill, 
New York, 7th edition (1979), p. 6131. 

0. Reynolds, Phil. Trans. Roy. Soc., 174, Part 111,935-982 (1883). See also A. A. Draad and F. M. T 
Nieuwstadt, J. Fluid Mech., 361,297-308 (1998). 
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Table 5.1-1 Dependence of Jet Parameters on Distance z from Wall 

Laminar flow Turbulent flow 

Width Centerline Mass Width Centerline Mass 
of jet velocity flow rate of jet velocity flow rate 

Circular jet z zpl z z z-I z 

Plane jet z2/3 z-~/3 =1/3 z =-1 /2  z~ /2 

For turbulent flow, on the other hand, the dependence on the geometrical and phys- 
ical properties is quite different:' 

F = 0 . 7 4 ~ p 4 p ~ 4 ~ 5 v ~  (turbulent) (5 X 10' < ReL < lo7) (5.1-8) 

Thus the force is proportional to the $-power of the approach velocity for laminar flow, 
but to the $power for turbulent flow. The stronger dependence on the approach velocity 
reflects the extra energy needed to maintain the irregular eddy motions in the fluid. 

Circular and Plane Jets 

Next we examine the behavior of jets that emerge from a flat wall, which is taken to be 
the xy-plane (see Fig. 5.6-1). The fluid comes out from a circular tube or a long narrow 
slot, and flows into a large body of the same fluid. Various observations on the jets can 
be made: the width of the jet, the centerline velocity of the jet, and the mass flow rate 
through a cross section parallel to the xy-plane. All these properties can be measured as 
functions of the distance z from the wall. In Table 5.1-1 we summarize the properties of 
the circular and two-dimensional jets for laminar and turbulent flow.' It is curious that, 
for the circular jet, the jet width, centerline velocity, and mass flow rate have exactly the 
same dependence on z in both laminar and turbulent flow. We shall return to this point 
later in 55.6. 

The above examples should make it clear that the gross features of laminar and tur- 
bulent flow are generally quite different. One of the many challenges in turbulence the- 
ory is to try to explain these differences. 

55.2 TIME-SMOOTHED EQUATIONS OF CHANGE 
FOR INCOMPRESSIBLE FLUIDS 

We begin by considering a turbulent flow in a tube with a constant imposed pressure 
gradient. If at one point in the fluid we observe one component of the velocity as a func- 
tion of time, we find that it is fluctuating in a chaotic fashion as shown in Fig. 5.2-l(a). 
The fluctuations are irregular deviations from a mean value. The actual velocity can be 
regarded as the sum of the mean value (designated by an overbar) and the fluctuation 
(designated by a prime). For example, for the z-component of the velocity we write 

which is sometimes called the Reynolds decomposition. The mean value is obtained from 
v,(t) by making a time average over a large number of fluctuations 
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t I 
Time t Time t 

Fig. 5.2-1. Sketch showing the velocity component v, as well as its time-smoothed value & and its fluctuation 
v: in turbulent flow (a) for "steadily driven turbulent flow" in which & does not depend on time, and (b)  for a 
situation in which v does depend on time. 

the period to being long enough to give a smooth averaged function. For the system at 
hand, the quantity &, which we call the time-smoothed velocity, is independent of time, 
but of course depends on position. When the time-smoothed velocity does not depend 
on time, we speak of steadily driven turbulent pow. The same comments we have made for 
velocity can also be made for pressure. 

Next we consider turbulent flow in a tube with a time-dependent pressure gradient. 
For such a flow one can define time-smoothed quantities as above, but one has to under- 
stand that the period to must be small with respect to the changes in the pressure gradi- 
ent, but still large with respect to the periods of fluctuations. For such a situation the 
time-smoothed velocity and the actual velocity are illustrated in Fig. 5.2-l(b).' 

According to the definition in Eq. 5.2-2, it is easy to verify that the following rela- 
tions are true: 

The quantity 2 will not, however, be zero, and in fact the ratio -/(8,) can be taken to 
be a measure of the magnitude of the turbulent fluctuations. This quantity, known as the 
intensity of turbulence, may have values from 1 to 10% in the main part of a turbulent 
stream and values of 25% or higher in the neighborhood of a solid wall. Hence, it must be 
emphasized that we are not necessarily dealing with tiny disturbances; sometimes the fluc- 
tuations are actually quite violent and large. 

Quantities such as v,:.vi are also nonzero. The reason for this is that the local motions 
in the x and y directions are correlated. In other words, the fluctuations in the x direction 
are not independent of the fluctuations in the y direction. We shall see presently that 
these time-smoothed values of the products of fluctuating properties have an important 
role in turbulent momentum transfer. Later we shall find similar correlations arising in 
turbulent heat and mass transport. 

' One can also define the "overbar" quantities in terms of an "ensemble average." For most 
purposes the results are equivalent or are assumed to be so. See, for example, A. A. Townsend, The 
Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition (1976). See also P. K. Kundu, 
Fluid Mechanics, Academic Press, New York (1990), p. 421, regarding the last of the formulas given in 
Eq. 5.2-3. 
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Having defined the time-smoothed quantities and discussed some of the properties 
of the fluctuating quantities, we can now move on to the time-smoothing of the equations 
of change. To keep the development as simple as possible, we consider here only the 
equations for a fluid of constant density and viscosity. We start by writing the equations 
of continuity and motion with v replaced by its equivalent F + v' and p by its equivalent 
- 
p + p'. The equation of continuity is then (V . v) = 0, and we write the x-component of the 
equation of motion, Eq. 3.5-6, in the d/dt form by using Eq. 3.5-5: 

d a - d 
- p(vx + v;) = -- (p + p ' )  - p(v, + v:)(v, + v:) + P ( V ,  + v p v ,  + v:) 
d t dx dy 

The y- and z-components of the equation of motion can be similarly written. We next 
time-smooth these equations, making use of the relations given in Eq. 5.2-3. This gives 

+ pV2E, + pg, (5.2-7) dz 

with similar relations for the y- and z-components of the equation of motion. These are 
then the time-smoothed equations of continuity and motion for a fluid with constant density 
and viscosity. By comparing them with the corresponding equations in Eq. 3.1-5 and 
Eq. 3.5-6 (the latter rewritten in terms of d/dt), we conclude that 

a. The equation of continuity is the same as we had previously, except that v is now 
replaced by i. 

b. The equation of motion now has i and p where we previously had v and p. In ad- 
dition there appear the dashed-underlined terms, which describe the momentum 
transport associated with the turbulent fluctuations. 

We may rewrite Eq. 5.2-7 by introducing the turbulent momentum flux tensor 7'') with 
components 

- - - I I - I I 
7;:) = pvxvx T: = pvxvy 7:;) = Pm and so on (5.2-8) 

These quantities are usually referred to as the Reynolds stresses. We may also introduce a 
symbol @" for the time-smoothed viscous momentum flux. The components of this ten- 
sor have the same appearance as the expressions given in Appendices B.l to 8.3, except 
that the time-smoothed velocity components appear in them: 

This enables us then to write the equations of change in vector-tensor form as 

(V . V) = 0 and (V . v') = 0 (5.2-10,ll) 



s5.3 The Time-Smoothed Velocity Profile near a Wall 159 

Equation 5.2-11 is an extra equation obtained by subtracting Eq. 5.2-10 from the original 
equation of continuity. 

The principal result of this section is that the equation of motion in terms of the 
stress tensor, summarized in Appendix Table B.5, can be adapted for time-smoothed tur- 
bulent flow by changing all vi to Ei and p to P as well as T~ to Tij = 7:' + 7;' in any of the 
coordinate systems given. 

We have now arrived at the main stumbling block in the theory of turbulence. 
The Reynolds stresses 7;' above are not related to the velocity gradients in a simple 
way as are the time-smoothed viscous stresses 7 v  in Eq. 5.2-9. They are, instead, com- 
plicated functions of the position and the turbulence intensity. To solve flow prob- 
lems we must have experimental information about the Reynolds stresses or else 
resort to some empirical expression. In 55.4 we discuss some of the empiricisms that 
are available. 

Actually one can also obtain equations of change for the Reynolds stresses (see Prob- 
1 1 1  lem 5D.1). However, these equations contain quantities like vivj vk. Similarly, the equa- 

! I l tions of change for the vivjvk contain the next higher-order correlation v,!v!v;v;, and so 
on. That is, there is a never-ending hierarchy of equations that must be solved. To solve 
flow problems one has to "truncate" this hierarchy by introducing empiricisms. If we 
use empiricisms for the Reynolds stresses, we then have a "first-order" theory. If we in- 

r I I troduce empiricisms for the vivjv,, we then have a "second-order theory," and so on. 
The problem of introducing empiricisms to get a closed set of equations that can be 
solved for the velocity and pressure distributions is referred to as the "closure problem." 
The discussion in 55.4 deals with closure at the first order. At the second order the "k-E 
empiricism" has been extensively studied and widely used in computational fluid 
mechanics.' 

55.3 THE TIME-SMOOTHED VELOCITY PROFILE NEAR A WALL 

Before we discuss the various empirical expressions used for the Reynolds stresses, we 
present here several developments that do not depend on any empiricisms. We are con- 
cerned here with the fully developed, time-smoothed velocity distribution in the neigh- 
borhood of a wall. We discuss several results: a Taylor expansion of the velocity near the 
wall, and the universal logarithmic and power law velocity distributions a little further 
out from the wall. 

The flow near a flat surface is depicted in Fig. 5.3-1. It is convenient to distinguish 
four regions of flow: 

the viscous sublayer very near the wall, in which viscosity plays a key role 

the buffer layer in which the transition occurs between the viscous and inertial 
sublayers 

the inertial sublayer at the beginning of the main turbulent stream, in which viscos- 
ity plays at most a minor role 

the main turbulent stream, in which the time-smoothed velocity distribution is 
nearly flat and viscosity is unimportant 

It must be emphasized that this classification into regions is somewhat arbitrary. 

J. L. Lumley, Adv. Appl. Mech., 18,123-176 (1978); C. G. Speziale, Ann. Revs. Fluid Mech., 23, 
107-157 (1991); H. Schlichting and K. Gersten, Bounda y-Layer Theoy, Springer, Berlin, 8th edition (2000), 
pp. 560-563. 
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Fig. 5.3-1. Flow regions for describing 
turbulent flow near a wall: @viscous 
sublayer, @buffer layer, @inertial 
sublayer, @ main turbulent stream. 

The Logarithmic and Power Law Velocity Profiles 
in the Inertial Sublayer14 

Let the time-smoothed shear stress acting on the wall y = 0 be called 7, (this is the same 
as -7y.u)y=0). Then the shear stress in the inertial sublayer will not be very different from 
the value 7,. We now ask: On what quantities will the time-smoothed velocity gradient 
d v , / d y  depend? It should not depend on the viscosity, since, out beyond the buffer layer, 
momentum transport should depend primarily on the velocity fluctuations (loosely re- 
ferred to as "eddy motion"). It may depend on the density p, the wall shear stress T,,, and 
the distance y from the wall. The only combination of these three quantities that has the 
dimensions of a velocity gradient is -ly. Hence we write 

- 

in which K is an arbitra dimensionless constant, which must be determined experi- 
mentally. The quantity 3-- ~ , / p  has the dimensions of velocity; it is called the friction veloc- 
ity and given the symbol v,.When Eq. 5.3-1 is integrated we get 

A '  being an integration constant. To use dimensionless groupings, we rewrite Eq. 5.3-2 as 

in which A is a constant simply related to A'; the kinematic viscosity v was included in 
order to construct the dimensionless argument of the logarithm. Experimentally it has 
been found that reasonable values of the constants2 are K = 0.4 and A = 5.5, giving 

L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (19871, pp. 172-178. 
H. Schlichting and K. Gersten, Boundary-Layer Theory, Springer-Verlag, Berlin, 8th edition (2000), 

g17.2.3. 
T. von KBrmh, Nachr. Ges. Wiss. Gottingen, Math-Phys. Klasse (19301, pp. 58-76; L. Prandtl, Ergeb. 

Aerodyn. Versuch., Series 4, Gottingen (1932). 
%. I. Barenblatt and A. J. Chorin, Proc. Nat. Acad. Sci. USA, 93,6749-6752 (1996) and SIAM Rev., 40, 

265-291 (1981); G. I. Barenblatt, A. J. Chorin, and V. M. Prostokishin, Proc. Nat. Acad. Sci. USA, 94, 
773-776 (1997). See also G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge 
University Press (1992), 510.2. 
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This is called the von Urmlin-Prandtl universal logarithmic velocity di~tribution;~ it is intended 
to apply only in the inertial sublayer. Later we shall see (in Fig. 5.5-3) that this function 
describes moderately well the experimental data somewhat beyond the inertial sublayer. 

If Eq. 5.3-1 were correct, then the constants K and h would indeed be "universal con- 
stants," applicable at any Reynolds number. However, values of K in the range 0.40 to 
0.44 and values of A in the range 5.0 to 6.3 can be found in the literature, depending on 
the range of Reynolds numbers. This suggests that the right side of Eq. 5.3-1 should be 
multiplied by some function of Reynolds number and that y could be raised to some 
power involving the Reynolds number. Theoretical arguments have been advanced4 that 
Eq. 5.3-1 should be replaced by 

in which B, = ifi ,  B, = y, and PI = z. When Eq. 5.3-5 is integrated with respect to y, the 
Barenblatt-Chorin universal velocity distribution is obtained: 

Equation 5.3-6 describes regions @and @of Fig. 5.3-1 better than does Eq. 5.3-4.4 Region a is better described by Eq. 5.3-13. 

Taylor-Series Development in the Viscous Sublayer 

We start by writing a Taylor series for E, as a function of y, thus 

To evaluate the terms in this series, we need the expression for the time-smoothed shear 
stress in the vicinity of a wall. For the special case of the steadily driven flow in a slit of 

- 
thickness 2B, the shear stress will be of the form 7,, = 7:: + 7:; = - ~ ~ [ l  - (y/B)I. Then 
from Eqs. 5.2-8 and 9, we have 

Now we examine one by one the terms that appear in Eq. 5.3-7:5 

(i) The first term is zero by the no-slip condition. 

(ii) The coefficient of the second term can be obtained from Eq. 5.3-8, recognizing 
that both v: and v; are zero at the wall so that 

(iii) The coefficient of the third term involves the second derivative, which may be 
obtained by differentiating Eq. 5.3-8 with respect to y and then setting y = 0, as follows, 

2 (5.3-10) 
dy y=O 

since both vi and v; are zero at the wall. 

A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition 
(1976), p. 163. 
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(iv) The coefficient of the fourth term involves the third derivative, which may be 
obtained from Eq. 5.3-8, and this is 

Here Eq. 5.2-1 1 has been used. 
There appears to be no reason to set the next coefficient equal to zero, so we find that 

the Taylor series, in dimensionless quantities, has the form 

The coefficient C has been obtained experimentally,' and therefore we have the final result: 

The y3 term in the brackets will turn out to be very important in connection with turbu- 
lent heat and mass transfer correlations in Chapters 13,14,21, and 22. 

For the region 5 < yvJv < 30 no simple analytical derivations are available, and 
empirical curve fits are sometimes used. One of these is shown in Fig. 5.5-3 for circular 
tubes. 

55.4 EMPIRICAL EXPRESSIONS FOR THE 
TURBULENT MOMENTUM FLUX 

We now return to the problem of using the time-smoothed equations of change in Eqs. 
5.2-11 and 12 to obtain the time-smoothed velocity and pressure distributions. As 
pointed out in the previous section, some information about the velocity distribution can 
be obtained without having a specific expression for the turbulent momentum flux F"'. 
However, it has been popular among engineers to use various empiricisms for I"' that 
involve velocity gradients. We mention a few of these, and many more can be found in 
the turbulence literature. 

The Eddy Viscosity of Boussinesq 

By analogy with Newton's law of viscosity, Eq. 1.1-1, one may write for a turbulent shear 
flow1 

C. 5. Lin, R. W. Moulton, and G. L. Putnam, Ind.  Eng.  Chem., 45,636-640 (1953); the numerical 
coefficient was determined from mass transfer experiments in circular tubes. The importance of the yj 
term in heat and mass transfer was recognized earlier by E. V. Murphree, Ind. Eng. Chem., 24,726-736 
(1932). Eger Vaughn Murphree (1898-1962) was captain of the University of Kentucky football team in 
1920 and became President of the Standard Oil Development Company. 

' J. Boussinesq, Mkm. prks. par diu. savants a I'acad. sci, de Paris, 23, #I, 1-680 (1877),24, #2,1-64 (1877). 
Joseph Valentin Boussinesq (1842-19291, university professor in Lille, wrote a two-volume treatise on 
heat, and is famous for the "Boussinesq approximation" and the idea of "eddy viscosity." 
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in which p"' is the turbulent viscosity (often called the eddy viscosity, and given the 
symbol E ) .  As one can see from Table 5.1-1, for at least one of the flows given there, 
the circular jet, one might expect Eq. 5.4-1 to be useful. Usually, however, p(" is a 
strong function of position and the intensity of turbulence. In fact, for some systems2 
p"' may even be negative in some regions. It must be emphasized that the viscosity p 
is a property of the fluid, whereas the eddy viscosity p"' is primarily a property of 
the flow. 

For two kinds of turbulent flows (i.e., flows along surfaces and flows in jets and 
wakes), special expressions for p't' are available: 

(i) Wall turbulence: YV* 0<,<5 
1 4 . 5 ~  

This expression, derivable from Eq. 5.3-13, is valid only very near the wall. It is of con- 
siderable importance in the theory of turbulent heat and mass transfer at fluid-solid 
 interface^.^ 

in which K, is a dimensionless coefficient to be determined experimentally, b is the 
width of the mixing zone at a downstream distance z, and the quantity in parentheses 
represents the maximum difference in the z-component of the time-smoothed veloci- 
ties at that distance z. Prandt14 found Eq. 5.4-3 to be a useful empiricism for jets and 
wakes. 

The Mixing Length of Prandtl 

By assuming that eddies move around in a fluid very much as molecules move around 
in a low-density gas (not a very good analogy) prandt15 developed an expression for mo- 
mentum transfer in a turbulent fluid. The "mixing length" 1 plays roughly the same role 
as the mean free path in kinetic theory (see 51.4). This kind of reasoning led Prandtl to 
the following relation: 

If the mixing length were a universal constant, Eq. 5.4-4 would be very attractive, but in 
fact 1 has been found to be a function of position. Prandtl proposed the following expres- 
sions for I: 

(i) Wall turbulence: I = ~ , y  (y = distance from wall) 

(ii) Free turbulence: I = ~ , b  (b = width of mixing zone) 

in which K ,  and KZ are constants. A result similar to Eq. 5.4-4 was obtained by Taylor6 by 
his "vorticity transport theory" some years prior to Prandtl's proposal. 

J. 0. Hinze, Appl. Sci. Res., 22,163-175 (1970); V.  Kruka and S. Eskinazi, J. Fluid. Mech., 20,555-579 
(1964). 

C. S. Lin, R. W. Moulton, and G. L. Putnam, Ind. Eng. Chem., 45,636-640 (1953). 
L. Prandtl, Zeits. f. angew. Math. u. Mech., 22,241-243 (1942). 
L. Prandtl, Zeits. f. angew. Math. u. Mech., 5,136-139 (1925). 
G. I. Taylor, Phil. Trans. A215,l-26 (1915), and Proc. Roy. Soc. (London), A135,685-701 (1932). 
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The Modified van Driest Equation 

There have been numerous attempts to devise empirical expressions that can describe 
the turbulent shear stress all the way from the wall to the main turbulent stream. Here 
we give a modification of the equation of van D r i e ~ t . ~  This is a formula for the mixing 
length of Eq. 5.4-4: 

This relation has been found to be useful for predicting heat and mass transfer rates in 
flow in tubes. 

In the next two sections and in several problems at the end of the chapter, we illus- 
trate the use of the above empiricisms. Keep in mind that these expressions for the 
Reynolds stresses are little more than crutches that can be used for the representation of 
experimental data or for solving problems that fall into rather special classes. 

Obtain an expression for 7:; = pv:vi as a function of y in the neighborhood of the wall. 

Development of the SOLUTION 
Reyno Ids Stress 
Expression in the (a) We start by making a Taylor series development of the three components of v': 

Vicinity of the Wall 

The first term in Eqs. 5.4-8 and 10 must be zero because of the no-slip condition; the first term 
in Eq. 5.4-9 is zero in the absence of mass transfer. Next we can write Eq. 5.2-11 at y = 0, 

The first and third terms in this equation are zero because of the no-slip condition. Therefore 
we have to conclude that the second term is zero as well. Hence all the dashed-underlined 
terms in Eqs. 5.4-8 to 10 are zero, and we may conclude that 

- 
$j? = PD:Z'j. = AY3 + BY4 + * . . (5.4-12) 

This suggests-but does not proves-that the lead term in the Reynolds stress near a wall 
should be proportional to y3. Extensive studies of mass transfer rates in closed channels9 have, 
however, established that A f 0. 

E. R. van Driest, J .  Aero. Sci., 23,1007-1011 and 1036 (1956). Van Driest's original equation did 
not have the square root divisor. This modification was made by 0. T. Hanna, 0. C. Sandall, and 
P. R. Mazet, AIChE Journal, 27,693-697 (1981) so that the turbulent viscosity would be proportional to 
as y + 0, in accordance with Eq. 5.4-2. 

H. Reichardt, Zeits. f. angew. Math. u. Mech., 31,20&219 (1951). See also J. 0. Hinze, Turbulence, 
McGraw-Hill, New York, 2nd edition (1975), pp. 620-621. 

R. H. Notter and C. A. Sleicher, Chem. Eng. Sci., 26,161-171 (1971); 0. C. Sandal1 and 0. T. Hanna, 
AIChE Journal, 25,190-192 (1979); D. W. Hubbard and E. N. Lightfoot, Ind. Eng. Chem. Fundamentals, 5, 
370-379 (1966). 
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(b) For the flow between parallel plates, we can use the expression found in Eq. 5.3-12 for the 
time-smoothed velocity profile to get the turbulent momentum flux: 

where A = ~C(V,/U)~.  This is in accord with Eq. 5.4-12. 

55.5 TURBULENT FLOW IN DUCTS 

We start this section with a short discussion of experimental measurements for turbulent 
flow in rectangular ducts, in order to give some impressions about the Reynolds stresses. 
In Figs. 5.5-1 -- and 2 are - shown some experimental measurements of the time-smoothed 
quantities vL2, v:~, and v:vi for the flow in the z direction in a rectangular duct. 

In Fig. 5.5-1 note that quite close to the wall, is about 13% of the time-smoothed 
centerline velocity Z,,,,,, whereas is about 5%. This means that, near the wall, the 
velocity fluctuations in the flow direction are appreciably greater than those in the trans- 
verse direction. Near the center of the duct, the two fluctuation amplitudes are nearly 
equal and we say that the turbulence is nearly i sot ro~there .  

In Fig. 5.5-2 the turbulent shear stress 7:; = p:v; is compared with the total shear 
stress 7,, = 7:; + 7:? across the duct. It is evident that the turbulent contribution is the 

Fig. 5.5-1. Measurements of H. Reichardt 
[Naturwissensckaften, 404 (1938), Zeits. 
f. angew. Math. u. Mech., 13,177-180 
(1933), 18,358-361 (1938)l for the turbu- 
lent flow of air in a rectangular duct 
with ?&,, = 100 cm/s. Here the quanti- 

ties a and a are shown. 

Fig. 5.5-2. Measurements of Reichardt 
(see Fig. 5.5-1) for the quantity in a 
rectangular duct. Note that this quan- 
tity differs from ?,,/p only near the 
duct wall. 
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more important over most of the cross section and that the viscous contribution is im- 
portant only in the vicinity of the wall. This is further illustrated in Example 5.5-3. Anal- 
ogous behavior is observed in tubes of circular cross section. 

Apply the results of 95.3 to obtain the average velocity for turbulent flow in a circular tube. 

Estimation of the 
Average Velocity 

SOLUTION 

in a Circular Tube We can use the velocity distribution in the caption to Fig. 5.5-3. To get the average velocity in 
the tube, one should integrate over four regions: the viscous sublayer (y+ < 51, the buffer zone 
5 < y+ < 30, the inertial sublayer, and themain turbulent stream; which is roughly parabolic 
in shape. One can certainly do this, but it has been found that integrating the logarithmic pro- 
file of Eq. 5.3-4 (or the power law profile of Eq. 5.3-6) over the entire cross section gives results 
that are roughly of the right form. For the logarithmic profile one gets 

Fig. 5.5-3. Dimensionless velocity distribution for turbulent flow in circular tubes, presented as vf = 5,/u, vs. y+ = 

yv,p/~,  where v, = and .r, is the wall shear stress. The solid curves are those suggested by Lin, Moulton, 
and Putnam [Ind. Eng. Chem., 45,636-640 (1953)l: 

The experimental data are those of J. Nikuradse for water (0) [VDI Forschungsheft, H356 (1932)l; Reichardt 
and Motzfeld for air (0); Reichardt and Schuh (A) for air [H. Reichardt, NACA Tech. Mem. 1047 (1943)l; and 
R. R. Rothfus, C. C. Monrad, and V. E. Seneca1 for air (H) [Ind. Eng. Chem., 42,2511-2520 (1950)). 
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If this is compared with experimental data on flow rate versus pressure drop, it is found that 
good agreement can be obtained by changing 2.5 to 2.45 and 1.75 to 2.0. This "fudging" of the 
constants would probably not be necessary if the integration over the cross section had been 
done by using the local expression for the velocity in the various layers. On the other hand, 
there is some virtue in having a simple logarithmic relation such as Eq. 5.5-1 to describe pres- 
sure drop vs. flow rate. 

In a similar fashion the power law profile can be integrated over the entire cross section to 
give (see Ref. 4 of 95.3) 

in which a = 3/(2 In Re). This relation is useful over the range 3.07 X lo3 < Re < 3.23 X lo6. 

Show how Eqs. 5.4-4 and 5 can be used to describe turbulent flow in a circular tube. 

Application of SOLUTION 
Prandtl's Mixing 
Length Formula to  Equation 5.2-12 gives for the steadily driven flow in a circular tube, 

Turbulent Flow in a 
Circular Tube 

in which Tr, = 7:' + 72. Over most of the tube the viscous contribution is quite small; here we 
neglect it entirely. Integration of Eq. 5.5-3 then gives 

where ro is the wall shear stress and y = R - r is the distance from the tube wall. 
According to the mixing length theory in Eq. 5.4-4, with the empirical expression in Eq. 

5.4-5, we have for d EJdr negative 

Substitution of this into Eq. 5.5-4 gives a differential equation for the time-smoothed velocity. 
If we follow Prandtl and extrapolate the inertial sublayer to the wall, then in Eq. 5.5-5 it is ap- 
propriate to replace 75; by 70. When this is done, Eq. 5.5-5 can be integrated to give 

- v* v, = - In y + constant 
K1 

(5.5-6) 

Thus a logarithmic profile is obtained and hence the results from Example 5.5-1 can be used; 
that is, one can apply Eq. 5.5-6 as a very rough approximation over the entire cross section of 
the tube. 

Determine the ratio p't'/p at y = R/2 for water flowing at a steady rate in a long, smooth, 
round tube under the following conditions: 

Relative Magnitude of 
Viscosity and Eddy R = tube radius = 3 in. = 7.62 cm 

Viscosity r0 = wall shear stress = 2.36 X lop5 1bf/in.' = 0.163 Pa 

p = density = 62.4 lb,/ft3 = 1000 kg/m3 

v = kinematic viscosity = 1.1 X lop5 ft2/s = 1.02 X lop7 m2/s 

SOLUTION The expression for the time-smoothed momentum flux is 
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This result may be solved for p'f'/p and the result can be expressed in terms of dimensionless 
variables: 

,p) - 
- 1 7rz 

El. El. dE,/dy 
1 

where y+ = y v , p / ~  and v' = &/v,. When y = R/2,  the value of y+ is 

For this value of yt, the logarithmic distribution in the caption of Fig. 5.5-3 gives 

Substituting this into Eq. 5.5-8 gives 

This result emphasizes that, far from the tube wall, molecular momentum transport is negli- 
gible in comparison with eddy transport. 

g5.6 TURBULENT FLOW IN JETS 

In the previous section we discussed the flow in ducts, such as circular tubes; such flows 
are examples of wall turbulence. Another main class of turbulent flows is free turbulence, 
and the main examples of these flows are jets and wakes. The time-smoothed velocity in 
these types of flows can be described adequately by using Prandtl's expression for the 
eddy viscosity in Fig. 5.4-3, or by using Prandtl's mixing length theory with the empiri- 
cism given in Eq. 5.4-6. The former method is simpler, and hence we use it in the follow- 
ing illustrative example. 

A jet of fluid emerges from a circular hole into a semi-infinite reservoir of the same fluid as 
depicted in Fig. 5.6-1. In the same figure we show roughly what we expect the profiles of 

Time-Smoothed the z-component of the velocity to look like. We would expect that for various values of z 
Distribution in the profiles will be similar in shape, differing only by a scale factor for distance and veloc- 

a Circular W a l l  JeP4 ity. We also can imagine that as the jet moves outward, it will create a net radial inflow so 
that some of the surrounding fluid will be dragged along. We want to find the time- 
smoothed velocity distribution in the jet and also the amount of fluid crossing each plane of 
constant z. Before working through the solution, it may be useful to review the information 
on jets in Table 5.1-1. 

' H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (19791, pp. 747-750. 
A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge University Press, 2nd edition 

(19761, Chapter 6. 
9.0. Hinze, Turbulence, McGraw-Hill, New York, 2nd edition (1975), Chapter 6. 

S. Goldstein, Modern Developments in Fluid Dynamics, Oxford University Press (1938), and Dover 
reprint (1965), pp. 592-597. 
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SOLUTION 

Circular hole - 

Fig. 5.6-1. Circular jet 
emerging from a plane 
wall. 

- 
In order to use Eq. 5.4-3 it is necessary to know how b and q,,,, - v,,, vary with z for the cir- 
cular jet. We know that the total rate of flow of z-momentum J will be the same for all values 
of z .  We presume that the convective momentum flux is much greater than the viscous mo- 
mentum flux. This permits us to postulate that the jet width b depends on J, on the density p 
and the kinematic viscosity v of the fluid, and on the downstream distance z from the wall. 
The only combination of these variables that has the dimensions of length is b ~ z / ~ v ~ ,  so 
that the jet width is proportional to z. 

We next postulate that the velocity profiles are "similar," that is, 

which seems like a plausible proposal; here is the velocity along the centerline. When 
this is substituted into the expression for the rate of momentum flow in the jet (neglecting the 
contribution from 7,,) 

we find that 

Since J does not depend on z and since b is proportional to z, then G,,,,, has to be inversely 
proportional to z .  

The &,,, in Eq. 5.4-3 occurs at the outer edge of the jet and is zero. Therefore because b 
z and fi,,,, = z-', we find from Eq. 5.4-3 that /L(') is a constant. Thus we can use the equations 
of motion for laminar flow and replace the viscosity p by the eddy viscosity p(t), or v by dt). 

In the jet the main motion is in the z direction; that is I G, 1 < < I i& 1. Hence we can use a 
boundary layer approximation (see 54.4) for the time-smoothed equations of change and write 

continuity: 

motion: 

These equations are to be solved with the following boundary conditions: 

B.C. 1: 

B.C. 2: 

B.C. 3: 

The last boundary condition is automatically satisfied, inasmuch as we have already found 
that %,,,, is inversely proportional to z. We now seek a solution to Eq. 5.6-5 of the form of Eq. 
5.6-1 with b = z .  
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To avoid working with two dependent variables, we introduce the stream function as 
discussed in g .2 .  For axially symmetric flow, the stream function is defined as follows: 

This definition ensures that the equation of continuity in Eq. 5.6-4 is satisfied. Since we know 
that E, is z-' X some function of 5, we deduce from Eq. 5.6-9 that @ must be proportional to z. 
Furthermore + must have dimensions of (velocity) X (length)2, hence the stream function 
must have the form 

in which F is a dimensionless function of 5 = r / z .  From Eqs. 5.6-9 and 10 we then get 

The first two boundary conditions may now be rewritten as 

B.C. 1: F at[=O, - - F 1 = O  
5 

(5.6-14) 

B.C. 2: F" a t e = 0 ,  - -  
5 

If we expand F in a Taylor series about 5 = 0, 

then the first boundary condition gives a = 0, and the second gives b = d = 0. We will use this 
result presently. 

Substitution of the velocity expressions of Eqs. 5.6-12 and 13 into the equation of motion 
in Eq. 5.6-5 then gives a third-order differential equation for F, 

This may be integrated to give 

FF' F' - = F U - - + C ,  
5 5 

in which the constant of integration must be zero; this can be seen by using the Taylor series 
in Eq. 5.6-16 along with the fact that a, b, and d are all zero. 

Equation 5.6-18 was first solved by Schlichting.' First one changes the independent vari- 
able by setting 6 = In P. The resulting second-order differential equation contains only the de- 
pendent variable and its first two derivatives. Equations of this type can be solved by 
elementary methods. The first integration gives 

Once again, knowing the behavior of F near ( = 0, we conclude that the second constant of in- 
tegration is zero. Equation 5.6-19 is then a first-order separable equation, and it may be solved 
to give 

H. Schlichting, Zeits. f. angew. Math. u. Mech., 13,260-263 (1933). 
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in which C, is the third constant of integration. Substitution of this into Eqs. 5.6-12 and 13 
then gives 

When the above expression for & is substituted into Eq. 5.6-2 for J, we get an expression for 
the third integration constant in terms of J: 

The last three equations then give the time-smoothed velocity profiles in terms of J, p, and v"'. 
A measurable quantity in jet flow is the radial position corresponding to an axial velocity 

one-half the centerline value; we call this half-width b,,,. From Eq. 5.6-21 we then obtain 

Experiments indicate6 that blI2 = 0.08482. When this is inserted into Eq. 5.6-24, it is found that 
C, = 15.1. Using this value, we can get the turbulent viscosity v"' as a function of J and p from 
Eq. 5.6-23. 

Figure 5.6-2 gives a comparison of the above axial velocity profile with experimental 
data. The calculated curve obtained from the Prandtl mixing length theory is also shown.7 
Both methods appear to give reasonably good curve fits of the experimental profiles. The 

Fig. 5.6-2. Velocity distribution in a circular jet in turbulent flow [H. Schlichting, Boundary-Layer Theory, 
McGraw-Hill, New York, 7th edition (1979), Fig. 24.91. The eddy viscosity calculation (curve 1) and the 
Prandtl mixing length calculation (curve 2) are compared with the measurements of H. Reichardt [VDI 
Forschungsheft, 414 (1942), 2nd edition (1951)l. Further measurements by others are cited by S. Corrsin 
["Turbulence: Experimental Methods," in Handbuch der Physik, Vol. VIII/2 Springer, Berlin (1963)l. 

H .  Reichardt, VDI Forschungsheft, 414 (1942). 
W .  Tollmien, Zeifs. f. angew. Math. u.  Mech., 6,468478 (1926). 
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Fig. 5.6-3. Streamline pattern in a circular jet in 
turbulent flow [H. Schlichting, Bounda y-Layer The- 
ory, McGraw-Hill, New York, 7th edition (1979), 
Fig. 24.101. 

eddy viscosity method seems to be somewhat better in the neighborhood of the maximum, 
whereas the mixing length results are better in the outer part of the jet. 

Once the velocity profiles are known, the streamlines can be obtained. From the stream- 
lines, shown in Fig. 5.6-3, it can be seen how the jet draws in fluid from the surrounding mass 
of fluid. Hence the mass of fluid carried by the jet increases with the distance from the source. 
This mass rate of flow is 

This result corresponds to an entry in Table 5.1-1. 
The two-dimensional jet issuing from a thin slot may be analyzed sirnilarily. In that prob- 

lem, however, the turbulent viscosity is a function of position. 

QUESTIONS FOR DISCUSSION 

1. Compare and contrast the procedures for solving laminar flow problems and turbulent flow 
problems. 

2. Why must Eq. 5.1-4 not be used for evaluating the velocity gradient at the solid boundary? 
3. What does the logarithmic profile of Eq. 5.3-4 give for the fluid velocity at the wall? Why does 

this not create a problem in Example 5.5-1 when the logarithmic profile is integrated over the 
cross section of the tube? 

4. Discuss the physical interpretation of each term in Eq. 5.2-12. 
5. Why is the absolute value sign used in Eq. 5.4-4? How is it eliminated in Eq. 5.5-5? 
6. In Example 5.6-1, how do we know that the momentum flow through any plane of constant z 

is a constant? Can you imagine a modification of the jet problem in which that would not be 
the case? 

7. Go through some of the volumes of Ann. Revs. Fluid Mech. and summarize the topics in turbu- 
lent flow that are found there. 

8. In Eq. 5.3-1 why do we investigate the functional dependence of the velocity gradient rather 
than the velocity itself? 

9. Why is turbulence such a difficult topic? 

PROBLEMS 5A.1 Pressure drop needed for laminar-turbulent transition. A fluid with viscosity 18.3 cp and 
density 1.32 g/cm3 is flowing in a long horizontal tube of radius 1.05 in. (2.67 cm). For what 
pressure gradient will the flow become turbulent? 
Answer: 26 psi/mi (1.1 X lo5 Pa/krn) 
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5A.2 Velocity distribution in turbulent pipe flow. Water is flowing through a long, straight, level 
run of smooth 6.00 in. i.d. pipe, at a temperature of 68°F. The pressure gradient along the 
length of the pipe is 1.0 psi/mi. 
(a) Determine the wall shear stress r0 in psi (lbf/in.2) and Pa. 
(b) Assume the flow to be turbulent and determine the radial distances from the pipe wall at 
 which?&/^,,,, = 0.0,0.1,0.2,0.4,0.7,0.85,1.0. 
(c) Plot the complete velocity profile, i&/&,,,, vs. y = R - r. 
(d) Is the assumption of turbulent flow justified? 
(e) What is the mass flow rate? 

5B.1 Average flow velocity in turbulent tube flow. 
(a) For the turbulent flow in smooth circular tubes, the function' 

is sometimes useful for curve-fitting purposes: near Re = 4 X lo3, n = 6; near Re = 1.1 X los, 
n = 7; and near Re = 3.2 X lo6, n = 10. Show that the ratio of average to maximum velocity is 

and verify the result in Eq. 5.1-5. 
(b) Sketch the logarithmic profile in Eq. 5.3-4 as a function of r when applied to a circular 
tube of radius R. Then show how this function may be integrated over the tube cross section 
to get Eq. 5.5-1. List all the assumptions that have been made to get this result. 

58.2 Mass flow rate in a turbulent circular jet. 
(a) Verify that the velocity distributions in Eqs. 5.6-21 and 22 do indeed satisfy the differen- 
tial equations and boundary conditions. 
(b) Verify that Eq. 5.6-25 follows from Eq. 5.6-21. 

5B.3 The eddy viscosity expression in the viscous sublayer. Verify that Eq. 5.4-2 for the eddy vis- 
cosity comes directly from the Taylor series expression in Eq. 5.3-13. 

5C.1 Two-dimensional turbulent jet. A fluid jet issues forth from a slot perpendicular to the xy- 
plane and emerges in the z direction into a semi-infinite medium of the same fluid. The width 
of the slot in the y direction is W. Follow the pattern of Example 5.6-1 to find the time- 
smoothed velocity profiles in the system. 
(a) Assume the similar profiles 

Show that the momentum conservation statement leads to the fact that the centerline velocity 
must be proportional to z-'/*. 

(b) Introduce a stream function J/ such that & = -d+/dx and i, = +d+/dz. Show that the re- 
sult in (a) along with dimensional considerations leads to the following form for +: 

Here F(5) is a dimensionless stream function, which will be determined from the equation of 
motion for the fluid. 

H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, 7th edition (1979), pp. 596-600. 
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(c) Show that Eq. 5.4-2 and dimensional considerations lead to the following form for the tur- 
bulent kinematic viscosity: 

Here h is a dimensionless constant that has to be determined from experiments. 
(d) Rewrite the equation of motion for the jet using the expression for the turbulent kine- 
matic viscosity from (c) and the stream function from (b). Show that this leads to the follow- 
ing differential equation: 

For the sake of convenience, introduce a new variable 

and rewrite Eq. 5C.1-4. 
(e) Next vedy that the boundary conditions for Eq. 5C.1-4 are F(0) = 0, F1'(0) = 0, and F f ( ~ )  = 0. 
(f) Show that Eq. 5C.1-4 can be integrated to give 

S F '  - F" = constant (5C.1-6) 

and that the boundary conditions require that the constant be zero. 
(g) Show that further integration leads to 

where C is a constant of integration. 
(h) Show that another integration leads to 

F = -C tanh Cq (5C. 1 -8) 

and that the axial velocity can be found from this to be 

(i) Next show that putting the axial velocity into the expression for the total momentum of 
the jet leads to the value C = $'% for the integration constant. Rewrite Eq. 5C.1-9 in terms of 
h rather than C. The value of h = 0.0102 gives good agreement with the experimental data.' 
The agreement is believed to be slightly better than that for the Prandtl mixing length 
empiricism. 
(j) Show that the mass flow rate across any line z = constant is given by 

5C.2 Axial turbulent flow in an annulus. An annulus is bounded by cylindrical walls at r = aR 
and r = R (where a < 1). Obtain expressions for the turbulent velocity profiles and the mass 
flow rate. Apply the logarithmic profile of Eq. 5.3-3 for the flow in the neighborhood of each 
wall. Assume that the location of the maximum in the velocity occurs on the same cylindrical 
surface r = bR found for laminar annular flow: 

H. Schlichting, Boundary-Layer Theoy, McGraw-Hill, New York, 4th edition (1960), p. 607 and 
Fig. 23.7. 
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Measured velocity profiles suggest that this assumption for b is reasonable, at least for high 
Reynolds numbem3 Assume further that K in Eq. 5.3-3 is the same for the inner and outer 
walls. 
(a) Show that direct application of Eq. 5.3-3 leads immediately to the following velocity pro- 
files4 in the region r < bR (designated by <) and r > bR (designated by >): 

--> (R - r)v: 
?=;ln( ) + A '  where v: = v , , m  
v: 

in which v.+ = d(9, - 9,)R/2Lp. 
(b) Obtain a relation between the constants A <  and A >  by requiring that the velocity be con- 
tinuous at r = bR. 
(c) Use the results of (b) to show that the mass flow rate through the annulus is 

in which B is 

5C.3 Instability in a simple mechanical system (Fig. 5C.3). 
(a) A disk is rotating with a constant angular velocity a. Above the center of the disk a 
sphere of mass rn is suspended by a massless rod of length L. Because of the rotation of the 
disk, the sphere experiences a centrifugal force and the rod makes an angle f3 with the verti- 
cal. By making a force balance on the sphere, show that 

8 cos 8 = - 
ln2L 

What happens when fl goes to zero? 

sphere = rn 

Fig. 5C.3. A simple mechanical system for illustrating concepts 

9, G. Knudsen and D. L. Katz, Fluid Dynamics and Heat Transfer, McGraw-Hill, New York (1958); R. 
R. Rothfus (1948), J. E. Walker (19571, and G. A. Whan (19561, Doctoral theses, Carnegie Institute of 
Technology (now Carnegie-Mellon University), Pittsburgh, Pa. 

W. Tiedt, Berechnung des laminaren u.  turbulenten Reibungswiderstandes konzentrischer u. exzentrischer 
Ringspalten, Technischer Bericht Nr. 4, Inst. f .  Hydraulik u. Hydraulogie, Technische Hochschule, 
Darmstadt (1968); D. M. Meter and R. B. Bird, AIChE Journal, 7,4145 (1961) did the same analysis using 
the Prandtl mixing length theory. 
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(b) Show that, if Q is below some threshold value a,,,, the angle 8 is zero. Above the thresh- 
old value, show that there are two admissible values for 8. Explain by means of a carefully 
drawn sketch of 8 vs. fl. Above a,,, label the two curves stable and unstable. 
(c) In (a) and (b) we considered only the steady-state operation of the system. Next show that 
the equation of motion for the sphere of mass m is 

d28 mL - = r n f 1 2 ~  sin 8 cos 0 - mg sin 8 
d f 2  

(5C.3-2) 

Show that for steady-state operation this leads to Eq. 5C.3-1. We now want to use this 
equation to make a small-amplitude stability analysis. Let 0 = 6, + O,, where O0 is a steady- 
state solution (independent of time) and 8, is a very small perturbation (dependent on 
time). 
(d) Consider first the lower branch in (b), which is 0, = 0. Then sin 1'3 = sin 8, .= 6 ,  and cos 6 = 

cos 8, = 1, so that Eq. 5B.2-2 becomes 

We now try a small-amplitude oscillation of the form 8, = A9?{e-'"tJ and find that 

Now consider two cases: (i) If f12 < g/L, both w+ and w- are real, and hence 8, oscillates; this 
indicates that for f12 < g/L the system is stable. (ii) If f12 > g/L, the root w+ is positive imagi- 
nary and e-'"' will increase indefinitely with time; this indicates that for f12 > g/L the system 
is unstable with respect to infinitesimal perturbations. 
(e) Next consider the upper branch in (b). Do an analysis similar to that in (d). Set up the 
equation for 8, and drop terms in the square of 0, (that is, linearize the equation). Once again 
try a solution of the form 8, = A%{e-'"il. Show that for the upper branch the system is stable 
with respect to infinitesimal perturbations. 
(f) Relate the above analysis, which is for a system with one degree of freedom, to the prob- 
lem of laminar-turbulent transition for the flow of a Newtonian fluid in the flow between two 
counter-rotating cylinders. Read the discussion by Landau and ~ i f s h i t z ~  on this point. 

5D.1 Derivation of the equation of change for the Reynolds stresses. At the end of 55.2 it was 
pointed out that there is an equation of change for the Reynolds stresses. This can be derived 
by (a) multiplying the ith component of the vector form of Eq. 5.2-5 by v; and time smoothing, 
(b) multiplying the jth component of the vector form of Eq. 5.2-5 by vi and time smoothing, and 
(c) adding the results of (a) and (b). Show that one finally gets 

Equations 5.2-10 and 11 will be needed in this development. 

5D.2 Kinetic energy of turbulence. By taking the trace of Eq. 5D.1-1 obtain the following: 

Interpret the eq~a t ion .~  

L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), §§26-27. 
H. Tennekes and J. L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, Mass. (1972),§3.2. 



Chapter 6 

Interphase Transport 
in Isothermal Systems 

6 . 1  Definition of friction factors 

56.2 Friction factors for flow in tubes 

56.3 Friction factors for flow around spheres 

56.4' Friction factors for packed columns 

In Chapters 2-4 we showed how laminar flow problems may be formulated and solved. 
In Chapter 5 we presented some methods for solving turbulent flow problems by dimen- 
sional arguments or by semiempirical relations between the momentum flux and the 
gradient of the time-smoothed velocity. In this chapter we show how flow problems can 
be solved by a combination of dimensional analysis and experimental data. The tech- 
nique presented here has been widely used in chemical, mechanical, aeronautical, and 
civil engineering, and it is useful for solving many practical problems. It is a topic worth 
learning well. 

Many engineering flow problems fall into one of two broad categories: flow in chan- 
nels and flow around submerged objects. Examples of channel flow are the pumping of 
oil through pipes, the flow of water in open channels, and extrusion of plastics through 
dies. Examples of flow around submerged objects are the motion of air around an air- 
plane wing, motion of fluid around particles undergoing sedimentation, and flow across 
tube banks in heat exchangers. 

In channel flow the main object is usually to get a relationship between the vol- 
ume rate of flow and the pressure drop and/or elevation change. In problems involv- 
ing flow around submerged objects the desired information is generally the relation 
between the velocity of the approaching fluid and the drag force on the object. We 
have seen in the preceding chapters that, if one knows the velocity and pressure dis- 
tributions in the system, then the desired relationships for these two cases may be ob- 
tained. The derivation of the Hagen-Poiseuille equation in 52.3 and the derivation of 
the Stokes equation in 52.6 and s4.2 illustrate the two categories we are discussing 
here. 

For many systems the velocity and pressure profiles cannot be easily calculated, par- 
ticularly if the flow is turbulent or the geometry is complicated. One such system is the 
flow through a packed column; another is the flow in a tube in the shape of a helical coil. 
For such systems we can take carefully chosen experimental data and then construct 
"correlations" of dimensionless variables that can be used to estimate the flow behavior 
in geometrically similar systems. This method is based on 53.7. 
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We start in 56.1 by defining the "friction factor," and then we show in 556.2 and 6.3 
how to construct friction factor charts for flow in circular tubes and flow around spheres. 
These are both systems we have already studied and, in fact, several results from earlier 
chapters are included in these charts. Finally in 56.4 we examine the flow in packed 
columns, to illustrate the treatment of a geometrically complicated system. The more 
complex problem of fluidized beds is not included in this chapter.' 

6 . 1  DEFINITION OF FRICTION FACTORS 

We consider the steadily driven flow of a fluid of constant density in one of two systems: 
(a) the fluid flows in a straight conduit of uniform cross section; (b )  the fluid flows 
around a submerged object that has an axis of symmetry (or two planes of symmetry) 
parallel to the direction of the approaching fluid. There will be a force F+, exerted by the 
fluid on the solid surfaces. It is convenient to split this force into two parts: F,, the force 
that would be exerted by the fluid even if it were stationary; and Fk, the additional force 
associated with the motion of the fluid (see 52.6 for the discussion of F, and Fk for flow 
around spheres). In systems of type (a), Fk points in the same direction as the average ve- 
locity (v) in the conduit, and in systems of type (b), Fk points in the same direction as the 
approach velocity v,. 

For both types of systems we state that the magnitude of the force Fk is proportional 
to a characteristic area A and a characteristic kinetic energy K per unit volume; thus 

Fk = AKf (6.1-1)' 

in which the proportionality constant f is called the friction factor. Note that Eq. 6.1-1 is 
not a law of fluid dynamics, but only a definition for f. This is a useful definition, because 
the dimensionless quantity f can be given as a relatively simple function of the Reynolds 
number and the system shape. 

Clearly, for any given flow system, f is not defined until A and K are specified. Let us 
now see what the customary definitions are: 

(a) For flow in conduits, A is usually taken to be the wetted surface, and K is taken to 
be & v ) ~ .  Specifically, for circular tubes of radius R and length L we define f by 

Generally, the quantity measured is not Fk, but rather the pressure difference po - pL and 
the elevation difference ho - hL. A force balance on the fluid between 0 and L in the direc- 
tion of flow gives for fully developed flow 

Elimination of Fk between the last two equations then gives 

- -- - - - -- - - 

' R. Jackson, The Dynamics of Fluidized Beds, Cambridge University Press (2000). 
For systems lacking symmetry, the fluid exerts both a force and a torque on the solid. For 

discussions of such systems see J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus 
Nijhoff, The Hague (1983), Chapter 5; H. Brenner, in Adv. Chem. Engr., 6 ,287438 (1966); S .  Kim and 
S. J. Karrila, Microhydrodynarnics: Principles and Selected Applications, Butterworth-Heinemann, Boston 
(1991), Chapter 5. 
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in which D = 2R is the tube diameter. Equation 6.1-4 shows how to calculate f from ex- 
perimental data. The quantity f is sometimes called the Fanning friction f ~ c t o r . ~  

(b) For flow around submerged objects, the characteristic area A is usually taken to be 
the area obtained by projecting the solid onto a plane perpendicular to the velocity of the 
approaching fluid; the quantity K is taken to be ipv:, where v, is the approach velocity 
of the fluid at a large distance from the object. For example, for flow around a sphere of 
radius R, we define f by the equation 

If it is not possible to measure Fb then we can measure the terminal velocity of the 
sphere when it falls through the fluid (in that case, v, has to be interpreted as the termi- 
nal velocity of the sphere). For the steady-state fall of a sphere in a fluid, the force F, is 
just counterbalanced by the gravitational force on the sphere less the buoyant force (cf. 
Eq. 2.6-14): 

Elimination of F, between Eqs. 6.1-5 and 6.1-6 then gives 

This expression can be used to obtain f from terminal velocity data. The friction factor 
used in Eqs. 6.1-5 and 7 is sometimes called the drag coefficient and given the symbol c,. 

We have seen that the "drag coefficient" for submerged objects and the "friction fac- 
tor" for channel flow are defined in the same general way. For this reason we prefer to 
use the same symbol and name for both of them. 

86.2 FRICTION FACTORS FOR FLOW IN TUBES 

We now combine the definition off in Eq. 6.1-2 with the dimensional analysis of 53.7 to 
show what f must depend on in this kind of system. We consider a "test section" of inner 
radius R and length L, shown in Fig. 6.2-1, carrying a fluid of constant density and vis- 
cosity at a steady mass flow rate. The pressures 9, and YL at the ends of the test section 
are known. 

' This friction factor definition is due to J. T. Fanning, A Practical Treatise on Hydraulic and W a t u  
Supply Engineering, Van Nostrand, New York, 1st edition (1877), 16th edition (1906); the name "Fanning" 
is used to avoid confusion with the "Moody friction factor," which is larger by a factor of 4 than the f - - 
used here [L. F. Moody, Trans. ASME, 66,671-684 (19441. 

If we use the "friction velocity" v, = = d(9, - YL)R/2Lp, introduced in s5.3, then Eq. 6.1-4 
assumes the form 

John Thomas Fanning (1837-1911) studied architectural and civil engineering, served as an officer in the 
Civil War, and after the war became prominent in hydraulic engineering. The 14th edition of his book A 
Practical Treatise on Hydraulic and Water-Supply Engineering appeared in 1899. 

For the translational motion of a sphere in three dimensions, one can write approximately 

where n is a unit vector in the direction of v,. See Problem 6C.1. 
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Pressure 
PL 

Fig. 6.2-1. Section of a circular pipe from z = 0 to 
z = L for the discussion of dimensional analysis. 

The system is either in steady laminar flow or steadily driven turbulent flow (i.e., 
turbulent flow with a steady total throughput). In either case the force in the z direction 
of the fluid on the inner wall of the test section is 

In turbulent flow the force may be a function of time, not only because of the turbulent 
fluctuations, but also because of occasional ripping off of the boundary layer from the 
wall, which results in some distances with long time scales. In laminar flow it is under- 
stood that the force will be independent of time. 

Equating Eqs. 6.2-1 and 6.1-2, we get the following expression for the friction factor: 

Next we introduce the dimensionless quantities from s3.7: i: = r/D, i. = z/D, ijz = vZ/(v,), 
= (v,)t/D, @ = (9 - 9,)/p(v,)2, and Re = D(v,)p/p. Then Eq. 6.2-2 may be rewritten as 

This relation is valid for laminar or turbulent flow in smooth circular tubes. We see 
that for flow systems in which the drag depends on viscous forces alone (i.e., no "form 
drag") the product of fRe is essentially a dimensionless velocity gradient averaged 
over the surface. 

Recall now that, in principle, dCZ/di can be evaluated from Eqs. 3.7-8 and 9 along 
with the boundary conditions1 

B.C. 1: 
B.C. 2: 
B.C. 3: 

' Here we follow the customary practice of neglecting the ( d 2 / d i 2 ) v  terms of Eq. 3.7-9, on the basis 
of order-of-magnitude arguments such as those given in s4.4. With those terms suppressed, we do not 
need an outlet boundary condition on v. 
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and appropriate initial conditions. The uniform inlet velocity profile in Eq. 6.2-5 is accu- 
rate except very near the wall, for a well-designed nozzle and upstream system. If Eqs. 
3.7-8 and 9 could be solved with these boundary and initial conditions to get ir and @, the 
solutions would necessarily be of the form 

+ = +(?, 6, 2, t; Re) 

$ = 9 (?, 0, 2, i; Re) 

That is, the functional dependence of + and 9 must, in general, include all the dimen- 
sionless variables and the one dimensionless group appearing in the differential equa- 
tions. No additional dimensionless groups enter via the preceding boundary conditions. 
As a consequence, &?Jd? must likewise depend on ?, 6, i, i, and Re. When deZ/d? is eval- 
uated at i. = and then integrated over 2 and 13 in Eq. 6.2-3, the result depends only on I ,  
Re, and LID (the latter appearing in the upper limit in the integration over 5). Therefore 
we are led to the conclusion that f($ = f (Re, L/D, i), which, when time averaged, becomes 

f = f (Re, L/D) (6.2-9) 

when the time average is performed over an interval long enough to include any long- 
time turbulent disturbances. The measured friction factor then depends only on the 
Reynolds number and the length-to-diameter ratio. 

The dependence off on LID arises from the development of the time-average veloc- 
ity distribution from its flat entry shape toward more rounded profiles at downstream z 
values. This development occurs within an entrance region, of length L, = 0.030 Re for 
laminar flow or L, = 60D for turbulent flow, beyond which the shape of the velocity dis- 
tribution is "fully developed." In the transportation of fluids, the entrance length is usu- 
ally a small fraction of the total; then Eq. 6.2-9 reduces to the long-tube form 

and f can be evaluated experimentally from Eq. 6.1-4, which was written for fully devel- 
oped flow at the inlet and outlet. 

Equations 6.2-9 and 10 are useful results, since they provide a guide for the system- 
atic presentation of data on flow rate versus pressure difference for laminar and turbu- 
lent flow in circular tubes. For long tubes we need only a single curve off plotted versus 
the single combination D(Qp/p. Think how much simpler this is than plotting pressure 
drop versus the flow rate for separate values of D, L, p, and p, which is what the uniniti- 
ated might do. 

There is much experimental information for pressure drop versus flow rate in tubes, 
and hence f can be calculated from the experimental data by Eq. 6.1-4. Then f can be plot- 
ted versus Re for smooth tubes to obtain the solid curves shown in Fig. 6.2-2. These solid 
curves describe the laminar and turbulent behavior for fluids flowing in long, smooth, cir- 
cular tubes. 

Note that the laminar curve on the friction factor chart is merely a plot of the 
Hagen-Poiseuille equation in Eq. 2.3-21. This can be seen by substituting the expression 
for (9, - 9,) from Eq. 2.3-21 into Eq. 6.1-4 and using the relation w = p(&)~R2; this gives 

16 Re < 2100 stable 
f = - {  Re Re > 2100 usually unstable 

in which Re = D(&)p/p; this is exactly the laminar line in Fig. 6.2-2. 
Analogous turbulent curves have been constructed by using experimental data. Some 

analytical curve-fit expressions are also available. For example, Eq. 5.1-6 can be put into 
the form 

0'0791 2.1 X lo3 < Re < lo5 f = ~ e ' / '  (6.2-12) 
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Fig. 6.2-2. Friction factor for tube flow (see definition off in Eqs. 6.1-2 and 6.1-3. [Curves of L. F. Moody, 
Trans. ASME, 66,671-684 (1944) as presented in W. L. McCabe and J. C. Smith, Unit  Operations of C h m i -  
cal Engineering, McGraw-Hill, New York (1954).] 

which is known as the Blasius f o r r n ~ l a . ~  Equation 5.5-1 (with 2.5 replaced by 2.45 and 1.75 
by 2.00) is equivalent to 

1 
- = 4.0 log ,, ~ e q  - 0.4 2.3 X lo3 < Re < 4 X 10" (6.2-13) * 

which is known as the Prandtl f o r r n ~ l a . ~  Finally, corresponding to Eq. 5.5-2, we have 

2 where = 
e 3 1 2 ( f i  + 5a) 

f=v 2"(u(a + l)(a + 2) 

and a = 3/(2 In Re). This has been found to represent the experimental data well for 3.07 
x lo3 < Re < 3.23 X lo6. Equation 6.2-14 is called the Barenblatt f~rmula.~ 

A further relation, which includes the dashed curves for rough pipes in Fig. 6.2-2, is 
the empirical Haaland equation5 

-- 

H. Blasius, Forschungsarbeiten des Ver. Deutsch. Ing., no. 131 (1913). 
%. Prandtl, Essentials of Fluid Dynamics, Hafner, New York (19521, p. 165. 

G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptofics, Cambridge University Press 
(1996), s10.2. 

S. E. Haaland, Trans. ASME, JFE, 105,89-90 (1983). For other empiricisms see D. J. Zigrang and 
N. D. Sylvester, AKhE Journal, 28,514-515 (1982). 
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This equation is stated5 to be accurate within 1.5%. As can be seen in Fig. 6.2-2, the fric- 
tional resistance to flow increases with the height, k, of the protuberances. Of course, k 
has to enter into the correlation in a dimensionless fashion and hence appears via the 
ratio k/D. 

For turbulent flow in noncircular tubes it is common to use the following empiricism: 
First we define a "mean hydraulic radius" Rh as follows: 

in which S is the cross section of the conduit and Z is the wetted perimeter. Then we can 
use Eq. 6.1-4 and Fig. 6.2-2, with the diameter D of the circular pipe replaced by 4Rh. That 
is, we calculate pressure differences by replacing Eq. 6.1-4 by 

and getting f from Fig. 6.2-2 with a Reynolds number defined as 

For laminar flows in noncircular passages, this method is less satisfactory. 

EXAMPLE 6.2-1 What pressure gradient is required to cause diethylaniline, C,H,N(C,H,),, to flow in a 
horizontal, smooth, circular tube of inside diameter D = 3 cm at a mass rate of 1028 g/s at 

Pressure 20°C? At this temperature the density of diethylaniline is p = 0.935 g/cm3 and its viscosity is 
for a Given Flow Rate E, = 1.95 cp. 

SOLUTION The Reynolds number for the flow is 

From Fig. 6.2-2, we find that for this Reynolds number the friction factor f has a value of 
0.0063 for smooth tubes. Hence the pressure gradient required to maintain the flow is (ac- 
cording to Eq. 6.1-4) 

Determine the flow rate, in pounds per hour, of water at 68OF through a 1000-ft length of hori- 
zontal 8-in. schedule 40 steel pipe (internal diameter 7.981 in.) under a pressure difference of 

Rate for a Given 3.00 psi. For such a pipe use Fig. 6.2-2 and assume that k/D = 2.3 X 
Pressure Drop 

SOLUTION 

We want to use Eq. 6.1-4 and Fig. 6.2-2 to solve for (v,) when po - pL is known. However, the 
quantity (v,) appears explicitly on the left side of the equation and implicitly on the right side 
in f, which depends on Re = D(v,)p/p. Clearly a trial-and-error solution can be found. 
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However, if one has to make more than a few calculations of (u,), it is advantageous to de- 
velop a systematic approach; we suggest two methods here. Because experimental data are 
often presented in graphical form, it is important for engineering students to use their origi- 
nality in devising special methods such as those described here. 

Method A. Figure 6.2-2 may be used to construct a plot6 of Re versus the group Re*, 
which does not contain (u,): 

-- 

The quantity Re* can be computed for this problem, and a value of the Reynolds number 
can be read from the Re versus Re* plot. From Re the average velocity and flow rate can 
then be calculated. 

Method B. Figure 6.2-2 may also be used directly without any replotting, by devising a 
scheme that is equivalent to the graphical solution of two simultaneous equations. The two 
equations are 

f = f (Re, k/D) curve given in Fig. 6.2-2 (6.2-22) 

The procedure is then to compute ~ e *  according to Eq. 6.2-21 and then to plot Eq. 6.2-23 on 
the log-log plot off versus Re in Fig. 6.2-2. The intersection point gives the Reynolds number 
of the flow, from which (E,) can then be computed. 

For the problem at hand, we have 

Then according to Eq. 6.2-21, 

= 1.63 X lo4 (dimensionless) (6.2-24) 

The line of Eq. 6.2-23 for this value of Re* passes through f = 1.0 at Re = 1.63 X lo4 and 
through f = 0.01 at Re = 1.63 X 10". Extension of the straight line through these points to the 
curve of Fig. 6.2-2 for k/D = 0.00023 gives the solution to the two simultaneous equations: 

Solving for w then gives 

w = (a/4)Dp Re 

= (0.7854)(0.665)(6.93 X 10-4)(36~~)(2.4 X lo5) 

= 3.12 X 105 lb,/hr = 39 kg/s 

A related plot was proposed by T. von K&rm&n, Nackr. Ges. Wiss. Gottingen, Fachgruppen, I, 5,5&76 
(1930). 
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56.3 FRICTION FACTORS FOR FLOW AROUND SPHERES 

In this section we use the definition of the friction factor in Eq. 6.1-5 along with the di- 
mensional analysis of 53.7 to determine the behavior off for a stationary sphere in an in- 
finite stream of fluid approaching with a uniform, steady velocity v,. We have already 
studied the flow around a sphere in s2.6 and 54.2 for Re < 0.1 (the "creeping flow" re- 
gion). At Reynolds numbers above about 1 there is a significant unsteady eddy motion 
in the wake of the sphere. Therefore, it will be necessary to do a time average over a time 
interval long with respect to this eddy motion. 

Recall from 92.6 that the total force acting in the z direction on the sphere can be 
written as the sum of a contribution from the normal stresses (F,) and one from the tan- 
gential stresses (F,). One part of the normal-stress contribution is the force that would be 
present even if the fluid were stationary, F,. Thus the "kinetic force," associated with the 
fluid motion, is 

Fk = (F, - FJ + Ft = Fform + Ffriction (6.3-1) 

The forces associated with the form drag and the friction drag are then obtained from 

Fform(t) = 12= la (-91 r=R cos B)R2 sin B dB d+ 
0 0 

Since v, is zero everywhere on the sphere surface, the term containing dv, /dB is zero. 
If now we split f into two parts as follows 

f = fform + ffriction 

then, from the definition in Eq. 6.1-5, we get 

fform(i) = ' 1'" 1" (-@ cos 8 )  sin B do d+ 
? T o  0 

The friction factor is expressed here in terms of dimensionless variables 

and a Reynolds number defined as 

To evaluate f (i) one would have to know @ and 5, as functions of Y, 0, 4, and t. 
We know that for incompressible flow these distributions can in principle be ob- 

tained from the solution of Eqs. 3.7-8 and 9 along with the boundary conditions 

B.C. 1: 

B.C. 2: 

B.C. 3: 

a tY=l ,  5,=O and Ee=O 

a t ? =  co, 5 , = 1  

atY=m, @ = O  

and some appropriate initial condition on ir. Because no additional dimensionless 
groups enter via the boundary and initial conditions, we know that the dimensionless 
pressure and velocity profiles will have the following form: 

@ = ~ ( i ,  HI+ ,  t; Re) G = +(?, 0, 4, i; Re) (6.3-12) 
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When these expressions are substituted into Eqs. 6.3-5 and 6, it is then evident that the 
friction factor in Eq. 6.3-4 must have the form f(i) = f(Re, i), which, when time aver- 
aged over the turbulent fluctuations, simplifies to 

f = f (Re) (6.3-13) 

by using arguments similar to those in 56.2. Hence from the definition of the friction fac- 
tor and the dimensionless form of the equations of change and the boundary conditions, 
we find that f must be a function of Re alone. 

Many experimental measurements of the drag force on spheres are available, and 
when these are plotted in dimensionless form, Fig. 6.3-1 results. For this system there is 
no sharp transition from an unstable laminar flow curve to a stable turbulent flow curve 
as for long tubes at a Reynolds number of about 2100 (see Fig. 6.2-2). Instead, as the ap- 
proach velocity increases, f varies smoothly and moderately up to Reynolds numbers of 
the order of lo5. The kink in the curve at about Re = 2 X lo5 is associated with the shift of 
the boundary layer separation zone from in front of the equator to in back of the equator 
of the sphere.' 

We have juxtaposed the discussions of tube flow and flow around a sphere to em- 
phasize the fact that various flow systems behave quite differently. Several points of dif- 
ference between the two systems are: 

Flow in Tubes 

Rather well defined laminar-turbulent 
transition at about Re = 2100 

The only contribution to f is the friction . 
drag (if the tubes are smooth) 

No boundary layer separation 

Flow Around Spheres 

No well defined laminar-turbulent 
transition 

Contributions to f from both friction 
and form drag 

There is a kink in the f vs. Re curve 
associated with a shift in the separation 
zone 

The general shape of the curves in Figs. 6.2-2 and 6.3-1 should be carefully remembered. 
For the creeping flow region, we already know that the drag force is given by Stokes' 

law, which is a consequence of solving the continuity equation and the Navier-Stokes 
equation of motion without the pDv/Dt term. Stokes' law can be rearranged into the 
form of Eq. 6.1-5 to get 

Hence for creeping flow around a sphere 

f = -  24 for Re < 0.1 
Re 

and this is the straight-line asymptote as Re + 0 of the friction factor curve in Fig. 6.3-1. 
For higher values of the Reynolds number, Eq. 4.2-21 can describe f accurately up to 

about Re = 1. However, the empirical expression' 

f = (p + 0.5409 for Re < 6000 
Re 

R. K. Adair, The Physics of Baseball, Harper and Row, New York (1990). 
F. F. Abraham, Physics of Fluids, 13,2194 (1970); M .  Van Dyke, Physics of Fluids, 14,103&1039 (1971). 
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Reynolds number Re = Dv, p/p 

Fig. 6.3-1. Friction factor (or drag coefficient) for spheres moving relative to a 
fluid with a velocity v,. The definition off is given in Eq. 6.1-5. [Curve taken 
from C. E. Lapple, "Dust and Mist Collection," in Chemical Engineers' Handbook, 
(J. H. Perry, ed.), McGraw-Hill, New York, 3rd edition (1950), p. 1018.1 

is both simple and useful. It is important to remember that 

f = 0.44 for 5 x lo2 < Re < 1 X lo5 (6.3-17) 

which covers a remarkable range of Reynolds numbers. Eq. 6.3-17 is sometimes called 
Newton's resistance law; it is handy for a seat-of-the-pants calculation. According to this, 
the drag force is proportional to the square of the approach velocity of the fluid. 

Many extensions of Fig. 6.3-1 have been made, but a systematic study is beyond the 
scope of this text. Among the effects that have been investigated are wall effectsvsee 
Prob. 6C.2), fall of droplets with internal circulation,4 hindered settling (i.e., fall of clus- 
ters of particles5 that interfere with one another), unsteady flow: and the fall of non- 
spherical particles7 

Glass spheres of density p,,, = 2.62 g/cm" are to be allowed to fall through liquid CC14 at 
20°C in an experiment for studying human reaction times in making time observations with 

Detemination of the stopwatches and more elaborate devices. At this temperature the relevant properties of CCl, 
Diameter of a Falling are p = 1.59 g/cm3 and p = 9.58 millipoises. What diameter should the spheres be to have a 
Sphere terminal velocity of about 65 cm/s? 

J. R. Strom and R. C. Kintner, AIChE Journal, 4,153-156 (1958). 
L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 2nd edition (1987), pp. 65-66; 

S. Hu and R. C. Kintner, AIChE Journal, 1,42-48 (1955). 
C. E. Lapple, Fluid and Particle Mechanics, University of Delaware Press, Newark, Del. (19511, 

Chapter 13; R. F. Probstein, Physicochemical Hydrodynamics, Wiley, New York, 2nd edition (1994), g5.4. 
R. R. Hughes and E. R. Gilliland, Chem. Eng. Prog., 48,497-504 (1952); L. Landau and E. M. Lifshitz, 

Fluid Mechanics, Pergamon, Oxford, 2nd edition (19871, pp. 90-91. 
E. S. Pettyjohn and E. B. Christiansen, Chem. Eng. Prog., 44,147 (1948); H .  A. Becker, Can. J .  Chem. 

Eng., 37,885-891 (1959); S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, 
Butterworth-Heinemann, Boston (19911, Chapter 5. 
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SOLUTION 

Fig. 6.3-2. Graphical procedure used in 
Example 6.3-1. 

To find the sphere diameter, we have to solve Eq. 6.1-7 for D. However, in this equation one 
has to know D in order to get f; and f is given by the solid curve in Fig. 6.3-1. A trial-and-error 
procedure can be used, taking f = 0.44 as a first guess. 

Alternatively, we can solve Eq. 6.1-7 for f and then note that f/Re is a quantity indepen- 
dent of D: 

The quantity on the right side can be calculated with the information above, and we call it C. 
Hence we have two simultaneous equations to solve: 

f = C Re from Eq. 6.3-18 

f = f (Re) from Fig. 6.3-1 

Equation 6.3-19 is a straight line with slope of unity on the log-log plot off versus Re. 
For the problem at hand we have 

Hence at Re = lo5, according to Eq. 6.3-19, f = 1.86. The line of slope 1 passing through 
f = 1.86 at Re = lo5 is shown in Fig. 6.3-2. This line intersects the curve of Eq. 6.3-20 (i.e., the 
curve of Fig. 6.3-1) at Re = Da,p/p = 2.4 X lo4. The sphere diameter is then found to be 

g6.4 FRICTION FACTORS FOR PACKED COLUMNS 

In the preceding two sections we have discussed the friction factor correlations for two 
simple flow systems of rather wide interest. Friction factor charts are available for a 
number of other systems, such as transverse flow past a cylinder, flow across tube 
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banks, flow near baffles, and flow near rotating disks. These and many more are sum- 
marized in various reference works.' One complex system of considerable interest in 
chemical engineering is the packed column, widely used for catalytic reactors and for 
separation processes. 

There have been two main approaches for developing friction factor expressions for 
packed columns. In one method the packed column is visualized as a bundle of tangled 
tubes of weird cross section; the theory is then developed by applying the previous re- 
sults for single straight tubes to the collection of crooked tubes. In the second method the 
packed column is regarded as a collection of submerged objects, and the pressure drop is 
obtained by summing up the resistances of the submerged  particle^.^ The tube bundle 
theories have been somewhat more successful, and we discuss them here. Figure 6.4-l(a) 
depicts a packed column, and Fig. 6.4-l(b) illustrates the tube bundle model. 

A variety of materials may be used for the packing in columns: spheres, cylinders, 
Berl saddles, and so on. It is assumed throughout the following discussion that the pack- 
ing is statistically uniform, so that there is no "channeling" (in actual practice, channeling 
frequently occurs, and then the development given here does not apply). It is further as- 
sumed that the diameter of the packing particles is small in comparison to the diameter of 
the column in which the packing is contained, and that the column diameter is uniform. 

We define the friction factor for the packed column analogously to Eq. 6.1-4: 

in which L is the length of the packed column, D, is the effective particle diameter (de- 
fined presently), and v, is the superficial velocity; this is the volume flow rate divided by 
the empty column cross section, v, = w/pS. 

The pressure drop through a representative tube in the tube bundle model is given 
by Eq. 6.2-17 

Fig. 6.4-1. (a) A cylindrical tube packed with spheres; 
( b )  (b) a "tube bundle" model for the packed column in (a). 

- -  - 

P. C. Carman, Flow of Gases through Porous Media, Butterworths, London (1956); J. G. Richardson, 
section 16 in Handbook of Fluid Dynamics (V. L. Streeter, ed.), McGraw-Hill, New York (1961); M. Kaviany, 
Chapter 21 in The Handbook of Fluid Dynamics (R. W .  Johnson, ed.), CRC Press, Boca Raton, Fla. (1998). 

W .  E. Ranz, Chem. Eng. Prog., 48,274-253 (1952); H.  C. Brinkman, Appl. Sci. Research., Al, 27-34, 
81-86,333-346 (1949). Henri Coenraad Brinkman (1908-1961) did research on viscous dissipation 
heating, flow in porous media, and plasma physics; he taught at the University of Bandung, Indonesia, 
from 1949 to 1954, where he wrote The Application of Spinor Invariants to Atomic Physics. 
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in which the friction factor for a single tube, f,,,, is a function of the Reynolds number 
Reh = 4Rh(v)p/p. When this pressure difference is substituted into Eq. 6.4-1, we get 

In the second expression, we have introduced the void fraction, E, the fraction of space in 
the column not occupied by the packing. Then vo = (v)~, which results from the defini- 
tion of the superficial velocity. We now need an expression for Rh. 

The hydraulic radius can be expressed in terms of the void fraction E and the wetted 
surface a per unit volume of bed as follows: 

R h = (  
cross section available for flow 

wetted perimeter 

= (volume available for flow 
total wetted surface 

volume of voids 

- volume of bed 
- - - 

wetted surface 
volume of bed 

The quantity a is related to the "specific surface" a, (total particle surface per volume of 
particles) by 

The quantity a, is in turn used to define the mean particle diameter Dp as follows: 

This definition is chosen because, for spheres of uniform diameter, Dp is exactly the di- 
ameter of a sphere. From the last three expressions we find that the hydraulic radius is 
Rh = DP&/6(1 - e). When this is substituted into Eq. 6.4-3, we get 

We now adapt this result to laminar and turbulent flows by inserting appropriate ex- 
pressions for ftube. 

(a) For laminar flow in tubes, fbbe = 16/Reh. This is exact for circular tubes only. To 
account for the noncylindrical surfaces and tortuous fluid paths encountered in typical 
packed-column operations, it has been found that replacing 16 by 100/3 allows the tube 
bundle model to describe the packed-column data. When this modified expression for 
the tube friction factor is used, Eq. 6.4-7 becomes 

in which Go = pv, is the mass flux through the system. When this expression for f is sub- 
stituted into Eq. 6.4-1 we get 
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which is the Blake-Kozeny equatiom3 Equations 6.4-8 and 9 are generally good for 
(DpG,/p(l - E)) < 10 and for void fractions less than E = 0.5. 

(b) For highly turbulent flow a treatment similar to the above can be given. We begin 
again with the expression for the friction factor definition for flow in a circular tube. This 
time, however, we note that, for highly turbulent flow in tubes with any appreciable 
roughness, the friction factor is a function of the roughness only, and is independent of 
the Reynolds number. If we assume that the tubes in all packed columns have similar 
roughness characteristics, then the value off,,, may be taken to be the same constant for 
all systems. Taking ftube = 7/12 proves to be an acceptable choice. When this is inserted 
into Eq. 6.4-7, we get 

When this is substituted into Eq. 6.4-1, we get 

which is the Burke-Plummer4 equation, valid for (DpGo/p(l - 8)) > 1000. Note that the 
dependence on the void fraction is different from that for laminar flow. 

(c) For the transition region, we may superpose the pressure drop expressions for (a) 
and (b)  above to get 

For very small vo, this simplifies to the Blake-Kozeny equation, and for very large vo, to 
the Burke-Plummer equation. Such empirical superpositions of asymptotes often lead to 
satisfactory results. Equation 6.4-12 may be rearranged to form dimensionless groups: 

This is the Ergun equation: which is shown in Fig. 6.4-2 along with the Blake-Kozeny and 
Burke-Plummer equations and experimental data. It has been applied with success to 
gas flow through packed columns by using the density p of the gas at the arithmetic av- 
erage of the end pressures. Note that Go is constant through the column, whereas vo 
changes through the column for a compressible fluid. For large pressure drops, however, 
it seems more appropriate to apply Eq. 6.4-12 locally by expressing the pressure gradient 
in differential form. 

The Ergun equation is but one of many6 that have been proposed for describing 
packed columns. For example, the Tallmadge equation7 

is reported to give good agreement with experimental 
(D,G,/~(I - EN < lo5. 

data over the range 0.1 < 

9. C. Blake, Trans. Amer. Inst. Chem. Engrs., 14,415421 (1922); J. Kozeny, Sitzungsber. Akad. Wiss. Wien, 
Abt. 11~1,136,271-306 (1927). 

S. P. Burke and W. B. Plummer, Ind. Eng. Chem., 20,1196-1200 (1928). 
S. Ergun, Chem. Engr. Prog., 48,89-94 (1952). 
I .  F. Macdonald, M. S. El-Sayed, K. Mow, and F. A. Dullien, Ind. Eng. Chem. Fundam., 18,199-208 

(1979). 
' J. A. Tallmadge, AIChE journal, 16,1092-1093 (1970). 
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Fig. 6.4-2. The Ergun equation for flow in packed beds, and the two related asymptotes, the Blake-Kozeny equa- 
tion and the Burke-Plummer equation [S. Ergun, Chem. Eng. Prog., 48,89-94 (195211. 

The above discussion of packed beds illustrates how one can often combine solu- 
tions of elementary problems to create useful models for complex systems. The constants 
appearing in the models are then determined from experimental data. As better data be- 
come available the modeling can be improved. 

QUESTIONS FOR DISCUSSION 

1. How are graphs of friction factors versus Reynolds numbers generated from experimental 
data, and why are they useful? 

2. Compare and contrast the friction factor curves for flow in tubes and flow around spheres. 
Why do they have different shapes? 

3. In Fig. 6.2-2, why does the f versus Re curve for turbulent flow lie above the curve for laminar 
flow rather than below? 

4. Discuss the caveat after Eq. 6.2-18. Will the use of the mean hydraulic radius for laminar flow 
predict a pressure drop that is too high or too low for a given flow rate? 

5. Can friction factor correlations be used for unsteady flows? 
6.  What is the connection, if any, between the Blake-Kozeny equation (Eq. 6.4-9) and Darcy's 

law (Eq. 4C.3-2)? 
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7. Discuss the flow of water through a 1/2-in. rubber garden hose that is attached to a house 
faucet with a pressure of 70 psig available. 

8. Why was Eq. 6.4-12 rewritten in the form of Eq. 6.4-13? 
9. A baseball announcer says: "Because of the high humidity today, the baseball cannot go as far 

through the heavy humid air as it would on a dry day." comment critically on this statement. 

PROBLEMS 

6A.1 Pressure drop required for a pipe with fittings. 
What pressure drop is needed for pumping water at 20°C 
through a pipe of 25 cm diameter and 1234 m length at a 
rate of 1.97 m3/s? The pipe is at the same elevation through- 
out and contains four standard radius 90" elbows and two 
45" elbows. The resistance of a standard radius 90" elbow is 
roughly equivalent to that offered by a pipe whose length is 
32 diameters; a 45" elbow, 15 diameters. (An alternative 
method for calculating losses in fittings is given in g7.5.) 
Answer: 4.7 X lo3 psi = 33 MPa 

(a) Solve by Method A of Example 6.2-2. 
(b) Solve by Method B of Example 6.2-2. 
Answer: 68 U.S. gal/min 

6A.4 Motion of a sphere in a liquid. A hollow sphere, 
5.00 mm in diameter, with a mass of 0.0500 g, is released in 
a column of liquid and attains a terminal velocity of 0.500 
cm/s. The liquid density is 0.900 g/cm3. The local gravita- 
tional acceleration is 980.7 cm/sec2. The sphere is far 
enough from the containing walls so that their effect can 
be neglected. 
(a) Compute the drag force on the sphere in dynes. 
(b) Compute the friction factor. 
(c) Determine the viscosity of the liquid. 
Answers: (a) 8.7 dynes; (b) f = 396; (c) 3.7g/cm-s 

6A.2 Pressure difference required for flow in pipe with 
elevation change (Fig. 6A.2). Water at 68OF is to be 
pumped through 95 ft of standard 3-in. pipe (internal di- 
ameter 3.068 in.) into an overhead reservoir. 
(a) What pressure is required at the outlet of the pump to 

6A.5 Sphere diameter for a given terminal velocity. 
(a) Explain how to find the sphere diameter D corre- 
sponding to given values of v,, p, p,, p, and g by mak- 
ing a direct construction on Fig. 6.3-1. 
(b) Rework Problem 2A.4 by using Fig. 6.3-1. 
(c) Rework (b) when the gas velocity is 10 ft/s. 

Fig. 6A.2. Pipe flow system. 

supply water to the overhead reservoir at a rate of 18 
gal/min? At 68°F the viscosity of water is 1.002 cp and the 
density is 0.9982 g/ml. 
(b) What percentage of the pressure drop is needed for 
overcoming the pipe friction? 
Answer: (a) 15.2 psig 

6A.3 Flow rate for a given pressure drop. How many 
gal/hr of water at 68°F can be delivered through a 1320-ft 
length of smooth 6.00-in. i.d. pipe under a pressure differ- 
ence of 0.25 psi? Assume that the pipe is "hydraulically 
smooth.'' 

6A.6 Estimation of void fraction of a packed column. 
A tube of 146 sq. in. cross section and 73 in. height is 
packed with spherical particles of diameter 2 mm. When a 
pressure difference of 158 psi is maintained across the col- 
umn, a 60% aqueous sucrose solution at 20°C flows 
through the bed at a rate of 244 lb/min. At this tempera- 
ture, the viscosity of the solution is 56.5 cp and its density 
is 1.2865 g/cm3. What is the void fraction of the bed? Dis- 
cuss the usefulness of this method of obtaining the void 
fraction. 
Answer: 0.30 

6A.7 Estimation of pressure drops in annular flow. For 
flow in an annulus formed by cylindrical surfaces of diam- 
eters D and KD (with K < 1) the friction factors for laminar 
and turbulent flow are 

Laminar 
r- 

Turbulent & = G log l,,(~eK@\/f) - H 
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in which the Reynolds number is defined by 

Re, = K 
D(l - K)(ZI,)~ 

P (6A.7-3) 

The values of G, H, and K are given as:' 

Equation 6A.7-2 is based on Problem 5C.2 and reproduces 
the experimental data within about 3% up to Reynolds 
numbers of 20,000. 
(a) Vedy that, for developed laminar flow, Eqs. 6A.7-1 and 
3 with the tabulated K values are consistent with Eq. 2.4-16. 
(b) An annular duct is formed from cylindrical surfaces of 
diameters 6 in. and 15 in. It is desired to pump water at 
60°F at a rate of 1500 cu ft per second. How much pressure 
drop is required per unit length of conduit, if the annulus 
is horizontal? Use Eq. 6A.7-2. 
(c) Repeat (b) using the "mean hydraulic radius" empiri- 
cism. 

6A.8 Force on a water tower in a gale. A water tower 
has a spherical storage tank 40 ft in diameter. In a 100-mph 
gale what is the force of the wind on the spherical tank at 
O°C? Take the density of air to be 1.29 g/liter or 0.08 lb/ft3 
and the viscosity to be 0.017 cp. 
Answer: 1.7 X 1041bf 

6A.9 Flow of gas through a packed column. A horizon- 
tal tube with diameter 4 in. and length 5.5 ft is packed with 
glass spheres of diameter 1/16 in., and the void fraction is 
0.41. Carbon dioxide is to be pumped through the tube at 
300K, at which temperature its viscosity is known to be 
1.495 X W4 g/cm . s. What will be the mass flow rate 
through the column when the inlet and outlet pressures 
are 25 atm and 3 atm, respectively? 
Answer: 480 g/s 

' D. M. Meter and R. B. Bird, AIChE Journal, 7,4145 (1961). 

6A.10 Determination of pipe diameter. What size of cir- 
cular pipe is needed to produce a flow rate of 250 firkins 
per fortnight when there is a pressure drop of 3 x lo5 scru- 
ples per square barleycorn? The pipe is horizontal. (The 
authors are indebted to Professor R. S. Kirk of the Univer- 
sity of Massachusetts, who introduced them to these 
units.) 

6B.1 Effect of error in friction factor calculations. In a 
calculation using the Blasius formula for turbulent flow in 
pipes, the Reynolds number used was too low by 4%. Cal- 
culate the resulting error in the friction factor. 
Answer: Too high by 1% 

6B.2 Friction factor for flow along a flat plate2 
(a) An expression for the drag force on a flat plate, wetted 
on both sides, is given in Eq. 4.4-30. This equation was de- 
rived by using laminar boundary layer theory and is 
known to be in good agreement with experimental data. 
Define a friction factor and Reynolds number, and obtain 
the f versus Re relation. 
(b) For turbulent flow, an approximate boundary layer treat- 
ment based on the 1 /7 power velocity distribution gives 

Fk = O . O ~ ~ ~ V ~ W L ( L V , ~ / ~ ) - ~ ' ~  (6B.2-1) 

When 0.072 is replaced by 0.074, this relation describes the 
drag force within experimental error for 5 X lo5 < Lv,plp. 
< 2 x lo7. Express the corresponding friction factor as a 
function of the Reynolds number. 

6B.3 Friction factor for laminar flow in a slit. Use the 
results of Problem 2B.3 to show that for the laminar flow in 
a thin slit of thickness 2B the friction factor is f = 12/Re, if 
the Reynolds number is defined as Re = 2B(vz)p/p. Com- 
pare this result for f with what one would get from the 
mean hydraulic radius empiricism. 

6B.4 Friction factor for a rotating disk.3 A thin circular 
disk of radius R is immersed in a large body of fluid with 
density p and viscosity p. If a torque T, is required to make 
the disk rotate at an angular velocity 0, then a friction fac- 
tor f may be defined analogously to Eq. 6.1-1 as follows, 

T J R  = AKf (6B.4-1) 

where reasonable definitions for K and A are K = ip(flRI2 
and A = 2(77R2). An appropriate choice for the Reynolds 
number for the system is Re = R 2 Q p / ~ .  

For laminar flow, an exact boundary layer develop- 
ment gives 

T, = 0 . 6 1 6 ~ r p ~ ~ m  (68.4-2) 

- -- - 

H. Schlichting, Baud y-Layer Theo y, McGraw-Hill, New 
York, 7th edition (1979), Chapter XXI. 

T. von Kdrmkn, Zeits.Fr angew. Math. u. Mech., 1,233-252 
(1921). 
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For turbulent flow, an approximate boundary layer treat- 
ment based on the 1 /7 power velocity distribution leads to 

T, = 0 . 0 7 3 ~ C l ~ ~ ~ ~ p , /  (6B.4-3) 

Express these results as relations between f and Re. 

6B.5 Turbulent flow in horizontal pipes. A fluid is 
flowing with a mass flow rate w in a smooth horizontal 
pipe of length L and diameter D as the result of a pressure 
difference po - pL. The flow is known to be turbulent. 

The pipe is to be replaced by one of diameter D/2 but 
with the same length. The same fluid is to be pumped at 
the same mass flow rate w. What pressure difference will 
be needed? 
(a) Use Eq. 6.2-12 as a suitable equation for the friction factor. 
(b) How can this problem be solved using Fig. 6.2-2 if Eq. 
6.2-12 is not appropriate? 
Answer: (a) A pressure difference 27 times greater will be 
needed. 

6B.6 Inadequacy of mean hydraulic radius for laminar 
flow. 
(a) For laminar flow in an annulus with radii KR and R, 
use Eqs. 6.2-17 and 18 to get an expression for the average 
velocity in terms of the pressure difference analogous to 
the exact expression given in Eq. 2.4-16. 
(b) What is the percentage of error in the result in (a) for 
,( = l? 

Answer: 49% 

68.7 Falling sphere in Newton's drag-law region. A 
sphere initially at rest at z = 0 falls under the influence of 
gravity. Conditions are such that, after a negligible inter- 
val, the sphere falls with a resisting force proportional to 
the square of the velocity. 
(a) Find the distance z that the sphere falls as a function of t. 
(b) What is the terminal velocity of the sphere? Assume 
that the density of the fluid is much less than the density of 
the sphere. 
Answer: (a) The distance is z = (l/c2g) In cosh cgt, where 
c2 = ~(0.44)(p/ps& /gR); (b) 1 /c 

68.8 Design of an experiment to verify the f vs. Re chart 
for spheres. It is desired to design an experiment to test 
the friction factor chart in Fig. 6.3-1 for flow around a 
sphere. Specifically, we want to test the plotted value f = 1 
at Re = 100. This is to be done by dropping bronze spheres 
(psph = 8 g/cm3) in water (p = 1 g/cm3, p = lop2 g/cm. s). 
What sphere diameter must be used? 
(a) Derive a formula that gives the required diameter as 
a function of f, Re, g, p, p, and pSph for terminal velocity 
conditions. 
(b) Insert numerical values and find the value of the 
sphere diameter. 

3f Re2 p2 
Answers: (a) D = 3 (b) D = 0.048 cm 

4 ( ~  sph - P)P~ '  r- 

6B.9 Friction factor for flow past an infinite ~yl inder .~  
The flow past a long cylinder is very different from the 
flow past a sphere, and the method introduced in g4.2 can- 
not be used to describe this system. It is found that, when 
the fluid approaches with a velocity v,, the kinetic force 
acting on a length L of the cylinder is 

The Reynolds number is defined here as Re = Dv,p/p. 
Equation 6B.9-1 is valid only up to about Re = 1. In this 
range of Re, what is the formula for the friction factor as a 
function of the Reynolds number? 

6C.1 Two-dimensional particle trajectories. A sphere of 
radius R is fired horizontally (in the x direction) at high ve- 
locity in still air above level ground. As it leaves the pro- 
pelling device, an identical sphere is dropped from the 
same height above the ground (in the y direction). 
(a) Develop differential equations from which the particle 
trajectories can be computed, and that will permit compar- 
ison of the behavior of the two spheres. Include the effects 
of fluid friction, and make the assumption that steady- 
state friction factors may be used (this is a "quasi-steady- 
state assumption"). 
(b) Which sphere will reach the ground first? 
(c) Would the answer to (b) have been the same if the 
sphere Reynolds numbers had been in the Stokes' law 
region? 

dvx 3 vx 2 Pair Answers: (a) - = -s i( my f 
d t 

in which f = f(Re) as given by Fig. 5.3-1, with 

2 ~ w ~ ~ ~ ~  
Re = 

P a i r  

6C.2 Wall effects for a sphere falling in a ~ y l i n d e r . ~ ~  
(a) Experiments on friction factors of spheres are generally 
performed in cylindrical tubes. Show by dimensional 
analysis that, for such an arrangement, the friction factor 
for the sphere will have the following dependence: 

f = f (Re, R/Rcyl) (6C.2-1) 
Here Re = 2Rv,p/p, in which R is the sphere radius, v, is 
the terminal velocity of the sphere, and RCy1 is the inside 

G. K. Batchelor, An Introduction to Fluid Dynamics, 
Cambridge University Press (1967), pp. 244-246,257-261. For 
flow past finite cylinders, see J. Happel and H. Brenner, Low 
Reynolds Number Hydrodynamics, Martinus Nijhoff, The Hague 
(19831, pp. 227-230. 
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radius of the cylinder. For the creeping flow region, it has 
been found empirically that the dependence off on R/RcYI 
may be described by the Ladenburg-Fax& correction? so that 

Wall effects for falling droplets have also been s t ~ d i e d . ~  
(b) Design an experiment to check the graph for spheres 
in Fig. 6.3-1. Select sphere sizes, cylinder dimensions, and 
appropriate materials for the experiment. 

6C.3 Power input to an agitated tank (Fig. 6C.3). Show 
by dimensional analysis that the power, P, imparted by a 
rotating impeller to an incompressible fluid in an agitated 
tank may be correlated, for any specific tank and impeller 
shape, by the expression 

P 2N 
- = @(?, E, N t )  (6C.3-1) 
pN3D5 8 

Here N  is the rate of rotation of the impeller, D is the im- 
peller diameter, t  is the time since the start of the opera- 
tion, and @ is a function whose form has to be determined 
experimentally. 

For the commonly used geometry shown in the figure, 
the power is given by the sum of two integrals represent- 
ing the contributions of friction drag of the cylindrical tank 

Impeller Baffle 
\ 

body and bottom and the form drag of the radial baffles, 
respectively: 

Here T, is the tohue required to turn the impeller, S is the 
total surface area of the tank, A is the surface area of the 
baffles, (considered positive on the "upstream" side and 
negative on the "downstream side"), X is the radial dis- 
tance to any surface element dS or dA from the impeller 
axis of rotation, and n is the distance measured normally 
into the fluid from any element of tank surface dS. 

The desired solution may now be obtained by dimen- 
sional analysis of the equations of motion and continuity 
by rewriting the integrals above in dimensionless form. 
Here it is convenient to use D, DN, and p p ~ 2  for the char- 
acteristic length, velocity, and pressure, respectively. 

6D.1 Friction factor for a bubble in a clean liquid.'r8 
When a gas bubble moves through a liquid, the bulk of the 
liquid behaves as if it were in potential flow; that is, the 
flow field in the liquid phase is very nearly given by Eqs. 
4B.5-2 and 3. 

The drag force is closely related to the energy dissipa- 
tion in the liquid phase (see Eq. 4.2-18) 

Fkv, = E, (6D.l-1) 

Show that for irrotational flow the general expression for 
the energy dissipation can be transformed into the follow- 
ing surface integral: 

E,, = p$(n. Vv2) dS (6D.1-2) 

Next show that insertion of the potential flow velocity pro- 
files into Eq. 6D.1-2, and use of Eq. 6D.1-1 leads to 

A somewhat improved calculation that takes into account 
the dissipation in the boundary layer and in the turbulent 

Side view wake leads to the following result:' 
Top view 

f = -  I--- :( %) (6D.1-4) Fig. 6C.3. Agitated tank with a six-bladed impeller and 
four vertical baffles. This result seems to hold rather well up to a Reynolds 

number of about 200. 

R. Ladenburg, Ann. Pkysik (4), 23,447 (1907); H. FaxCn, 
dissertation, Uppsala (1921). For extensive discussions of wall 
effects for falling spheres, see J. Happel and H. Brenner, Low L. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, 
Reynolds Number Hydrodynamics, Martinus Nijhoff, The Hague Oxford (19871, pp. 182-183. 
(1983). G. K. Batchelor, An Introduction to Fluid Dynamics, 

J. R. Strom and R. C. Kintner, AICkE Journal, 4,153-156 Cambridge University Press, (1963, pp. 367-370. 
(1958). D. W. Moore, J. Fluid Mech., 16, 161-176 (1963). 



Chapter 7 

Macroscopic Balances for 
Isothermal Flow Systems 
7 . 1  The macroscopic mass balance 

97.2 The macroscopic momentum balance 

57.3 The macroscopic angular momentum balance 

97.4 The macroscopic mechanical energy balance 

57.5 Estimation of the viscous loss 

57.6 Use of the macroscopic balances for steady-state problems 

97.7' Use of the macroscopic balances for unsteady-state problems 

57.8' Derivation of the macroscopic mechanical energy balance 

In the first four sections of Chapter 3 the equations of change for isothermal systems w e e  
presented. These equations were obtained by writing conservation laws over a "micro- 
scopic system"-namely, a small element of volume through which the fluid is flowing. In 
this way partial differential equations were obtained for the changes in mass, momentum, 
angular momentum, and mechanical energy in the system. The microscopic system has no 
solid bounding surfaces, and the interactions of the fluid with solid surfaces in specific 
flow systems are accounted for by boundary conditions on the differential equations. 

In this chapter we write similar conservation laws for "macroscopic systems"-that 
is, large pieces of equipment or parts thereof. A sample macroscopic system is shown in 
Fig. 7.0-1. The balance statements for such a system are called the macroscopic balances; for 

in' 
Q = Heat added ,/ 

\2 

to system from 
surroundings 

='I 

Fig. 7.0-1. Macroscopic flow system 
with fluid entering at plane 1 and 
leaving at plane 2. It may be neces- 
sary to add heat at a rate Q to main- 
tain the system temperature 
constant. The rate of doing work on 
the system by the surroundings by 
means of moving surfaces is W,. 
The symbols ul and u, denote unit 
vectors in the direction of flow at 
planes 1 and 2. The quantities r, and 
r, are position vectors giving the lo- 
cation of the centers of the inlet and 
outlet planes with respect to some 
designated origin of coordinates. 

W,,, = Work done 
on system by 

surroundings via 
moving parts 
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unsteady-state systems, these are ordinary differential equations, and for steady-state 
systems, they are algebraic equations. The macroscopic balances contain terms that ac- 
count for the interactions of the fluid with the solid surfaces. The fluid can exert forces 
and torques on the surfaces of the system, and the surroundings can do work W, on the 
fluid by means of moving surfaces. 

The macroscopic balances can be obtained from the equations of change by integrat- 
ing the latter over the entire volume of the flow 

I",,, (eq. of continuity) dV = macroscopic mass balance 

L*o (eq. of motion) dV = macroscopic momentum balance 

I,, (eq. of angular momentum) dV = macroscopic angular momentum balance 

L, (eq. of mechanical energy) dV = macroscopic mechanical energy balance 

The first three of these macroscopic balances can be obtained either by writing the con- 
servation laws directly for the macroscopic system or by doing the indicated integra- 
tions. However, to get the macroscopic mechanical energy balance, the corresponding 
equation of change must be integrated over the macroscopic system. 

In ss7.1 to 7.3 we set up the macroscopic mass, momentum, and angular momentum 
balances by writing the conservation laws. In 57.4 we present the macroscopic mechani- 
cal energy balance, postponing the detailed derivation until 57.8. In the macroscopic me- 
chanical energy balance, there is a term called the "friction loss," and we devote s7.5 to 
estimation methods for this quantity. Then in 57.6 and 57.7 we show how the set of 
macroscopic balances can be used to solve flow problems. 

The macroscopic balances have been widely used in many branches of engineering. 
They provide global descriptions of large systems without much regard for the details of 
the fluid dynamics inside the systems. Often they are useful for making an initial ap- 
praisal of an engineering problem and for making order-of-magnitude estimates of vari- 
ous quantities. Sometimes they are used to derive approximate relations, which can then 
be modified with the help of experimental data to compensate for terms that have been 
omitted or about which there is insufficient information. 

In using the macroscopic balances one often has to decide which terms can be omit- 
ted, or one has to estimate some of the terms. This requires (i) intuition, based on experi- 
ence with similar systems, (ii) some experimental data on the system, (iii) flow 
visualization studies, or (iv) order-of-magnitude estimates. This will be clear when we 
come to specific examples. 

The macroscopic balances make use of nearly all the topics covered thus far; there- 
fore Chapter 7 provides a good opportunity for reviewing the preceding chapters. 

7 .  THE MACROSCOPIC MASS BALANCE 

In the system shown in Fig. 7.0-1 the fluid enters the system at plane 1 with cross section 
S, and leaves at plane 2 with cross section S,. The average velocity is (v,) at the entry 
plane and (v2) at the exit plane. In this and the following sections, we introduce two as- 
sumptions that are not very restrictive: (i) at the planes 1 and 2 the time-smoothed veloc- 

' R. B. Bird, Chem. Eng. Sci., 6,123-131 (1957); Chem. Eng. Educ., 27(2), 102-109 (Spring 1993). 
J. C .  Slattery and R. A. Gaggioli, Chem. Eng. Sci., 17,8934395 (1962). 
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ity is perpendicular to the relevant cross section, and (ii) at planes 1 and 2 the density 
and other physical properties are uniform over the cross section. 

The law of conservation of mass for this system is then 

rate of rate of rate of 
increase mass in mass out 
of mass at plane 1 at plane 2 

Here m,, = J p d V  is the total mass of fluid contained in the system between planes 1 and 
2. We now introduce the symbol w = p(v)S for the mass rate of flow, and the notation 
Aw = w2 - wl (exit value minus entrance value). Then the unsteady-state macroscopic mass 
balance becomes 

If the total mass of fluid does not change with time, then we get the steady-state macro- 
scopic mass balance 

A w = O  (7.1-3) 

which is just the statement that the rate of mass entering equals the rate of mass leaving. 
For the macroscopic mass balance we use the term "steady state" to mean that the 

time derivative on the left side of Eq. 7.1-2 is zero. Within the system, because of the pos- 
sibility for moving parts, flow instabilities, and turbulence, there may well be regions of 
unsteady flow. 

A spherical tank of radius R and its drainpipe of length L and diameter D are completely 
filled with a heavy oil. At time t = 0 the valve at the bottom of the drainpipe is opened. How 

Draining of a S~heticaz long will it take to drain the tank? There is an air vent at the very top of the spherical tank. Ig- 
Tank nore the amount of oil that clings to the inner surface of the tank, and assume that the flow in 

the drainpipe is laminar. 

SOLUTION We label three planes as in Fig. 7.1-1, and we let the instantaneous liquid level above plane 2 
be h(t). Then, at any time t the total mass of liquid in the sphere is 

Airvent $ur%j - - - plane 1 

surface 

4 
----- - Plane 2 

L R  -------- 
/I' Plane 3 Fig. 7.1-1. Spherical tank with drainpipe. 
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which can be obtained by using integral calculus. Since no fluid crosses plane 1 we know that 
w, = 0. The outlet mass flow rate w,, as determined from the Hagen-Poiseuille formula, is 

The Hagen-Poiseuille formula was derived for steady-state flow, but we use it here since the 
volume of liquid in the tank is changing slowly with time; this is an example of a "quasi- 
steady-state" approximation. When these expressions for mtOt and w, are substituted into Eq. 
7.1-2, we get, after some rearrangement, 

We now abbreviate the constant on the right side of the equation as A. The equation is easier 
to integrate if we make the change of variable H = h + L so that 

We now integrate this equation between t = 0 (when h = 2R or H = 2R + L), and t = teffl,, 
(when h = 0 or H = L). This gives for the efflux time 

in which A is given by the right side of Eq. 7.1-6. Note that we have obtained this result with- 
out any detailed analysis of the fluid motion within the sphere. 

57.2 THE MACROSCOPIC MOMENTUM BALANCE 

We now apply the law of conservation of momentum to the system in Fig. 7.0-1, using the 
same two assumptions mentioned in the previous section, plus two additional assump- 
tions: (iii) the forces associated with the stress tensor T are neglected at planes 1 and 2, 
since they are generally small compared to the pressure forces at the entry and exit planes, 
and (iv) the pressure does not vary over the cross section at the entry and exit planes. 

Since momentum is a vector quantity, each term in the balance must be a vector. We 
use unit vectors u, and u2 to represent the direction of flow at planes 1 and 2. The law of 
conservation of momentum then reads 

rate of rate of rate of pressure pressure force of force of 
increase of momentum momentum force on force on solid gravity 
momentum in at plane 1 out at plane 2 fluid at fluid at surface on fluid 

plane 1 plane 2 on fluid 

Here Pt,, = JpvdV is the total momentum in the system. The equation states that the total 
momentum within the system changes because of the convection of momentum into and 
out of the system, and because of the various forces acting on the system: the pressure 
forces at the ends of the system, the force of the solid surfaces acting on the fluid in the 
system, and the force of gravity acting on the fluid within the walls of the system. The 
subscript "s f" serves as a reminder of the direction of the force. 

By introducing the symbols for the mass rate of flow and the A symbol we finally get 
for the unsteady-state macroscopic momentum balance 

I I 
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If the total amount of momentum in the system does not change with time, then we get 
the steady-state macroscopic momentum balance 

Once again we emphasize that this is a vector equation. It is useful for computing the force 
of the fluid on the solid surfaces, FPs, such as the force on a pipe bend or a turbine blade. 
Actually we have already used a simplified version of the above equation in Eq. 6.1-3. 

Notes regarding turbulent flow: (i) For turbulent flow it is customary to replace (v) by 
(5) and (v2) by (3); in the latter we are neglecting the term (?), which is generally small 
with respect to (3). (ii) Then we further replace ($)/(E) by (E). The error in doing this is 
uite small; for the empirical $ power law velocity profile given in Eq. 5.1-4, (C2)/(E) = 

Yo &), so that the error is about 2%. (iii) When we make this assumption we will normally 
drop the angular brackets and overbars to simplify the notation. That is, we will let 
(el) = v, and (8) = v:, with similar simplifications for quantities at plane 2. 

A turbulent jet of water emerges from a tube of radius R, = 2.5 cm with a speed v, = 6 m/s, 
as shown in Fig. 7.2-1. The jet impinges on a disk-and-rod assembly of mass m = 5.5 kg, 

Force Exerted a let which is free to move vertically. The friction between the rod and the sleeve will be neglected. 
(Part a) Find the height h at which the disk will "float" as a result of the jet.' Assume that the water is 

incompressible. 

SOLUTION To solve this problem one has to imagine how the jet behaves. In Fig. 7.2-l(a) we make the as- 
sumption that the jet has a constant radius, R,, between the tube exit and the disk, whereas in 
Fig. 7.2-l(b) we assume that the jet spreads slightly. In this example, we make the first as- 
sumption, and in Example 7.4-1 we account for the jet spreading. 

We apply the z-component of the steady-state momentum balance between planes 1 and 
2. The pressure terms can be omitted, since the pressure is atmospheric at both planes. The z 
component of the fluid velocity at plane 2 is zero. The momentum balance then becomes 

When this is solved for h, we get (in SI units) 

Disk-rod assembly 

- Plane 3 
Plane 2 

Fig. 7.2-1. Sketches corre- 

----- ----- sponding to the two solutions 
'lane to the jet-and-disk problem. - Tube with radius R1 - In (a) the water jet is assumed 

to have a uniform radius R,. 
In (b)  allowance is made for the 

(a) (b)  spreading of the liquid jet. 

K. Federhofer, Aufgaben aus der Hydrornechanik, Springer-Verlag, Vienna (1954), pp. 36 and 172. 
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57.3 THE MACROSCOPIC ANGULAR MOMENTUM BALANCE 

The development of the macroscopic angular momentum balance parallels that for the 
(linear) momentum balance in the previous section. All we have to do is to replace "mo- 
mentum'' by "angular momentum" and "force" by "torque." 

To describe the angular momentum and torque we have to select an origin of coor- 
dinates with respect to which these quantities are evaluated. The origin is designated by 
" 0  in Fig. 7.0-1, and the locations of the midpoints of planes 1 and 2 with respect to this 
origin are given by the position vectors rl and r,. 

Once again we make assumptions (i)-(iv) introduced in ss7.1 and 7.2. With these as- 
sumptions the rate of entry of angular momentum at plane 1, which is J[r x pv](v . u)dS 
evaluated at that plane, becomes pl(v:)Sl[rl x ul], with a similar expression for the rate 
at which angular momentum leaves the system at 2. 

The unsteady-state macroscopic angular momentum balance may now be written as 

rate of rate of angular rate of angular 
increase of momentum momentum 
angular in at plane 1 out at plane 2 
momentum 

+ pISl[rl X u11 - p2S2[r2 X u21 + T,+ + Text 
torque due to torque due to torque external 
pressure on pressure on of solid torque 
fluid at fluid at surface on fluid 
plane 1 plane 2 on fluid 

Here L,,, = Jp[r X vldV is the total angular momentum within the system, and T,,, = 

J[r x pg] dV is the torque on the fluid in the system resulting from the gravitational force. 
This equation can also be written as 

Finally, the steady-state macroscopic angular momentum balance is 

This gives the torque exerted by the fluid on the solid surfaces. 

A mixing vessel, shown in Fig. 7.3-1, is being operated at steady state. The fluid enters tan- 
gentially at plane 1 in turbulent flow with a velocity v, and leaves through the vertical pipe 

Torque On a Mixing with a velocity u,. Since the tank is baffled there is no swirling motion of the fluid in the verti- 
Vessel cal exit pipe. Find the torque exerted on the mixing vessel. 

SOLUTION The origin of the coordinate system is taken to be on the tank axis in a plane passing through 
the axis of the entrance pipe and parallel to the tank top. Then the vector [r, X u,l is a vector 
pointing in the z direction with magnitude R. Furthermore [r, X up] = 0, since the two vectors 
are collinear. For this problem Eq. 7.3-3 gives 

Thus the torque is just "force X lever arm," as would be expected. If the torque is sufficiently 
large, the equipment must be suitably braced to withstand the torque produced by the fluid 
motion and the inlet pressure. 
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Side view 

Fig. 7.3-1. Torque on a 
tank, showing side view 
and top view. 

Origin of coordinates is on 
tank axis in a plane passing 
through the axis of the entrance 
pipe and parallel to the tank top 

Plane 2 

57.4 THE MACROSCOPIC MECHANICAL ENERGY BALANCE 

Equations 7.1-2,7.2-2, and 7.3-2 have been set up by applying the laws of conservation of 
mass, (linear) momentum, and angular momentum over the macroscopic system in Fig. 
7.0-1. The three macroscopic balances thus obtained correspond to the equations of 
change in Eqs. 3.1-4,3.2-9, and 3.4-1, and, in fact, they are very similar in structure. These 
three macroscopic balances can also be obtained by integrating the three equations of 
change over the volume of the flow system. 

Next we want to set up the macroscopic mechanical energy balance, which corre- 
sponds to the equation of mechanical energy in Eq. 3.3-2. There is no way to do this di- 
rectly as we have done in the preceding three sections, since there is no conservation law 
for mechanical energy. In this instance we must integrate the equation of change of me- 
chanical energy over the volume of the flow system. The result, which has made use of 
the same assumptions (i-iv) used above, is the unsteady-state macroscopic mechanical energy 
balance (sometimes called the engineering Bernoulli equation). The equation is derived in 
97.8; here we state the result and discuss its meaning: 

rate of increase rate at which kinetic rate at which kinetic 
of kinetic and and potential energy and potential energy 
potential energy enter system at plane 1 leave system at plane 2 
in system 

+ (pI(vl)S1 - p2(v2)S2) + W, + 1 p(V. v) dV + (T :W dV (7.4-1) 
V(t) V(t)  

net rate at which the rate of rate at which rate at which 
surroundings do doing mechanical mechanical 
work on the fluid work on energy increases energy 
at planes 1 and 2 by fluid by or decreases decreases 
the pressure moving because of expansion because of 

surfaces or compression viscous 
of fluid dissipation' 

- -- - - 

This interpretation of the term is valid only for Newtonian fluids; polymeric liquids have elasticity 
and the interpretation given above no longer holds. 
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Here Kt,, = Jipv2dv and a,,, = JP& dV are the total kinetic and potential energies within 
the system. According to Eq. 7.4-1, the total mechanical energy (i.e., kinetic plus poten- 
tial) changes because of a difference in the rates of addition and removal of mechanical 
energy, because of work done on the fluid by the surroundings, and because of com- 
pressibility effects and viscous dissipation. Note that, at the system entrance (plane I), 
the force p,S, multiplied by the velocity (v,) gives the rate at which the surroundings do 
work on the fluid. Furthermore, W,, is the work done by the surroundings on the fluid 
by means of moving surfaces. 

The macroscopic mechanical energy balance may now be written more compactly as 
I I 

in which the terms E, and E, are defined as follows: 

E, = - p(V . v) dV and E ,  = - ( ~ V V )  dV I I (7.4-3,4) 
V(t)  V( t )  

The compression term E, is positive in compression and negative in expansion; it is zero 
when the fluid is assumed to be incompressible. The term E, is the viscous dissipation (or 
friction loss) term, which is always positive for Newtonian liquids, as can be seen from Eq. 
3.3-3. (For polymeric fluids, which are viscoelastic, E, is not necessarily positive; these 
fluids are discussed in the next chapter.) 

If the total kinetic plus potential energy in the system is not changing with time, we get 

which is the steady-state macroscopic mechanical energy balance. Here h is the height above 
some arbitrarily chosen datum plane. 

Next, if we assume that it is possible to draw a representative streamline through 
the system, we may combine the A(p/p) and E, terms to get the following approximate re- 
lation (see 57.8) 

Then, after dividing Eq. 7.4-5 by w, = w, = w, we get 

I I 

Here & = W,,/w and i,, = E,/w. Equation 7.4-7 is the version of the steady-state me- 
chanical energy balance that is most often used. For isothermal systems, the integral 
term can be calculated as long as an expression for density as a function of pressure is 
available. 

Equation 7.4-7 should now be compared with Eq. 3.5-12, which is the "classical" 
Bernoulli equation for an inviscid fluid. If, to the right side of Eq. 3.5-12, we jyst add the 
work wrn done by the surroundings and subtract the viscous dissipation term E,, and rein- 
terpret the velocities as appropriate averages over the cross sections, then we get Eq. 7.4-7. 
This provides a "plausibility argument" for Eq. 7.4-7 and still preserves the fundamental 
idea that the macroscopic mechanical energy balance is derived from the equation of mo- 
tion (that is, from the law of conservation of momentum). The full derivation of the macro- 
scopic mechanical energy balance is given in g7.8 for those who are interested. 

Notes for turbulent flow: (i) For turbulent flows we replace (v3) by (v3), and ignore the 
contribution from the turbulent fluctuations. (ii) It is common practice to replace the 
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Force Exerted by  a Jef 
(Part b) 

quotient (fi3)/(E) by (fi)2. For the empirical 3 power law velocity profile given in Eq. 5.1-4, 
43200 it can be shown that (fi3)/(~) = z(0)2, SO that the error amounts to about 6%. (iii) We 

further omit the brackets and overbars to simplify the notation in turbulent flow. 

Continue the problem in Example 7.2-1 by accounting for the spreading of the jet as it moves 
upward. 

SOLUTION 

We now permit the jet diameter to increase with increasing z as shown in Fig. 7.2-l(b). It is 
convenient to work with three planes and to make balances between pairs of planes. The sep- 
aration between planes 2 and 3 is taken to be quite small. 

A mass balance between planes 1 and 2 gives 

Next we apply the mechanical energy balance of Eq. 7.4-5 or 7.4-7 between the same two 
planes. The pressures at planes 1 and 2 are both atmospheric, and there is no work done by 
moving parts W,. We assume that the viscous dissipation term E,  can be neglected. If z is 
measured upward from the tube exit, then gAh = g(h, - h,) = g(h - O), since planes 2 and 3 
are so close together. Thus the mechanical energy balance gives 

We now apply the z-momentum balance between planes 2 and 3. Since the region is very 
small, we neglect the last term in Eq. 7.2-3. Both planes are at atmospheric pressure, so the 
pressure terms do not contribute. The fluid velocity is zero at plane 3, so there are only two 
terms left in the momentum balance 

From the above three equations we get 

from Eq. 7.4-9 

(mg'w2)2) from Eq. 7.4-10 
v: 

= 3 (1 - ( )  from Eq. 7.4-8 
28 

in which rng and v,w, = . rr~:~v:  are known. When the numerical values are substituted into 
Eq. 7.4-10, we get h = 0.77 m. This is probably a better result than the value of 0.87 m obtained 
in Example 7.2-1, since it accounts for the spreading of the jet. We have not, however, consid- 
ered the clinging of the water to the disk, which gives the disk-rod assembly a somewhat 
greater effective mass. In addition, the frictional resistance of the rod in the sleeve has been 
neglected. It is necessary to run an experiment to assess the validity of Eq. 7.4-10. 

57.5 ESTIMATION OF THE VISCOUS LOSS 

This section is devoted to methods for estimating the viscous loss (or friction loss), E,, 
which appears in the macroscopic mechanical energy balance. The general expression 
for E, is given in Eq. 7.4-4. For incompressible Newtonian fluids, Eq. 3.3-3 may be used 
to rewrite E, as 
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which shows that it is the integral of the local rate of viscous dissipation over the volume 
of the entire flow system. 

We now want to examine E, from the point of view of dimensional analysis. The 
quantity a, is a sum of squares of velocity gradients; hence it has dimensions of (~,/1,)~, 
where v, and 1, are a characteristic velocity and length, respectively. We can therefore 
write 

where 6, = (l,/v,)*@, and d p  = li3dV are dimensionless quantities. If we make use of 
the dimensional arguments of 993.7 and 6.2, we see that the integral in Eq. 7.5-2 depends 
only on the various dimensionless groups in the equations of change and on various 
geometrical factors that enter into the boundary conditions. Hence, if the only significant 
dimensionless group is a Reynolds number, Re = l,v,p/p, then Eq. 7.5-2 must have the 
general form 

a dimensionless function of Re 
and various geometrical ratios 

(7.5-3) 

A 

In steady-state flow we prefer to work with the quantity E, = EJw, in which w = p(v)S is 
the mass rate of flow passing through any cross section of the flow system. If we select 
the reference velocity v, to be (v) and the reference length 1, to be %%, then 

in which e,, the friction loss factor, is a function of a Reynolds number and relevant di- 
mensionless geometrical ratios. The factor has been introduced in keeping with the 
form of several related equations. We now want to summarize what is known about the 
friction loss factor for the various parts of a piping system. 

For a straight conduit the friction loss factor is closely related to the friction factor. 
We consider only the steady flow of a fluid of constant density in a straight conduit of 
arbitrary, but constant, cross section S and length L. If the fluid is flowing in the z direc- 
tion under the influence of a pressure gradient and gravity, then Eqs. 7.2-2 and 7.4-7 
become 

(mechanical energy) 1 
EL, = p (PI - p2) + LgZ (7.5-6) 

Multiplication of the second of these by pS and subtracting gives 

If, in addition, the flow is turbulent then the expression for Ff+, in terms of the mean hy- 
draulic radius Rh may be used (see Eqs. 6.2-16 to 18) so that 

in which f is the friction factor discussed in Chapter 6. Since this equation is of the form 
of Eq. 7.5-4, we get a simple relation between the friction loss factor and the friction 
factor 

for turbulent flow in sections of straight pipe with uniform cross section. For a similar 
treatment for conduits of variable cross section, see Problem 7B.2. 
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Table 7.5-1 Brief Summary of Friction Loss Factors for Use with Eq. 7.5-10 
(Approximate Values for Turbulent Flow)" 

Disturbances e, 

Sudden changes in cross-sectional areab 

Rounded entrance to pipe 0.05 
Sudden contraction 

Sudden expansionc 

Orifice (sharp-edged) 

Fittings and valves 

90" elbows (rounded) 0.4-0.9 
90" elbows (square) 1.3-1.9 
45" elbows 0.3-0.4 
Globe valve (open) 610  
Gate valve (open) 0.2 

" Taken from H. Kramers, Physische Transportverschijnselen, Technische Hogeschool Delft, Holland (19581, 
pp. 53-54. 

Here p = (smaller cross-sectional area)/(larger cross-sectional area). 
See derivation from the macroscopic balances in Example 7.6-1. If P = 0, then E, = :(v)', where (v) is the 

velocity upstream from the enlargement. 

Most flow systems contain various "obstacles," such as fittings, sudden changes in 
diameter, valves, or flow measuring devices. These also contribute to the friction loss ED. 
Such additional resistances may be written in the form of Eq. 7.5-4, with e, determined by 
one of two methods: (a) simultaneous solution of the macroscopic balances, or (b)  experi- 
mental measurement. Some rough values of e, are tabulated in Table 7.5-1 for the conven- 
tion that (v) is the average velocity downstream from the disturbance. These e, values are 
for turbulent flow for which the Reynolds number dependence is not too important. 

Now we are in a position to rewrite Eq. 7.4-7 in the approximate form frequently used 
for turbulent flow calculations in a system composed of various kinds of piping and addi- 
tional resistances: 

1 2 L  
:(z$ - v:) + ~ ( 1 ~  - zli + /C $ d p  = hm - Z jiY Rif)i - ( v 2 e )  i (7.5-10) 

sum over all sum over all 
sections of fittings, valves, 
straight conduits meters, etc. 

Here Rh is the mean hydraulic radius defined in Eq. 6.2-16, f is the friction factor defined 
in Eq. 6.1-4, and e, is the friction loss factor given in Table 7.5-1. Note that the v,  and v2 in 
the first term refer to the velocities at planes 1 and 2; the v in the first sum is the average 
velocity in the ith pipe segment; and the v in the second sum is the average velocity 
downstream from the ith fitting, valve, or other obstacle. 

What is the required power output from the pump at steady state in the system shown in Fig. 
7.5-l? Water at 68OF (p  = 62.4 lb,/ft3; p = 1.0 cp) is to be delivered to the upper tank at a rate 

Requirement of 12 ft3/min. All of the piping is 4-in. internal diameter smooth circular pipe. 
for Pipeline Flow 
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SOLUTION 

Fig. 7.5-1. Pipeline flow 
with friction losses be- 
cause of fittings. Planes 
1 and 2 are just under 

- - Plane 2 the surface of the liquid. 

The average velocity in the pipe is 

and the Reynolds number is 

Hence the flow is turbulent. 
The contribution to i, from the various lengths of pipe will be 

The contribution to k, from the sudden contraction, the three 90" elbows, and the sudden ex- 
pansion (see Table 7.5-1) will be 

2 ($v2eJi = $(2.30)~(0.45 + 3(;) + 1) = 8 ft2/s2 (7.5-14) 
I 

Then from Eq. 7.5-10 we get 

0 + (32.2)(105 - 20) + 0 = wrn - 85 - 8 (7.5-15) 

Solving for wrn we get 

This is the work (per unit mass of fluid) done on the fluid in the pump. Hence the pump does 
2830 ft2/s2 or 2830/32.2 = 88 ft lbf/lbrn of work on the fluid passing through the system. The 
mass rate of flow is 

Consequently 

Wrn = W& = (12.5)(88) = 1100 ft lbf/s = 2 hp = 1.5 kW (7.5-18) 

which is the power delivered by the pump. 
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Table 7.6-1 Steady-State Macroscopic Balances for Turbulent Flow in Isothermal Systems 

Mass: CW, - Zw2 = O (A) 

Momentum: X(vlwl + plS1)ul - C(v2~2 + p2S2h2 + mtot!4 = Ff-s (B) 

Mechanical energy: C w2 = - W, + E,  + E ,  (D) 

Notes: 
(a) All formulas here assume flat velocity profiles. 
(b) Zwl = w,, + wlb + wlc + . . . , where w,, = p,,v,,S,,, etc. 

(c) hl and h, are elevations above an arbitrary datum plane. 
(d) All equations are written for compressible flow; for incompressible flow, E, = 0. 

57.6 USE OF THE MACROSCOPIC BALANCES 
FOR STEADY-STATE PROBLEMS 

In 53.6 we saw how to set up the differential equations to calculate the velocity and pres- 
sure profiles for isothermal flow systems by simplifying the equations of change. In this 
section we show how to use the set of steady-state macroscopic balances to obtain the al- 
gebraic equations for describing large systems. 

For each problem we start with the four macroscopic balances. By keeping track of 
the discarded or approximated terms, we automatically have a complete listing of the as- 
sumptions inherent in the final result. All of the examples given here are for isothermal, 
incompressible flow. The incompressibility assumption means that the velocity of the 
fluid must be less than the velocity of sound in the fluid and the pressure changes must 
be small enough that the resulting density changes can be neglected. 

The steady-state macroscopic balances may be easily generalized for systems with 
multiple inlet streams (called la, Ib, lc, . . .) and multiple outlet streams (called 2a, 2b, 
2c, . . .). These balances are summarized in Table 7.6-1 for turbulent flow (where the ve- 
locity profiles are regarded as flat). 

An incompressible fluid flows from a small circular tube into a large tube in turbulent flow, 
as shown in Fig. 7.6-1. The cross-sectional areas of the tubes are S, and S2. Obtain an expres- 

Pressure Rise and sion for the pressure change between planes 1 and 2 and for the friction loss associated with 
Friction Loss in a the sudden enlargement in cross section. Let P = S,/S2, which is less than unity. 
Sudden Enlargement 

Plane 1 Plane 2 
I I 

area S1 surface of area Cylindrical hibe 
s2 - s1 of cross-sectiona~ Fig. 7.6-1. HOW through a sudden 

area S2 enlargement. 
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SOLUTION (a) Mass balance. For steady flow the mass balance gives 

For a fluid of constant density, this gives 

(b) Momentum balance. The downstream component of the momentum balance is 

The force Ff,, is composed of two parts: the viscous force on the cylindrical surfaces parallel 
to the direction of flow, and the pressure force on the washer-shaped surface just to the right 
of plane 1 and perpendicular to the flow axis. The former contribution we neglect (by intu- 
ition) and the latter we take to be p,(S2 - S,) by assuming that the pressure on the washer- 
shaped surface is the same as that at plane 1. We then get, by using Eq. 7.6-1, 

Solving for the pressure difference gives 

or, in terms of the downstream velocity, 

Note that the momentum balance predicts (correctly) a rise in pressure. 

(c) Angular momentum balance. This balance is not needed. If we take the origin of coor- 
dinates on the axis of the system at the center of gravity of the fluid located between 
planes 1 and 2, then [r, X u,l and [r2 X u21 are both zero, and there are no torques on the 
fluid system. 

(dl Mechanical energy balance. There is no compressive loss, no work done via moving 
parts, and no elevation change, so that 

* I 1 
E v  = ,(v: - v:) + - P (p, - p2) 

Insertion of Eq. 7.6-6 for the pressure rise then gives, after some rearrangement, 

which is an entry in Table 7.5-1. 
This example has shown how to use the macroscopic balances to estimate the friction loss 

factor for a simple resistance in a flow system. Because of the assumptions mentioned after 
Eq. 7.6-3, the results in Eqs. 7.6-6 and 8 are approximate. If great accuracy is needed, a correc- 
tion factor based on experimental data should be introduced. 

A diagram of a liquid-liquid ejector is shown in Fig. 7.6-2. It is desired to analyze the mixing 
of the two streams, both of the same fluid, by means of the macroscopic balances. At plane 1 

Petfowance of a the two fluid streams merge. Stream la  has a velocity v, and a cross-sectional area is,, and 
LiPid -L iP id  Ejector stream l b  has a velocity iv, and a cross-sectional area $5,. Plane 2 is chosen far enough down- 

stream that the two streams have mixed and the velocity is almost uniform at v,. The flow is 
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SOLUTION 

Stream lb  

Fig. 7.6-2. Flow in a liquid-liq- 
uid ejector pump. 

turbulent and the velocity profiles at planes 1 and 2 are assumed to be flat. In the following 
analysis F+, is neglected, since it is felt to be less important than the other terms in the mo- 
mentum balance. 

(a )  Mass balance. At steady state, Eq. (A) of Table 7.6-1 gives 

Hence, since S ,  = S2, this equation gives 

for the velocity of the exit stream. We also note, for later use, that w,, = wlb = $w2. 

(b) Momentum balance. From Eq. (B) of Table 7.6-1 the component of the momentum bal- 
ance in the flow direction is 

or using the relation at the end of (a) 

from which 
2 

p2 - PI = $ P o  

This is the expression for the pressure rise resulting from the mixing of the two streams. 

( c )  Angular momentum balance. This balance is not needed. 

(d) Mechanical energy balance. Equation (D) of Table 7.6-1 gives 

or, using the relation at the end of (a), we get 

Hence 

is the energy dissipation per unit mass. The preceding analysis gives fairly good results for 
liquid-liquid ejector pumps. In gas-gas ejectors, however, the density varies significantly and 
it is necessary to include the macroscopic total energy balance as well as an equation of state 
in the analysis. This is discussed in Example 15.3-2. 
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EXAMPLE 7.6-3 

Thrust on a Pipe Bend 

SOLUTION 

Water at 95°C is flowing at a rate of 2.0 ft3/s through a 60" bend, in which there is a contrac- 
tion from 4 to 3 in. internal diameter (see Fig. 7.6-3). Compute the force exerted on the bend if 
the pressure at the downstream end is 1.1 atm. The density and viscosity of water at the con- 
ditions of the system are 0.962 g/cm3 and 0.299 cp, respectively. 

The Reynolds number for the flow in the 3-in. pipe is 

At this Reynolds number the flow is highly turbulent, and the assumption of flat velocity pro- 
files is reasonable. 

(a)  Mass balance. For steady-state flow, w1 = w,. If the density is constant throughout, 

in which /3 is the ratio of the smaller to the larger cross section. 

(b) Mechanical energy balance. For steady, incompressible flow, Eq. (d) of Table 7.6-1 be- 
comes, for this problem, 

According to Table 7.5-1 and Eq. 7.5-4, we can take the friction loss as approximately g(4v:) = 

iv:. Inserting this into Eq. 7.6-20 and using the mass balance we get 

This is the pressure drop through the bend in terms of the known velocity v2 and the known 
geometrical factor P.  
(c) Momentum balance. We now have to consider both the x- and y-components of the mo- 
mentum balance. The inlet and outlet unit vectors will have x- and y-components given by 
ulw = 1, uly = 0, u2 = cos 8, and u,, = sin 8. 

Fluid out 

4" internal Is = 520 
Fig. 7.6-3. Reaction force at a reducing 

diameter bend in a pipe. 
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The x-component of the momentum balance then gives 

where F, is the x-component of F,+. Introducing the specific expressions for w, and u12, we 
get 

F, = v,(pvlS,) - vJPv~SJ cos 0 + plS1 - p2S2 cos 8 

= pv;S2(p - cos 0) + (pl - p2)S1 + p2(S1 - S2 cos 6) (7.6-23) 

Substituting into this the expression for p, - p2 from Eq. 7.6-21 gives 

F,  = pv;S2(@ - cos 6) + pv;s2pp1(& - $p2) 
+ pg(h2 - h,)S2p-' + p2S2(p-' - cos 0) 

= w 2 ( p s 2 ) - ' ( p  - COS 0 + $1 
+ pg(h2 - h1)S2p-' + p2S2(p-' - cos 0) 

The y-component of the momentum balance is 

Fy = -(v2w2 + p2S2) sin 8 - m,,,g 

Fy = -w2(pS2)-I sin 0 - p2S2 sin 0 - vR2Lpg 

in which R and L are the radius and length of a roughly equivalent cylinder. 
We now have the components of the reaction force in terms of known quantities. The nu- 

merical values needed are 

p = 60 lb,/ft3 

w = (2.0)(60) = 1201b,/s 

cos e = ; 
sin 6 = +fi 
p2 = 16.2 lbf/in.' 

With these values we then get 

F = -  (120)2 ( d )  I (16.2)(0.049)(144) 
2(0.049)(32.2) 2 

Hence the magnitude of the force is 

IF I = = d304' + 2342 = 384 Ibf = 1708 N (7.6-29) 

The angle that this force makes with the vertical is 

a = arctan(F,/Fy) = arctan 1.30 = 52" (7.6-30) 

In looking back over the calculation, we see that all the effects we have included are impor- 
tant, with the possible exception of the gravity terms of 2.6 Ibf in F,  and 2.5 Ibi in F,. 
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A rectangular incompressible fluid jet of thickness b, emerges from a slot of width c, hits a flat 
plate and splits into two streams of thicknesses bZa and bZb as shown in Fig. 7.6-4. The emerg- 

The Impinging Jet ing turbulent jet stream has a velocity v,  and a mass flow rate w,. Find the velocities and mass 
rates of flow in the two streams on the plate.' 

SOLUTION We neglect viscous dissipation and gravity, and assume that the velocity profiles of all three 
streams are flat and that their pressures are essentially equal. The macroscopic balances then 
give 

Mass balance 

WI = W2a + W2b 

Momentum balance (in the direction parallel to the plate) 

VlWl COS 6 = 'U2aW2a - v2bW2b (7.6-32) 

Mechanical energy balance 

iv?wl = + & $ b ~ 2 b  (7.6-33) 

Angular momentum balance (put the origin of coordinates on the centerline of the jet and at 
an altitude of gb,; this is done so that there will be no angular momentum of the incoming jet) 

This last equation can be rewritten to eliminate the b's in favor of the w's. Since w1 = pv,b,c 
and w,, = pvzab2,c, we can replace b, - b,, by (w,/pv,c) - (w2,/pv2,c) and replace b, - bZb cor- 
respondingly. Then the angular momentum balance becomes 

Velocity 

ass rate of flow wl 

city 

Mass rate of flow b2b 
Plate 

b2a Mass rate of flow 
W2b W2a 

Fig. 7.6-4. Jet impinging on a wall and splitting into two streams. The point 
0, which is the origin of coordinates for the angular momentum balance, is 
taken to be the intersection of the centerline of the incoming jet and a plane 
that is at an elevation ib,. 

' For alternative solutions to this problem, see G. K. Batchelor, An Introduction to Fluid Dynamics, 
Cambridge University Press (1967), pp. 392-394, and S. Whitaker, Introduction to Fluid Dynamics, 
Prentice-Hall, Englewood Cliffs, N.J. (1968), p. 260. An application of the compressible impinging jet 
problem has been given by J. V. Foa, U.S. Patent 3,361,336 Uan. 2,1968). There, use is made of the fact 
that if the slot-shaped nozzle moves to the left in Fig. 7.6-4 (i.e., left with respect to the plate), then, for a 
compressible fluid, the right stream will be cooler than the jet and the left stream will be warmer. 
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Now Eqs. 7.6-31 
solved we find that 

,32,33, and 36 are four equations with four unknowns. When these are 

Hence the velocities of all three streams are equal. The same result is obtained by applying 
the classical Bernoulli equation for the flow of an inviscid fluid (see Example 3.5-1). 

A common method for determining the mass rate of flow through a pipe is to measure the pres- 
sure drop across some "obstacle" in the pipe. An example of this is the orifice, which is a thin 

~ s o ~ h ~ ~ a l  Flow of a plate with a hole in the middle. There are pressure taps at planes 1 and 2, upstream and d o m -  
Liquid Through an stream of the orifice plate. Fig. 7.6-5(a) shows the orifice meter, the pressure taps, and the gen- 
Orifice era1 behavior of the velocity profiles as observed experimentally. The velocity profile at plane 1 

S, = cross section of pipe = S2 

I Plane 0 I 

PlaAe 1 hhmneter  ~laAe 2 
I I 
I I 

I I 
I I 

Plane 0 Plane 2 

Fig. 7.6-5. (a)A sharp-edged orifice, showing the approximate velocity 
profiles at several planes near the orifice plate. The fluid jet emerging 
from the hole is somewhat smaller than the hole itself. In highly turbu- 
lent flow this jet necks down to a minimum cross section at the vena con- 
tracts. The extent of this necking down can be given by the contraction 
coefficient, C, = (S,,,, c,,,ac,,/S,). According to inviscid flow theory, 
C, = T / ( T  + 2) = 0.611 if So/Sl = 0 [H. Lamb, Hydrodynamics, Dover, 
New York (1945), p. 991. Note that there is some back flow near the wall. 
(b )  Approximate velocity profile at plane 2 used to estimate (vi)/(v2). 
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SOLUTION 

will be assumed to be flat. In Fig. 7.6-5(b) we show an approximate velocity profile at plane 2, 
which we use in the application of the macroscopic balances. The standard orifice meter equa- 
tion is obtained by applying the macroscopic mass and mechanical energy balances. 

(a) Mass balance. For a fluid of constant density with a system for which S, = S ,  = S, the 
mass balance in Eq. 7.1-1 gives 

With the assumed velocity profiles this becomes 

and the volume rate of flow is w = pv,S. 

(b) Mechanical energy balance. For a constant-density fluid in a flow system with no eleva- 
tion change and no moving parts, Eq. 7.4-5 gives 

The viscous loss E, is neglected, even though it is certainly not equal to zero. With the as- 
sumed velocity profiles, Eq. 7.6-43 then becomes 

P2 - P1 ;cv; - v:, + - = 0 P 
(7.6-44) 

When Eqs. 7.6-42 and 44 are combined to eliminate u,, we can solve for v, to get 

We can now multiply by pS to get the volume rate of flow. Then to account for the errors in- 
troduced by neglecting E, and by the assumptions regarding the velocity profiles we include 
a discharge coefficient, Cd, and obtain 

Experimental discharge coefficients have been correlated as a function of So/S and the 
Reynolds n ~ m b e r . ~  For Reynolds numbers greater than lo4, Cd approaches about 0.61 for all 
practical values of So/S. 

This example has illustrated the use of the macroscopic balances to get the general form of 
the result, which is then modified by introducing a multiplicative function of dimensionless 
groups to correct for errors introduced by unwarranted assumptions. This combination of 
macroscopic balances and dimensional considerations is often used and can be quite useful. 

57.7 USE OF THE MACROSCOPIC BALANCES 
FOR UNSTEADY-STATE PROBLEMS 

In the preceding section we have illustrated the use of the macroscopic balances for solv- 
ing steady-state problems. In this section we turn our attention to unsteady-state prob- 
lems. We give two examples to illustrate the use of the time-dependent macroscopic 
balance equations. 

G. L. Tuve and R. E. Sprenkle, Instruments, 6,202-205,225,232-234 (1935); see also R. H. Perry and 
C. H. Chilton, Chemical Engineers' Handbook, McGraw-Hill, New York, 5th edition (1973), Fig. 5-18; Fluid 
Meters: Their Theo y and Applications, 6th edition, American Society of Mechanical Engineers, New York 
(1971), pp. 58-65; Measurement of Fluid Flow Using Small Bore Precision Orifice Meters, American 
Society of Mechanical Engineers, MFC-14-M, New York (1995). 
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An open cylinder of height H and radius R is initially entirely filled with a liquid. At time t = 
0 the liquid is allowed to drain out through a small hole of radius X, at the bottom of the tank 

Acceleration Effects in (see Q. 7.7-1 )*  
Unsteady 'low from a (a) Find the efflux time by using the unsteady-state mass balance and by assuming Torri- 
Cylindrical Tank celli's equation (see Problem 3B.14) to describe the relation between efflux velocity and the in- 

stantaneous height of the liquid. 

SOLUTION 

(b) Find the efflux time using the unsteady-state mass and mechanical energy balances. 

(a) We apply Eq. 7.1-2 to the system in Fig. 7.7-1, taking plane 1 to be at the top of the tank (so 
that w, = 0). If the instantaneous liquid height is h(t), then 

Here we have assumed that the velocity profile at plane 2 is flat. According to Torricelli's 
equation v2 = a, so that Eq. 7.7-1 becomes 

- -  3 2@ 
"- d t ( R )  

When this is integrated from t = 0 to t= t,,,,, we get 

in which N = (R/Ro)4 >> 1. This is effectively a quasi-steady-state solution, since we have 
used the unsteady-state mass balance along with Torricelli's equation, which was derived for 
a steady-state flow. 

(b) We now use Eq. 7.7-1 and the mechanical energy balance in Eq. 7.4-2. In the latter, the terms 
W, and E, are identically zero, and we assume that E, is negligibly small, since the velocity gra- 
dients in the system will be small. We take the datum plane for the potential energy to be at the 
bottom of the tank, so that 6, = gz, = 0; at plane 1 no liquid is entering, and therefore the poten- 
tial energy term is not needed there. Since the top of the tank is open to the atmosphere and the 
tank is discharging into the atmosphere, the pressure contributions cancel one another. 

To get the total kinetic energy in the system at any time t, we have to know the velocity 
of every fluid element in the tank. At every point in the tank, we assume that the fluid is mov- 
ing downward at the same velocity, namely V ~ ( R ~ / R ) ~  so that the kinetic energy per unit vol- 
ume is everywhere $ ~ ; ( R , / R ) ~ .  

To get the total potential energy in the system at any time t, we have to integrate the po- 
tential energy per unit volume pgz over the volume of fluid from 0 to h. This gives ~ R ~ p ~ ( $ h ~ ) .  

Therefore the mechanical energy balance in Eq. 7.4-2 becomes 

From the unsteady-state mass balance, v, = -(R/RJ2(dh/dt). When this is inserted into Eq. 
7.7-4 we get (after dividing by dh/dt) 

&let of radius Ro Fig. 7.7-1. Flow out of a cylindrical tank. 
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This is to be solved with the two initial conditions: 

I.C. 1: at t = 0, h = H  (7.7-6) 

I.C. 2: 

The second of these is Torricelli's equation at the initial instant of time. 
The second-order differential equation for h can be converted to a first-order equation for 

the function u(h) by making the change of variable (dh/dt)' = u. This gives 

The solution to this first-order equation can be verified to be' 

The second initial condition then gives C = -4g/[N(N - 2)HN-2] for the integration constant; 
since N >> 1, we need not concern ourselves with the special case that N = 2. We can next take 
the square root of Eq. 7.7-9 and introduce a dimensionless liquid height 7 = h/H; this gives 

in which the minus sign must be chosen on physical grounds. This separable, first-order 
equation can be integrated from t = 0 to t = t,,,, to give 

- 

The function +(N) gives the deviation from the quasi-steady-state solution obtained in Eq. 
7.7-3. This function can be evaluated as follows: 

The integrations can now be performed. When the result is expanded in inverse powers of N, 
one finds that 

Since N = (R/RJ4 is a very large number, it is evident that the factor 4(N) differs only very 
slightly from unity. 

It is instructive now to return to Eq. 7.7-4 and omit the term describing the change in 
total kinetic energy with time. If this is done, one obtains exactly the expression for efflux 
time in Eq. 7.7-3 (or Eq. 7.7-11, with +(N) = 1. We can therefore conclude that in this type of 
problem, the change in kinetic energy with time can safely be neglected. 

See E. Karnke, Differentialgleichungen: Losungsmethoden und Losungen, Chelsea Publishing 
Company, New York (1948), p. 311, M.94; G. M. Murphy, Ordinay Differential Equations and Their 
Solutions, Van Nostrand, Princeton, N.J. (19601, p. 236, #157. 
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The liquid in a U-tube manometer, initially at rest, is set in motion by suddenly imposing a 
pressure difference pa - pb. Determine the differential equation for the motion of the 

Manometer manometer fluid, assuming incompressible flow and constant temperature. Obtain an expres- 
Oscillations2 sion for the tube radius for which critical damping occurs. Neglect the motion of the gas 

above the manometer liquid. The notation is summarized in Fig. 7.7-2. 

SOLUTION We designate the manometric liquid as the system to which we apply the macroscopic bal- 
ances. In that case, there are no planes l and 2 through which liquid enters or exits. The free 
liquid surfaces are capable of performing work on the surroundings, W,, and hence play the 
role of the moving mechanical parts in 57.4. We apply the mechanical energy balance of Eq. 
7.4-2, with E, set equal to zero (since the manometer liquid is regarded as incompressible). Be- 
cause of the choice of the system, both w, and w2 are zero, so that the only terms on the right 
side are - W, and - E,. 

To evaluate dKtOt/dt  and E, it is necessary to make some kind of assumption about the ve- 
locity profile. Here we take the velocity profile to be parabolic: 

in which (v) = d h / d t  is a function of time, defined to be positive when the flow is from left to 
right. 

The kinetic energy term may then be evaluated as follows: 

Fig. 7.7-2. Damped oscillations of 
a manometer fluid. 

For a summary of experimental and theoretical work on manometer oscillations, see J. C. Biery, 
AIChE Journal, 9,606-614 (1963); 10,551-557 (1964); 15,631-634 (1969). Biery's experimental data show 
that the assumption made in Eq. 7.7-14 is not very good. 
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Here 1 is a coordinate running along the axis of the manometer tube, and L is the distance 
along this axis from one manometer interface to the other-that is, the total length of the 
manometer fluid. The dimensionless coordinate 6 is r /R ,  and S is the cross-sectional area of 
the tube. 

The change of potential energy with time is given by 

= [(intFEril over portion K+H-h K+H+)I 

below z = 0, which ) + pgS lo z& + pgs lo z dz]  
dt is constant 

The viscous loss term can also be evaluated as follows: 

Furthermore, the net work done by the surroundings on the system is 

Substitution of the above terms into the mechanical energy balance and letting (v) = dh/dt 
then gives the differential equation for k ( t )  as 

which is to be solved with the initial conditions that h = 0 and d h / d t  = 0 at t = 0. This second- 
order, linear, nonhomogeneous equation can be rendered 
new variable k defined by 

Then the equation for the motion of the manometer liquid is 

homogeneous by introducing a 

(7.7-20) 

This equation also arises in describing the motion of a mass connected to a spring and dash- 
pot as well as the current in an RLC circuit (see Eq. C.l-7). 

We now try a solution of the form k = em'. Substituting this trial function into Eq. 7.7-21 
shows that there are two admissible values for m :  

and the solution is 

k = C+em-' + C-em-t when m+ # m -  (7.7-23) 

k = Clemt + C2temf when m+ = m -  = rn (7.7-24) 

with the constants being determined by the initial conditions. 
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The type of motion that the manometer liquid exhibits depends on the value of the dis- 
criminant in Eq. 7.7-22: 

(a) If (6p,/pR2I2 > (6g/L), the system is overdamped, and the liquid moves slowly to its final 
position. 

(b) If ( 6 p , / p ~ ~ ) ~  < (6g/L), the system is underdamped, and the liquid oscillates about its 
final position, the oscillations becoming smaller and smaller. 

(c) If = (6g/L), the system is critically damped, and the liquid moves to its final 
position in the most rapid monotone fashion. 

The tube radius for critical damping is then 

If the tube radius R is greater than R,,, an oscillatory motion occurs. 

57.8 DERIVATION OF THE MACROSCOPIC 
MECHANICAL ENERGY BALANCE' 

In Eq. 7.4-2 the macroscopic mechanical energy balance was presented without proof. In 
this section we show how the equation is obtained by integrating the equation of change 
for mechanical energy (Eq. 3.3-2) over the entire volume of the flow system of Fig. 7.0-1. 
We begin by doing the formal integration: 

I & (iPg + p6) d~ = - (V (iP9 + p6)v) d~ - (V pv) d~ - (V . [r . vl) d~ 
V(t)  

I 
V(t)  

I 
V( t )  

I 
V(t)  

+ I p(V v) dV + 1 (.r:Vv) dV (7.8-1) 
V( t )  V( t )  

Next we apply the 3-dimensional Leibniz formula (Eq. A.5-5) to the left side and the 
Gauss divergence theorem (Eq. A.5-2) to terms 1,2, and 3 on the right side. 

- I (n [T vl) + I p(v . v) d~ + I (.r:vv) d~ (7.8-2) 
S(t) V(t)  V(t)  

The term containing v,, the velocity of the surface of the system, arises from the applica- 
tion of the Leibniz formula. The surface S(t)  consists of four parts: 

the fixed surface Sf (on which both v and v, are zero) 

the moving surfaces S ,  (on which v = v, with both nonzero) 

the cross section of the entry port S1 (where v, = 0) 

the cross section of the exit port S2 (where vs = 0) 

Presently each of the surface integrals will be split into four parts corresponding to these 
four surfaces. 

We now interpret the terms in Eq. 7.8-2 and, in the process, introduce several as- 
sumptions; these assumptions have already been mentioned in $57.1 to 7.4, but now the 
reasons for them will be made clear. 

' R. B. Bird, Korean J. Chem. Eng., 15,105-123 (1998), 93. 
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The term on the left side can be interpreted as the time rate of change of the total ki- 
netic and potential energy (K,, + a,,,) within the "control volume," whose shape and 
volume are changing with time. 

We next examine one by one the five terms on the right side: 
Term I (including the minus sign) contributes only at the entry and exit ports and 

gives the rates of influx and efflux of kinetic and potential energy: 

The angular brackets indicate an average over the cross section. To get this result we 
have to assume that the fluid density and potential energy per unit mass are constant 
over the cross section, and that the fluid is flowing parallel to the tube walls at the entry 
and exit ports. The first term in Eq. 7.8-3 is positive, since at plane 1, (-n . v) = (ul * 
(ulv,)) = v,, and the second term is negative, since at plane 2, (-n v) = (-u, . (u2v2)) = -v2. 

Term 2 (including the minus sign) gives no contribution on Sf since v is zero there. 
On each surface element dS of S, there is a force -npdS acting on a surface moving with 
a velocity v, and the dot product of these quantities gives the rate at which the surround- 
ings do work on the fluid through the moving surface element dS. We use the symbol 
w:' to indicate the sum of all these surface terms. Furthermore, the integrals over the 
stationary surfaces S, and S, give the work required to push the fluid into the system at 
plane 1 minus the work required to push the fluid out of the system at plane 2. Therefore 
term 2 finally gives 

Term 2 = pl(vl)S, - p,(v2)S2 + w?) (7.8-4) 

Here we have assumed that the pressure does not vary over the cross section at the entry 
and exit ports. 

Term 3 (including the minus sign) gives no contribution on Sf since v is zero there. 
The integral over S,, can be interpreted as the rate at which the surroundings do work on 
the fluid by means of the viscous forces, and this integral is designated as w:'. At the 
entry and exit ports it is conventional to neglect the work terms associated with the vis- 
cous forces, since they are generally quite small compared with the pressure contribu- 
tions. Therefore we get 

Term 3 = WI;' (7.8-5) 

We now introduce the symbol W, = w!:) + w:' to represent the total rate at which 
the surroundings do work on the fluid within the system through the agency of the mov- 
ing surfaces. 

Terms 4 and 5 cannot be further simplified, and hence we define 

Term 4 = + p(V . v) dV = -E, 
V(f) 

Term 5 = + I (.r:Vv) dV = - E,  (7.8-7) 
V(D 

For Newtonian fluids the viscous loss EL, is the rate at which mechanical energy is irre- 
versibly degraded into thermal energy because of the yiscosity of the fluid and is always 
a positive quantity (see Eq. 3.3-3). We have already discussed methods for estimating E, 
in 57.5. (For viscoelastic fluids, which we discuss in Chapter 8, E ,  has to be interpreted 
differently and may even be negative.) The compression term E, is the rate at which me- 
chanical energy is reversibly changed into thermal energy because of the compressiblity 
of the fluid; it may be either positive or negative. If the fluid is being regarded as incom- 
pressible, then E, is zero. 
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When all the contributions are inserted into Eq. 7.8-2 we finally obtain the macro- 
scopic mechanical energy balance: 

If, now, we introduce the symbols w1 = pl(vl)Sl and w2 = p2(u2)S2 for the mass rates of 
flow in and out, then Eq. 7.8-8 can be rewritten in the form of Eq. 7.4-2. Several assump- 
tions have been made in this development, but normally they are not serious. If the situ- 
ation warrants, one can go back and include the neglected effects. 

It should be noted that the above derivation of the mechanical energy balance does 
not require that the system be isothermal. Therefore the results in Eqs. 7.4-2 and 7.8-8 are 
valid for nonisothermal systems. 

To get the mechanical energy balance in the form of Eq. 7.4-7 we have to develop an 
approximate expression for E,. We imagine that there is a representative streamline run- 
ning through the system, and we introduce a coordinate s along the streamline. We as- 
sume that pressure, density, and velocity do not vary over the cross section. We further 
imagine that at each position along the streamline, there is a cross section S(s) perpendic- 
ular to the s-coordinate, so that we can write dV = S(s)ds. If there are moving parts in the 
system and if the system geometry is complex, it may not be possible to do this. 

We start by using the fact that (V . pv) = 0 at steady state so that 

Then we use the assumption that the pressure and density are constant over the cross 
section to write approximately 

Even though p, u, and S are functions of the streamline coordinate s, their product, w = pvS, 
is a constant for steady-state operation and hence may be taken outside the integral. This 
gives 

Then an integration by parts can be performed: 

When this result is put into Eq. 7.4-5, the approximate relation in Eq. 7.4-7 is obtained. Be- 
cause of the questionable nature of the assumptions made (the existence of a representative 
streamline and the constancy of p and p over a cross section), it seems preferable to use Eq. 
7.4-5 rather than Eq. 7.47. Also, Eq. 7.45 is easily generalized to systems with multiple inlet 
and outlet ports, whereas Eq. 7.47 is not; the generalization is given in Eq. (D) of Table 7.6-1. 

QUESTIONS FOR DISCUSSION 

1. Discuss the origin, meaning, and use of the macroscopic balances, and explain what assump- 
tions have been made in deriving them. 

2. How does one decide which macroscopic balances to use for a given problem? What auxiliary 
information might one need in order to solve problems with the macroscopic balances? 

3. Are friction factors and friction loss factors related? If so, how? 
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4. Discuss the viscous loss E ,  and the compression term E,, with regard to physical interpreta- 
tion, sign, and methods of estimation. 

5. How is the macroscopic mechanical energy balance related to the Bernoulli equation for in- 
viscid fluids? How is it derived? 

6.  What happens in Example 7.3-1 if one makes a different choice for the origin of the coordinate 
system? 

7. In Example 7.5-1 what would be the error in the final result if the estimation of the viscous 
loss E, were off by a factor of 2? Under what circumstances would such an error be more seri- 
ous? 

8. In Example 7.5-1 what would happen if 5 ft were replaced by 50 ft? 
9. In Example 7.6-3, how would the results be affected if the outlet pressure were 11 atm instead 

of 1.1 atm? 
10. List all the assumptions that are inherent in the equations given in Table 7.6-1. 

PROBLEMS 7A.1 Pressure rise in a sudden enlargement (Fig. 7.6-1). An aqueous salt solution is flowing 
through a sudden enlargement at a rate of 450 US. gal/min = 0.0384 m3/s. The inside 
diameter of the smaller pipe is 5 in. and that of the large pipe is 9 in. What is the pressure rise 
in pounds per square inch if the density of the solution is 63 lb,/ft3? Is the flow in the smaller 
pipe laminar or turbulent? 
Answer: 0.157 psi = 1.08 X lo3 N/m2 

7A.2 Pumping a hydrochloric acid solution (Fig. 7A.2). A dilute HC1 solution of constant density 
and viscosity (p = 62.4 lb,/ft3, p = 1 cp) is to be pumped from tank 1 to tank 2 with no overall 
change in elevation. The pressures in the gas spaces of the two tanks are pl = 1 atm and p, = 4 
atm. The pipe radius is 2 in. and the Reynolds number is 7.11 X lo4. The average velocity in 
the pipe is to be 2.30 ft/s. What power must be delivered by the pump? 
Answer: 2.4 hp = 1.8 kW 

Fig. 7A.2. Pumping of a hydrochloric acid - - 
inside radius 2 " solution. 

7A.3 Compressible gas flow in a cylindrical pipe. Gaseous nitrogen is in isothermal turbulent 
flow at 25°C through a straight length of horizontal pipe with 3-in. inside diameter at a rate of 
0.28 1bJs. The absolute pressures at the inlet and outlet are 2 atm and 1 atm, respectively. 
Evaluate k,, assuming ideal gas behavior and radially uniform velocity distribution. 
Answer: 26.3 Btu/lb, = 6.12 X lo4 J/kg 

7A.4 Incompressible flow in an annulus. Water at 60°F is being delivered from a pump through a 
coaxial annular conduit 20.3 ft long at a rate of 241 U.S. gal/min. The inner and outer radii of 
the annular space are 3 in. and 7 in. The inlet is 5 ft lower than the outlet. Determine the 
power output required from the pump. Use the mean hydraulic radius empiricism to solve 
the problem. Assume that the pressures at the pump inlet and the annular outlet are the 
same. 
Answer: 0.31 hp = 0.23 kW 
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7A.5 Force on a U-bend (Fig. 7A.5). Water at 68°F (p  = 62.4 lb,/ft3, p = 1 cp) is flowing in turbu- 
lent flow in a U-shaped pipe bend at 3 ft3/s. What is the horizontal force exerted by the water 
on the U-bend? 
Answer: 903 lbf 

'lane pz = 19 psia I 
I 

-1 

4 " internal 
diameter 

- I 
Fig. 7A.5. Flow in a U-bend; both arms of the bend are at 

1 PI = 21 psis the same elevation. 

7A.6 Flow-rate calculation (Fig. 7A.6). For the system shown in the figure, calculate the volume 
flow rate of water at 68OF. 

Fig. 7A.6. Flow from a constant-head tank. 

7A.7 Evaluation of various velocity averages from Pitot tube data. Following are some experi- 
mental data1 for a Pitot tube traverse for the flow of water in a pipe of internal radius 3.06 in.: 

Plot these data and find out whether the flow is laminar or turbulent. Then use Simpson's 
rule for numerical integration to compute (v)/v,,,, (v2)/v~,,, and (v3)/vi,,. Are these results 
consistent with the values of 50/49 (given just before Example 7.2-1) and 43200/40817 (given 
just before Example 7.4-I)? 

Distance from Local velocity 
Position tube center (in.) (ft/s) 

' B. Bird, C. E. thesis, University of Wisconsin (1915). 

Distance from Local velocity 
Position tube center (in.) (ft/s) 
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Velocity averages from the power law. Evaluate the velocity ratios in Problem 7A.7 ac- 
cording to the velocity distribution in Eq. 5.1-4. 

Relation between force and viscous loss fpr flow in conduits of variable cross section. 
Equation 7.5-6 gives the relation Ff,, = pSE, between the drag force and viscous loss for 
straight conduits of arbitrary, but constant, cross section. Here we consider a straight horizon- 
tal channel whose cross section varies gradually with the downstream distance. We restrict 
ourselves to axisymmetrical channels, so that the drag force is axially directed. 

If the cross section and pressure at the entrance are S, and pl, and those at the exit are S2 
and p,, then prove that the relation analogous to Eq. 7.5-7 is 

where 

Interpret the results. 

Flow through a sudden enlargement (Fig. 7.6-1). A fluid is flowing through a sudden en- 
largement, in which the initial and final diameters are D, and D2 respectively. At what ratio 
D,/D, will the pressure rise p2 - p1 be a maximum for a given value of v,? 
Answer: D2/Dl = 

Flow between two tanks (Fig. 7B.4). Case I: A fluid flows between two tanks A and B because 
pA > pPB. The tanks are at the same elevation and there is no pump in the line. The connecting 
line has a cross-sectional area S, and the mass rate of flow is w for a pressure drop of (p, - p,),. 

Case 1%. It is desired to replace the connecting line by two lines, each with cross section SII = 
is1. What pressure difference (pA - pJI, is needed to give the same total mass flow rate as in 
Case I? Assume turbulent flow and use the Blasius formula (Eq. 6.2-12) for the friction factor. 
Neglect entrance and exit losses. 

Answer: (p, - p&,/(pA - pdl = z5" 

Circular tube of 
cross section SI 

Mass flow rate w 

Fig. 7B.4. Flow between two tanks. 

Circular tubes of 
cross section SII 

Revised design of an air duct (Fig. 7B.5). A straight, horizontal air duct was to be installed in 
a factory. The duct was supposed to be 4 ft X 4 ft in cross section. Because of an obstruction, 
the duct may be only 2 ft high, but it may have any width. How wide should the duct be to 
have the same terminal pressures and same volume rate of flow? Assume that the flow is tur- 
bulent and that the Blasius formula (Eq. 6.2-12) is satisfactory for this calculation. Air can be 
regarded as incompressible in this situation. 
(a) Write the simplified versions of the mechanical energy balance for ducts I and 11. 
(b) Equate the pressure drops for the two ducts and obtain an equation relating the widths 
and heights of the two ducts. 
(c) Solve the equation in (b) numerically to find the width that should be used for duct 11. 
Answer: (c) 9.2 ft 

1 ?. 
A ,  f t /-x B 

Sum of mass 
flow rates is w 
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I 
PI l 

I 
Plane 1 

I 
p2 I 

I 
Plane 2 

Fig. 7B.5. Installation of an air duct. 

7B.6 Multiple discharge into a common conduip (Fig. 7B.6). Extend Example 7.6-1 to an incom- 
pressible fluid discharging from several tubes into a larger tube with a net increase in cross 
section. Such systems are important in heat exchangers of certain types, for which the expan- 
sion and contraction losses account for an appreciable fraction of the overall pressure drop. 
The flows in the small tubes and the large tube may be laminar or turbulent. Analyze this sys- 
tem by means of the macroscopic mass, momentum, and mechanical energy balances. 

Plane 1 ,, Plane 2 

Fig. 7B.6. Multiple discharge into a 
common conduit. The total cross sec- 
tional area at plane 1 available for 
flow is S, and that at plane 2 is S,. 

7B.7 Inventory variations in a gas reservoir. A natural gas reservoir is to be supplied from a 
pipeline at a steady rate of w, lbm/hr. During a 24-hour period, the fuel demand from the 
reservoir, w,, varies approximately as follows, 

w2 = A + B cos o t  (7B.7-1) 

where wt is a dimensionless time measured from the time of peak demand (approximately 6 
A.M.). 

(a) Determine the maximum, minimum, and average values of w2 for a 24-hour period in 
terms of A and B. 
(b) Determine the required value of w, in terms of A and B. 
(c) Let m,,, = m!,, at t = 0, and integrate the unsteady mass balance with this initial condition 
to obtain m,,, as a function of time. 
(d) If A = 5000 lbm/hr, B = 2000 Ibm/hr, and p = 0.044 lb,,,/ft3 in the reservoir, determine the 
absolute minimum reservoir capacity in cubic feet to meet the demand without interruption. 
At what time of day must the reservoir be full to permit such operation? 
(e)  Determine the minimum reservoir capacity in cubic feet required to permit maintaining at 
least a three-day reserve at all times. 
Answer: 3.47 X lo5 ft3; 8.53 X lo6 ft3 

W. M. Kays, Trans. ASME, 72,1067-1074 (1950). 
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Change in liquid height with time (Fig. 7.1-1). 
(a) Derive Eq. 7.1-4 by using integral calculus. 
(b) In Example 7.1-1, obtain the expression for the liquid height h as a function of time t .  
(c) Make a graph of Eq. 7.1-8 using dimensionless quantities. Is this useful? 

Draining of a cylindrical tank with exit pipe (Fig. 7B.9). 
(a) Rework Example 7.1-1, but with a cylindrical tank instead of a spherical tank. Use the 
quasi-steady-state approach; that is, use the unsteady-state mass balance along with the 
Hagen-Poiseuille equation for the laminar flow in the pipe. 
(b) Rework the problem for turbulent flow in the pipe. 

Answer: (a) tefflux = 

Fig. 7B.9. A cylindrical tank with a long pipe attached. The fluid surface 
and pipe exit are open to the atmosphere. 

Efflux time for draining a conical tank (Fig. 7J3.10). A conical tank, with dimensions given in 
the figure, is initially filled with a liquid. The liquid is allowed to drain out by gravity. Deter- 
mine the efflux time. In parts (a)-(c) take the liquid in the cone to be the "system." 
(a) First use an unsteady macroscopic mass balance to show that the exit velocity is 

(b) Write the unsteady-state mechanical energy balance for the system. Discard the viscous 
loss term and the term containing the time derivative of the kinetic energy, and give reasons 
for doing so. Show that Eq. 7B.10-1 then leads to 

Liquid surface z = z  
at time t 

z = Z  

Fig. 7B.10. A conical container from 
which a fluid is allowed to drain. The 

Datum plane for 
Z = Z2 

quantity r is the radius of the liquid sur- 
\ I  / face at height z,  and F is the radius of 

potential energy \L z = 0 the cone at some arbitrary height Z. 



Problems 229 

(c) Combine the results of (a) and (b). Solve the resulting differential equation with an appro- 
priate initial condition to get the liquid level z as a function of t. From this get the efflux time 

List all the assumptions that have been made and discuss how serious they are. How could 
these assumptions be avoided? 
(d) Rework part (b) by choosing plane 1 to be stationary and slightly below the liquid surface 
at time t. It is understood that the liquid surface does not go below plane 1 during the differ- 
ential time interval dt over which the unsteady mechanical energy balance is made. With this 
choice of plane 1 the derivative d@,,,/dt is zero and there is no work term W,. Furthermore 
the conditions at plane 1 are very nearly those at the liquid surface. Then with the pseudo- 
steady-state approximation that the derivative dK,,,/dt is approximately zero and the neglect 
of the viscous loss term, the mechanical energy balance, with w, = w,, takes the form 

7B.11 Disintegration of wood chips (Fig. 7B.11). In the manufacture of paper pulp the cellulose 
fibers of wood chips are freed from the lignin binder by heating in alkaline solutions under 
pressure in large cylindrical tanks called digesters. At the end of the "cooking" period, a 
small port in one end of the digester is opened, and the slurry of softened wood chips is al- 
lowed to blow against an impact plate to complete the breakup of the chips and the separa- 
tion of the fibers. Estimate the velocity of the discharging stream and the additional force on 
the impact plate shortly after the discharge begins. Frictional effects inside the digester, and 
the small kinetic energy of the fluid inside the tank, may be neglected. (Note: See Problem 
7B.10 for two different methods for selecting the entrance and exit planes.) 
Answer: 2810 lb,/s (or 1275 kg/$; 10,900 lbf (or 48,500 N) 

Diameter of -7 ( 

Fig. 7B.11. Pulp digester. 

7B.12 Criterion for vapor-free flow in a pipeline. To ensure that a pipeline is completely liquid- 
filled, it is necessary that p > p,,, at every point. Apply this criterion to the system in Fig. 7.5-1, 
by using mechanical energy balances over appropriate portions of the system. 
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7C.1 End corrections in tube viscometers (Fig. 7C.1L3 In analyzing tube-flow viscometric data to 
determine viscosity, one compares pressure drop versus flow rate data with the theoretical 
expression (the Hagen-Poiseuille equation of Eq. 2.3-21). The latter assumes that the flow is 
fully developed in the region between the two planes at which the pressure is measured. In 
an apparatus such as that shown in the figure, the pressure is known at the tube exit (2) and 
also above the fluid in the reservoir (1). However, in the entrance region of the tube, the 
velocity profiles are not yet fully developed. Hence the theoretical expression relating the 
pressure drop to the flow rate is not valid. 

There is, however, a method in which the Hagen-Poiseuille equation can be used, by 
making flow measurements in two tubes of different lengths, LA and LB; the shorter of the two 
tubes must be long enough so that the velocity profiles are fully developed at the exit. Then 
the end section of the long tube, of length L, - LA, will be a region of fully developed flow. If 
we knew the value of Po - 9, for this region, then we could apply the Hagen-Poiseuille 
equation. 

Show that proper combination of the mechanical energy balances, written for the sys- 
tems 1-2,34, and 0 4  gives the following expression for 9, - 9, when each viscometer has 
the same flow rate. 

where 6 0  = po + pgz,. Explain carefully how you would use Eq. 7C.1-1 to analyze experimen- 
tal measurements. Is Eq. 7C.1-1 valid for ducts with noncircular, uniform cross section? 

Run A Run B 

Plane 3 

Fig. 7C.1. Two tube viscometers with 
the same flow rate and the same exit 
pressure. The pressures pA and pB are 

Plane 4 maintained by an inert gas. 

7D.1 Derivation of the macroscopic balances from the equations of change. Derive the macro- 
scopic mass and momentum balances by integrating the equations of continuity and motion 
over the flow system of Fig. 7.0-1. Follow the procedure given in 97.8 for the macroscopic me- 
chanical energy balance, using the Gauss divergence theorem and the Leibniz formula. 

A. G. Fredrickson, PhD Thesis, University of Wisconsin (1959); Principles and Applications of 
Rheology, Prentice-Hall, Englewood Cliffs, N.J. (1964), 59.2. 
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Polymeric Liquids 
8 . 1  Examples of the behavior of polymeric liquids 

98.2 Rheometry and material functions 

58.3 Non-Newtonian viscosity and the generalized Newtonian models 

58.4' Elasticity and the linear viscoelastic models 

58.5. The corotational derivatives and the nonlinear viscoelastic models 

58.6. Molecular theories for polymeric liquids 

In the first seven chapters we have considered only Newtonian fluids. The relations be- 
tween stresses and velocity gradients are described by Eq. 1.1-2 for simple shear flow 
and by Eq. 1.2-6 (or Eq. 1.2-7) for arbitrary time-dependent flows. For the Newtonian 
fluid, two material parameters are needed-the two coefficients of viscosity p and K- 

which depend on temperature, pressure, and composition, but not on the velocity gradi- 
ents. All gases and all liquids composed of "small" molecules (up to molecular weights 
of about 5000) are accurately described by the Newtonian fluid model. 

There are many fluids that are not described by Eq. 1.2-6, and these are called non- 
Newtonian fluids. These structurally complex fluids include polymer solutions, polymer 
melts, soap solutions, suspensions, emulsions, pastes, and some biological fluids. In this 
chapter we focus on polymeric liquids. 

Because they contain high-molecular-weight molecules with many internal degrees 
of freedom, polymer solutions and molten polymers have behavior qualitatively differ- 
ent from that of Newtonian fluids. Their viscosities depend strongly on the velocity gra- 
dients, and in addition they may display pronounced "elastic effects." Also in the steady 
simple shear flow between two parallel plates, there are nonzero and unequal normal 
stresses (rxx, rYY, and T,,) that do not arise in Newtonian fluids. In 58.1 we describe some 
experiments that emphasize the differences between Newtonian and polymeric fluids. 

In dealing with Newtonian fluids the science of the measurement of viscosity is 
called viscomety, and in earlier chapters we have seen examples of simple flow systems 
that can be used as viscometers (the circular tube, the coneplate system, and coaxial cylin- 
ders). To characterize non-Newtonian fluids we have to measure not only the viscosity, 
but the normal stresses and the viscoelastic responses as well. The science of 
measurement of these properties is called rheometry, and the instruments are called 
rheometers. We treat this subject briefly in 58.2. The science of rheology includes all aspects 
of the study of deformation and flow of non-Hookean solids and non-Newtonian liquids. 

After the first two sections, which deal with experimental facts, we turn to the pre- 
sentation of various non-Newtonian "models" (that is, empirical expressions for the 
stress tensor) that are commonly used for describing polymeric liquids. In 58.3 we start 
with the generalized Newtonian models, which are relatively simple, but which can describe 
only the non-Newtonian viscosity (and not the viscoelastic effects). Then in s8.4 we give 
examples of linear viscoelastic models, which can describe the viscoelastic responses, but 
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only in flows with exceedingly small displacement gradients. Next in s8.5 we give several 
nonlinear viscoelastic models, and these are intended to be applicable in all flow situations. 
As we go from elementary to more complicated models, we enlarge the set of observed 
phenomena that we can describe (but also the mathematical difficulties). Finally in 58.6 
there is a brief discussion about the kinetic theory approach to polymer fluid dynamics. 

Polymeric liquids are encountered in the fabrication of plastic objects, and as addi- 
tives to lubricants, foodstuffs, and inks. They represent a vast and important class of liq- 
uids, and many scientists and engineers must deal with them. Polymer fluid dynamics, 
heat transfer, and diffusion form a rapidly growing part of the subject of transport phe- 
nomena, and there are many textbooks,' treatises; and journals devoted to the subject. 
The subject has also been approached from the kinetic theory standpoint, and molecular 
theories of the subject have contributed much to our understanding of the mechanical, 
thermal, and diffusional behavior of these fluids3 Finally, for those interested in the his- 
tory of the subject, the reader is referred to the book by Tanner and Waltem4 

8 . 1  EXAMPLES OF THE BEHAVIOR OF POLYMERIC LIQUIDS 

In this section we discuss several experiments that contrast the flow behavior of New- 
tonian and polymeric fluids.' 

Steady-State Laminar Flow in Circular Tubes 

Even for the steady-state, axial, laminar flow in circular tubes, there is an important dif- 
ference between the behavior of Newtonian liquids and that of polymeric liquids. For 
Newtonian liquids the velocity distribution, average velocity, and pressure drop are 
given by Eqs. 2.3-18,2.3-20, and 2.3-21, respectively. 

For polymeric liquids, experimental data suggest that the following equations are 
reasonable: 

where n is a positive parameter characterizing the fluid, usually with a value less than 
unity. That is, the velocity profile is more blunt than it is for the Newtonian fluid, for 
which n = 1. It is further found experimentally that 

The pressure drop thus increases much less rapidly with the mass flow rate than for 
Newtonian fluids, for which the relation is linear. 

A. S. Lodge, Elastic Liquids, Academic Press, New York (1964); R. B. Bird, R. C. Armstrong, and 
0. Hassager, Dynamics of Polymeric Liquids, Vol. 1 ., Fluid Mechanics, Wiley-Interscience, New York, 2nd 
edition (1987); R. I. Tanner, Engineering Rheology, Clarendon Press, Oxford (1985). 

H. A. Barnes, J. F Hutton, and K. Walters, A n  Introduction to Rheology, Elsevier, Amsterdam (1989); 
H. Giesekus, Phanomenologische Rheologie: Eine Einfiihrung, Springer Verlag, Berlin (1994). Books 
emphasizing the engineering aspects of the subject include Z. Tadmor and C. G. Gogos, Principles of 
Polymer Processing, Wiley, New York (1979), D. G. Baird and D. I. Collias, Polymer Processing: Principles 
and Design, Butterworth-Heinemann, Boston (1995), J. Dealy and K. Wissbrun, Melt Rheology and its RoIe 
in Plastics Processing, Van Nostrand Reinhold, New York (1990). 

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 2, 
Kinetic Theoy,  Wiley-Interscience, New York, 2nd edition (1987); C. F. Curtiss and R. B. Bird, Adv. 
Polymer Sci, 125,l-101 (1996) and J. Chem. Phys. 111,10362-10370 (1999). 

R. I. Tanner and K. Walters, Rheology: A n  Historical Perspective, Elsevier, Amsterdam (1998). 
More details about these and other experiments can be found in R. B. Bird, R. C. Armstrong, and 

0. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Dynamics, Wiley-Interscience, New York, 2nd edition 
(1987), Chapter 2. See also A. S. Lodge, Elastic Liquids, Academic Press, New York (19641, Chapter 10. 
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Fig. 8.1-1. Laminar flow in a circular tube. 
The symbols @ (Newtonian liquid) and @ 
(polymeric liquid) are used in this and the 
next six figures. 

In Fig. 8.1-1 we show typical velocity profiles for laminar flow of Newtonian and 
polymeric fluids for the same maximum velocity. This simple experiment suggests that 
the polymeric fluids have a viscosity that depends on the velocity gradient. This point 
will be elaborated on in s8.3. 

For laminar flow in tubes of noncircular cross section, polymeric liquids exhibit sec- 
ondary flows superposed on the axial motion. Recall that for turbulent Newtonian flows 
secondary flows are also observed-in Fig. 5.1-2 it is shown that the fluid moves toward 
the corners of the conduit and then back in toward the center. For laminar flow of poly- 
meric fluids, the secondary flows go in the opposite direction-from the corners of the 
conduit and then back toward the walls.' In turbulent flows the secondary flows result 
from inertial effects, whereas in the flow of polymers the secondary flows are associated 
with the "normal stresses." 

Recoil after Cessation of Steady-State Flow in a Circular Tube 

We start with a fluid at rest in a circular tube and, with a syringe, we "draw" a dye line 
radially in the fluid as shown in Fig. 8.1-2. Then we pump the fluid and watch the dye 
d e f ~ r r n . ~  

For a Newtonian fluid the dye line deforms into a continuously stretching parabola. 
If the pump is turned off, the dye parabola stops moving. After some time diffusion oc- 
curs and the parabola begins to get fuzzy, of course. 

For a polymeric liquid the dye line deforms into a curve that is more blunt than a 
parabola (see Eq. 8.1-1). If the pump is stopped and the fluid is not axially constrained, 
the fluid will begin to "recoil" and will retreat from this maximum stretched shape; that 

- 
Pumping 
stopped 

here Fig. 8.1-2. Constrained recoil after ces- 
sation of flow in a circular tube, ob- 
served in polymeric liquids, but not in 
Newtonian liquids. 

B. Gervang and P. S. Larsen, J. Non-Newtonian Fluid Mech., 39,217-237 (1991). 
For the details of this experiment see N. N. Kapoor, M.S. thesis, University of Minnesota, 

Minneapolis (1964), as well as A. G. Fredrickson, Principles and Applications of Rheology, Prentice-Hall, 
Englewood Cliffs, N.J. (1964), p. 120. 
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is, the fluid snaps back somewhat like a rubber band. However, whereas a rubber band 
returns to its original shape, the fluid retreats only part way toward its original configu- 
ration. 

If we permit ourselves an anthropomorphism, we can say that a rubber band has 
"perfect memory," since it returns to its initial unstressed state. The polymeric fluid, on 
the other hand, has a "fading memory," since it gradually "forgets" its original state. 
That is, as it recoils, its memory becomes weaker and weaker. 

Fluid recoil is a manifestation of elasticity, and any complete description of poly- 
meric fluids must be able to incorporate the idea of elasticity into the expression for the 
stress tensor. The theory must also include the notion of fading memory. 

"Normal Stress" Effects 

Other striking differences in the behavior of Newtonian and polymeric liquids appear in 
the "normal stress" effects. The reason for this nomenclature will be given in the next 
section. 

A rotating rod in a beaker of a Newtonian fluid causes the fluid to undergo a tan- 
gential motion. At steady state, the fluid surface is lower near the rotating rod. Intu- 
itively we know that this comes about because the centrifugal force causes the fluid to 
move radially toward the beaker wall. For a polymeric liquid, on the other hand, the fluid 
moves toward the rotating rod, and, at steady state, the fluid surface is as shown in Fig. 
8.1-3. This phenomenon is called the Weissenberg rod-climbing effect.4 Evidently some 
kinds of forces are induced that cause the polymeric liquid to behave in a way that is 
qualitatively different from that of a Newtonian liquid. 

In a closely related experiment, we can put a rotating disk on the surface of a fluid in 
a cylindrical container as shown in Fig. 8.1-4. If the fluid is Newtonian, the rotating disk 
causes the fluid to move in a tangential direction (the "primary flow"), but, in addition, 
the fluid moves slowly outward toward the cylinder wall because of the centrifugal 
force, then moves downward, and then back up along the cylinder axis. This superposed 
radial and axial flow is weaker than the primary flow and is termed a "secondary flow." 
For a polymeric liquid, the fluid also develops a primary tangential flow with a weak ra- 

Fig. 8.1-3. The free surface of a liquid near 
a rotating rod. The polymeric liquid shows opposite directions for Newtonian 
the Weissenberg rod-climbing effect. and polymeric fluids. 

Fig. 8.1-4. The secondary flows in a 
cylindrical container with a rotating 
disk at the liquid surface have the 

This phenomenon was first described by F. H. Garner and A. H. Nissan, Nature, 158,634-635 
(1946) and by R. J. Russel, Ph.D. thesis, Imperial College, University of London (1946), p. 58. The 
experiment was analyzed by K. Weissenberg, Nature, 159,310-311 (1947). 
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Fig. 8.1-5. Flow down a tilted semicylindri- ) cal trough. The convexity of the polymeric 

dial and axial secondary flow, but the latter goes in a direction opposite to that seen in 
the Newtonian fluid.5 

In another experiment we can let a liquid flow down a tilted, semi-cylindrical 
trough as shown in Fig. 8.1-5. If the fluid is Newtonian, the liquid surface is flat, except 
for the meniscus effects at the outer edges. For most polymeric liquids, however, the liquid 
surface is found to be slightly convex. The effect is small but repr~ducible.~ 

Some Other Experiments 

The operation of a simple siphon is familiar to everyone. We know from experience that, 
if the fluid is Newtonian, the removal of the siphon tube from the liquid means that the 
siphoning action ceases. However, as may be seen in Fig. 8.1-6, for polymeric liquids the 
siphoning can continue even when the siphon is lifted several centimeters above the liq- 
uid surface. This is called the tubeless siphon effect. One can also just lift some of the fluid 
up over the edge of the beaker and then the fluid will flow upward along the inside of 
the beaker and then down the outside until the beaker is nearly empty.7 

In another experiment a long cylindrical rod, with its axis in the z direction, is made 
to oscillate back and forth in the x direction with the axis parallel to the z axis (see Fig. 

Fig. 8.1-6. Siphoning continues to occur 
when the tube is raised above the surface 
of a polymeric liquid, but not so for a 

- 
\ 

Newtonian liquid. Note the swelling of 
@ "Extrudate the polymeric liquid as it leaves the 

swell" siphon tube. 

C. T. Hill, J. D. Huppler, and R. B. Bird, Chem. Eng. Sci. 21,815-817 (1966); C. T. Hill, Trans. Soc. 
Rheol., 16,213-245 (1972). Theoretical analyses have been given by J. M. Kramer and M. W. Johnson, Jr., 
Trans. Soc. Rheol. 16,197-212 (1972), and by J. P. Nirschl and W. E. Stewart, J .  Non-Newtonian Fluid Mech., 
16,233-250 (1984). 

This experiment was first done by R. I. Tanner, Trans. Soc. Rheol., 14,483-507 (19701, prompted by 
a suggestion by A. S. Wineman and A. C. Pipkin, Acta Mech. 2,104-115 (1966). See also R. I. Tanner, 
Engineering Rheology, Oxford University Press (1985), 102-105. 

D. F. James, Nature, 212,754-756 (1966). 
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Fig. 8.1-7. The "acoustical streaming" 
near a laterally oscillating rod, show- 
ing that the induced secondary flow 
goes in the opposite directions for 
Newtonian and polymeric fluids. 

8.1-7). In a Newtonian fluid, a secondary flow is induced whereby the fluid moves to- 
ward the cylinder from above and below (i.e., from the +y and -y directions, and moves 
away to the left and right (i.e., toward the -x and +x direction). For the polymeric liquid, 
however, the induced secondary motion is in the opposite direction: the fluid moves in- 
ward from the left and right along the x axis and outward in the up and down directions 
along the y axk8 

The preceding examples are only a few of many interesting experiments that have 
been performed.9 The polymeric behavior can be illustrated easily and inexpensively 
with a 0.5% aqueous solution of polyethylene oxide. 

There are also some fascinating effects that occur when even tiny quantities of poly- 
mers are present. The most striking of these is the phenomenon of drag reduction.1° With 
only parts per million of some polymers ("drag-reducing agents"), the friction loss in 
turbulent pipe flow may be lowered dramatically-by 30-50%. Such polymeric drag- 
reducing agents are used by fire departments to increase the flow of water, and by oil 
companies to lower the costs for pumping crude oil over long distances. 

For discussions of other phenomena that arise in polymeric fluids, the reader should 
consult the summary articles in Annual Review of Fluid ~echanics.~' 

98.2 RHEOMETRY AND MATERIAL FUNCTIONS 

The experiments described in 38.1 make it abundantly clear that polymeric liquids do 
not obey Newton's law of viscosity. In this section we discuss several simple, control- 
lable flows in which the stress components can be measured. From these experiments 
one can measure a number of material functions that describe the mechanical response of 
complex fluids. Whereas incompressible Newtonian fluids are described by only one 
material constant (the viscosity), one can measure many different material functions for 
non-Newtonian liquids. Here we show how a few of the more commonly used material 

C. F. Chang and W. R. Schowalter, J. Non-Newtonian Fluid Mech., 6,4747 (1979). 
The book by D. V. Boger and K. Walters, Rheological Phenomena in Focus, Elsevier, Amsterdam 

(1993), contains many photographs of fluid behavior in a variety of non-Newtonian flow systems. 
'O This is sometimes called the Toms phenomenon, since it was perhaps first reported in B. A. Toms, 

Proc. Int. Congress on Rheology, North-Holland, Amsterdam (1949). The phenomenon has also been 
studied in connection with the drag-reducing nature of fish slime [T. L. Daniel, Biol. Bull., 160,376-382 
(1981)], which is thought to explain, at least in part, "Gray's paradoxu-the fact that fish seem to be able 
to swim faster than energy considerations permit. 

" For example, M. M. Denn, Ann. Rev. Fluid Mech., 22,1334 (1990); E. S. G. Shaqfeh, Ann. Rev. Fluid 
Mech., 28,129-185 (1996); G. G. Fuller, Ann. Rev. Fluid Mech., 22,387417 (1992). 
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functions are defined and measured. Information about the actual measurement equip- 
ment and other material functions can be found e1sewhere.l~~ It is assumed throughout 
this chapter that the polymeric liquids can be regarded as incompressible. 

Steady Simple Shear Flow 

We consider now the steady shear flow between a pair of parallel plates, where the ve- 
locity profile is given by vx = jy, the other velocity components being zero (see Fig. 8.2- 
1). The quantity y, here taken to be positive, is called the "shear rate." For a Newtonian 
fluid the shear stress ryx is given by Eq. 1.1-2, and the normal stresses (rxx, r,,, and r,,) are 
all zero. 

For incompressible non-Newtonian fluids, the normal stresses are nonzero and un- 
equal. For these fluids it is conventional to define three material functions as follows: 

in which 7 is the non-Newtonian viscosity, q1 is the first normal stress coefficient, and 
q2 is the second normal stress coefficient. These three quantities-7, TI, q2-are all 
functions of the shear rate y. For many polymeric liquids q may decrease by a factor of 
as much as lo4 as the shear rate increases. Similarly, the normal stress coefficients may 
decrease by a factor of as much as lo7 over the usual range of shear rates. For polymeric 
fluids made up of flexible macromolecules, the functions q( j )  and q,(y) have been found 
experimentally to be positive, whereas !P,(y) is almost always negative. It can be shown 
that for positive TI($ the fluid behaves as though it were under tension in the flow (or 
X) direction, and that the negative !P,(y) means that the fluid is under tension in the 
transverse (or z )  direction. For the Newtonian fluid 7 = p, V, = 0, and q2 = 0. 

The strongly shear-ratedependent non-Newtonian viscosity is connected with the 
behavior given in Eqs. 8.1-1 to 3, as is shown in the next section. The positive 9, is pri- 
marily responsible for the Weissenberg rod-climbing effect. Because of the tangential 
flow, there is a tension in the tangential direction, and this tension pulls the fluid toward 
the rotating rod, overcoming the centrifugal force. The secondary flows in the disk-and- 
cylinder experiment (Fig. 8.1-4) can also be explained qualitatively in terms of the posi- 
tive !PI. Also, the negative !P2 can be shown to explain the convex surface shape in the 
tilted-trough experiment (Fig. 8.1-5). 

Uvver da te  moves at a constant meed 
I I  I 

I 

t 
Fig. 8.2-1. Steady simple shear flow be- 

I tween parallel plates, with shear rate j. 
!d For Newtonian fluids in this flow, r,, = - ,,.. ;, = y y  ryy = r,, = 0, but for polymeric fluids the 

normal stresses are in general nonzero 
and unequal. 

' J. R. Van Wazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow Measurement, 
Interscience (Wiley), New York (1963). 

K. Walters, Rheometry, Wiley, New York (1975). 
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C- Upper plate oscillates with + Fig. 8.2-2. Small-amplitude oscillatory 
motion. For small plate spacing and 
highly viscous fluids, the velocity pro- 

vJy, t )  = jloy cos ot file may be assumed to be linear. 

Many ingenious devices have been developed to measure the three material func- 
tions for steady shearing flow, and the theories needed for the use of the instruments are 
explained in detail el~ewhere.~ See Problem 8C.1 for the use of the cone-and-plate instru- 
ment for measuring the material functions. 

Small-Amplitude Oscillatory Motion 

A standard method for measuring the elastic response of a fluid is the small-amplitude 
oscillatory shear experiment, depicted in Fig. 8.2-2. Here the top plate moves back and 
forth in sinusoidal fashion, and with a tiny amplitude. If the plate spacing is extremely 
small and the fluid has a very high viscosity, then the velocity profile will be nearly lin- 
ear, so that v,(y, t) = joy cos ot, in which jO, a real quantity, gives the amplitude of the 
shear rate excursion. 

The shear stress required to maintain the oscillatory motion will also be periodic in 
time and, in general, of the form 

T~~ = - q' yo cos of - q"jO sin wt (8.2-4) 

in which 77' and q" are the components of the complex viscosity, q* = q' - iq", which is a 
function of the frequency. The first (in-phase) term is the "viscous response," and the 
second (out-of-phase) term is the "elastic response." Polymer chemists use the curves of 
q'(w) and q"(o) (or the storage and loss moduli, G' = q"w and G = q'o) for "characteriz- 
ing" polymers, since much is known about the connection between the shapes of these 
curves and the chemical s t r~cture .~  For the Newtonian fluid, q' = p and 77'' = 0. 

Steady-State Elongational Flow 

A third experiment that can be performed involves the stretching of the fluid, in which 
the velocity distribution is given by v, = I:z, v, = -$Ex, and vy = -$4y (see Fig. 8.2-31, 
where the positive quantity I: is called the "elongation rate." Then the relation 

defines the elongational viscosity 7, which depends on I:. When I: is negative, the flow is 
referred to as biaxial stretching. For the Newtonian fluid it can be shown that 7 = 3p, and 
this is sometimes called the "Trouton viscosity." 

< 

Fig. 8.2-3. Steady elongational flow 
1 .  1 .  vZ=EZ, vx=--EX, v =- -EY 
2 Y 2 with elongation rate E = dv,/dz. 

J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 3rd edition (1980). 
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Fig. 8.2-4. The material functions q($, 
ql(j), qf(w), and $(w) for a 1.5% poly- 
acrylamide solution in a 50/50 mixture 
of water and glycerin. The quantities 7, 
qt, and 7" are given in Pa - s, and 9, in 
Pa s2. Both j and o are given in s-'. The 
data are from J. D. Huppler, E. Ashare, 
and L. Holmes, Trans. Soc. Rheol., 11, 
159-179 (1967), as replotted by 
J. M. Wiest. The oscillatory normal 
stresses have also been studied ex- 
perimentally and theoretically (see 
M. C. Williams and R. B. Bird, Ind. 
Eng. Chem. Fundam., 3/42-48 (1964); 
M. C. Williams, J.  Chern. Phys., 42, 
2988-2989 (1965); E. B. Christiansen 
and W. R. Leppard, Trans. Soc. Xheol., 
18/65-86 (1974), in which the ordinate 
of Fig. 15 should be multiplied by 39.27. 

log j or log w 

The elongational viscosity 77 cannot be measured for all fluids, since a steady-state 
elongational flow cannot always be attained.4 

The three experiments described above are only a few of the rheometric tests that 
can be performed. Other tests include stress relaxation after cessation of flow, stress 
growth at the inception of flow, recoil, and creep-each of which can be performed in 
shear, elongation, and other types of flow. Each experiment results in the definition of 
one or more material functions. These can be used for fluid characterization and also for 
determining the empirical constants in the models described in gs8.3 to 8.5. 

Some sample material functions are displayed in Figs. 8.2-4 to 8.2-6. Since there 
is a wide range of complex fluids, as regards chemical structure and constitution, 

Fig. 8.2-5. Dependence of the second normal stress co- 
efficient on shear rate for a 2.5% solution of polyacry- 
lamide in a 50/50 mixture of water and glycerin. The 
quantity q2 is given in Pa. s2, and o is in s-l. The data 
of E. B. Christiansen and W. R. Leppard, Trans. Soc. 
Rheol., 18,6546 (1974), have been replotted by 
J. M. Wiest. 

C. J. S. Petrie, Elongational Flows, Pitman, London (1979); J. Meissner, Chem. Engr. Commun., 33, 
159-180 (1985). 
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log i: 
(a) 

-3 -2 -1 0 

log (-a 
(b) 

Fig. 8.2-6. (a) Elongational viscosity for uniaxial stretching of low- and high-density polyeth- 
ylene. [From H. Miinstedt and H. M. Laun, Rheol. Acta, 20,211-221 (1981).1 (b)  Elongational 
viscosity for biaxial stretching of low-density polyethylene, deduced from flow-birefringence 
data. [From J. A. van Aken and H. Janeschitz-Kriegl, Rheol. Acta, 20,419432 (1981).] In both 
graphs the quantity 77 is given in Pa . s and i. is in s-l. 

there are many types of mechanical responses in these various experiments. More 
complete discussions of the data obtained in rheometric experiments are given else- 
where." 

58.3 NON-NEWTONIAN VISCOSITY AND THE 
GENERALIZED NEWTONIAN MODELS 

This is the first of three sections devoted to empirical stress tensor expressions for non- 
Newtonian fluids. One might say, very roughly, that these three sections satisfy three 
different groups of people: 

s8.3 The generalized Newtonian models are primarily used to describe steady-state 
shear flows and have been widely used by engineers for designing flow systems. 

58.4 The linear viscoelastic models are primarily used to describe unsteady-state flows 
in systems with very small displacement gradients and have been used mainly 
by chemists interested in understanding polymer structure. 

58.5 The nonlinear viscoelastic models represent an attempt to describe all types of 
flow (including the two listed above) and have been developed largely by 
physicists and applied mathematicians interested in finding an all-inclusive theory. 

Actually the three classes of models are interrelated, and each is important for understand- 
ing the subject of non-Newtonian flow. In the following discussion of non-Newtonian 
models, we assume throughout that the fluids are incompressible. 

The generalized Newtonian models1 discussed here are the simplest of the three types of 
models to be discussed. However, they can describe only the non-Newtonian viscosity, 
and none of the normal stress effects, time-dependent effects, or elastic effects. Nonethe- 

R. B. Bird, R. C .  Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, 
Wiley-Interscience, 2nd edition (1987). 

' K. Hohenemser and W. Prager, Zeits. f. Math. u.  Mech., 12,216-226 (1932); J .  G. Oldroyd, Proc. 
Camb. Phil. Soc., 45,595-611 (1949), and 47,410-418 (1950). James Gardner Oldroyd (1921-1982), a 
professor at the University of Liverpool, made many contributions to the theory of non-Newtonian 
fluids, in particular his ideas on the construction of constitutive equations and the principles of 
continuum mechanics. 
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less, in many processes in the polymer industry, such as pipe flow with heat transfer, dis- 
tributor design, extrusion, and injection molding, the non-Newtonian viscosity and its 
enormous variation with shear rate are central to describing the flows of interest. 

For incompressible Newtonian fluids the expression for the stress tensor is given by 
Eq. 1.2-7 with the last term omitted: 

in which we have introduced the symbol j = Vv + (VV)~, the rate-of-strain tensor (or rate- 
of-deformation tensor). The generalized Newtonian fluid model is obtained by simply re- 
placing the constant viscosity p by the non-Newtonian viscosity v, a function of the 
shear rate, which in general can be written as the "magnitude of the rate-of-strain 
tensor" j = m; it is understood that when the square root is taken, the sign must 
be so chosen that j is a positive quantity. Then the generalized Newtonian fluid model is 

The components of the rate-of-strain tensor j can be obtained in Cartesian, cylindrical, 
and spherical coordinates from the right sides of the equations in Table B.l by omitting 
the (V . V) terms as well as the factor (-p) in the remaining terms. 

We now have to give an empiricism for the non-Newtonian viscosity function r](j). 
Dozens of such expressions have been proposed, but we mention only two here: 

(a) The simplest empiricism for ~ ( j )  is the two-parameter power law expression:2 

in which m and n are constants characterizing the fluid. This simple relation describes 
the non-Newtonian viscosity curve over the linear portion of the log-log plot of the vis- 
cosity versus shear rate for many materials (see, for example, the viscosity data in Fig. 
8.2-4). The parameter m has units of Pa sn, and n - 1 is the slope of the log r] vs. log j 
plot. Some sample values of power law parameters are given in Table 8.3-1. 

Although the power law model was proposed as an empirical expression, it will be 
seen in Eq. 8.6-11 that a simple molecular theory leads to a power law expression for 
high shear rates, with n = i. 

Table 8.3-1 Power Law Parameters for Aqueous Solutionsa 

Solution 
- - 

Temperature (K) m(Pa. sn) n(-) 

2.0% hydroxyethylcellulose 293 
313 
333 

0.5% hydroxyethylcellulose 293 
31 3 
333 

1.0% polyethylene oxide 293 
313 
333 

" R. M. Turian, Ph.D. Thesis, University of Wisconsin, Madison (1964), pp. 142-148. 

' W. Ostwald, Kolloid-Zeitschrift, 36,99-117 (1925); A. de Waele, Oil Color Chem. Assoc. J., 6,33-88 
(1923). 
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Table 8.3-2 Parameters in the Carreau Model for Some 

EXAMPLE 8.3-1 

Laminar Flow of an 
Incompressible Power 
Law Fluid in a Circular 
TU be415 

Solutions of Linear Polystyrene in 1-Chloronaphthalenea 

Properties of Parameters in Eq. 8.3-4 
solution (qm is taken to be zero) 
- 
Mu c TO A n 
(g/mol) (g/ml) (Pa. s) (s) (- - -) 

" Values of the parameters are taken from K. Yasuda, R. C. 
Armstrong, and R. E. Cohen, Rheol. Acta, 20,163-178 (1981). 

(b) A better curve fit for most data can be obtained by using the four-parameter Car- 
reau equation: which is 

in which r), is the zero shear rate viscosity, r ] ,  is the infinite shear rate viscosity, h is a pa- 
rameter with units of time, and n is a dimensionless parameter. Some sample parameters 
for the Carreau model are given in Table 8.3-2. 

We now give some examples of how to use the power law model. These are exten- 
sions of problems discussed in Chapters 2 and 3 for Newtonian  fluid^.^ 

Derive the expression for the mass flow rate of a polymer liquid, described by the power law 
model. The fluid is flowing in a long circular tube of radius R and length L, as a result of a 
pressure difference, gravity, or both. 

SOLUTION 

Equation 2.3-13 gives the shear stress distribution for any fluid in developed steady flow in a 
circular tube. Into this expression we have to insert the shear stress for the power law fluid 
(instead of using Eq. 2.3-14). This expression may be obtained from Eqs. 8.3-2 and 3 above. 

Since v, is ostulated to be a function of v alone, from Eq. B.l-13 we find that j = = 

d w e  have to choose the sign for the square root so that j will be positive. Since 
dv,/dr is negative in tube flow, we have to choose the minus sign, so that 

P. J. Carreau, Ph.D. thesis, University of Wisconsin, Madison (1968). See also K. Yasuda, 
R. C. Armstrong, and R. E. Cohen, Rheol. Acta, 20,163-178 (1981). 

For additional examples, including nonisothermal flows, see R. B. Bird, R. C. Armstrong, and 
0. Hassager, Dynamics of Polymeric Liquids, Vol. 1. Fluid Mechanics, Wiley-Interscience, New York, 2nd 
edition (1998), Chapter 4. 

M. Reiner, Deformation, Strain and Flow, Interscience, New York, 2nd edition (19601, pp. 243-245. 
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Combining Eq. 8.3-6 and 2.3-13 then gives the following differential equation for the velocity: 

After taking the nth root the equation may be integrated, and when the no-slip boundary con- 
dition at r = R is used, we get 

for the velocity distribution (see Eq. 8.1-1). When this is integrated over the cross section of 
the circular tube we get 

which simplifies to the Hagen-Poiseuille law for Newtonian fluids (Eq. 2.3-21) when n = 1 
and rn = p. Equation 8.3-9 can be used along with data on pressure drop versus flow rate to 
determine the power law parameters rn and n. 

The flow of a Newtonian fluid in a narrow slit is solved in Problem 2B.3. Find the velocity dis- 
tribution and the mass flow rate for a power law fluid flowing in the slit. 

Flow of a Power Law 
Fluid in a Narrow Slit4 SOLUTION 

The expression for the shear stress T, as a function of position x in Eq. 2B.3-1 can be taken over 
here, since it does not depend on the type of fluid. The power law formula for 7, from Eq. 8.3-3 is 

To get the velocity distribution for 0 5 x 5 B, we substitute rx, from Eq. 8.3-10 into Eq. 2B.3-1 
to get: 

Integrating and using the no-slip boundary condition at x = B gives 

Since we expect the velocity profile to be symmetric about the midplane x = 0, we can get the 
mass rate of flow as follows: 

When n = 1 and rn = p, the Newtonian result in Problem 2B.3 is recovered. Experimental 
data on pressure drop and mass flow rate through a narrow slit can be used with Eq. 8.3-14 to 
determine the power law parameters. 
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Rework Example 3.6-3 for a power law fluid. 

Tangential Annular SOLUTION 
'low of a Power Law Equations 3.6-20 and 3.6-22 remain unchanged for a non-Newtonian fluid, but in lieu of E q  
~ l u i d ~ ~ ~  3.6-21 we write the Bcomponent of the equation of motion in terms of the shear stress by 

using Table B.5: 

For the postulated velocity profile, we get for the power law model (with the help of Table B.l) 

Combining Eqs. 8.3-15 and 16 we get 

Integration gives 

Dividing by r2  and taking the nth root gives a first-order differential equation for the angular 
velocity 

This may be integrated with the boundary conditions in Eqs. 3.6-27 and 28 to give 

The (z-component of the) torque needed on the outer cylinder to maintain the motion is then 

Combining Eqs. 8.3-20 and 21 then gives 

The Newtonian result can be recovered by setting n = 1 and rn = p. Equation 8.3-22 can be used 
along with torque versus angular velocity data to determine the power law parameters rn and n. 

58.4 ELASTICITY AND THE LINEAR VISCOELASTIC MODELS 

Just after Eq. 1.2-3, in the discussion about generalizing Newton's "law of viscosity," we 
specifically excluded time derivatives and time integrals in the construction of a linear 
expression for the stress tensor in terms of the velocity gradients. In this section, we 
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allow for the inclusion of time derivatives or time integrals, but still require a linear rela- 
tion between T and j .  This leads to linear viscoelastic models. 

We start by writing Newton's expression for the stress tensor for an incompressible 
viscous liquid along with Hooke's analogous expression for the stress tensor for an in- 
compressible elastic solid:' 

Newton: 

Hooke: 

In the second of these expressions G is the elastic modulus, and u is the "displacement 
vector," which gives the distance and direction that a point in the solid has moved from 
its initial position as a result of the applied stresses. The quantity y is called the "infini- 
tesimal strain tensor." The rate-of-strain tensor and the infinitesimal strain tensor are re- 
lated by j = dy / d t .  The Hookean solid has a perfect memory; when imposed stresses are 
removed, the solid returns to its initial configuration. Hooke's law is valid only for very 
small displacement gradients, Vu. Now we want to combine the ideas embodied in Eqs. 
8.4-1 and 2 to describe viscoelastic fluids. 

The Maxwell Model 

The simplest equation for describing a fluid that is both viscous and elastic is the follow- 
ing Maxwell model:' 

Here A, is a time constant (the relaxation time) and 17, is the zero shear rate viscosity. 
When the stress tensor changes imperceptibly with time, then Eq. 8.4-3 has the form of 
Eq. 8.4-1 for a Newtonian liquid. When there are very rapid changes in the stress ten- 
sor with time, then the first term on the left side of Eq. 8.4-3 can be omitted, and when 
the equation is integrated with respect to time, we get an equation of the form of Eq. 
8.4-2 for the Hookean solid. In that sense, Eq. 8.4-3 incorporates both viscosity and 
elasticity. 

A simple experiment that illustrates the behavior of a viscoelastic liquid involves 
"silly putty." This material flows easily when squeezed slowly between the palms of the 
hands, and this indicates that it is a viscous fluid. However, when it is rolled into a ball, 
the ball will bounce when dropped onto a hard surface. During the impact the stresses 
change rapidly, and the material behaves as an elastic solid. 

The Jeffreys Model 

The Maxwell model of Eq. 8.4-3 is a linear relation between the stresses and the velocity 
gradients, involving a time derivative of the stresses. One could also include a time de- 
rivative of the velocity gradients and still have a linear relation: 

R. Hooke, Lectures de Potentia Restifutiva (1678). 
* This relation was proposed by J. C. Maxwell, Phil. Trans. Roy. Soc., A157,49-88 (18671, to 

investigate the possibility that gases might be viscoelastic. 
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This Jeffreys modep contains three constants: the zero shear rate viscosity and two time 
constants (the constant A, is called the retardation time). 

One could clearly add terms containing second, third, and higher derivatives of the 
stress and rate-of-strain tensors with appropriate multiplicative constants, to get a still 
more general linear relation among the stress and rate-of-strain tensors. This gives 
greater flexibility in fitting experimental data. 

The Generalized Maxwell Model 

Another way of generalizing Maxwell's original idea is to "superpose" equations of the 
form of Eq. 8.4-3 and write the generalized Maxwell model as 

m 
d ~ ( t )  = ~ ~ ( t )  where TL + A* ;ji h = - 7 k y  (8.4-5/61 

k= 1 

in which there are many relaxation times A, (with A, r A, 2 A,. . .) and many constants 
qk with dimensions of viscosity. Much is known about the constants in this model from 
polymer molecular theories and the extensive experiments that have been done on poly- 
meric l i q ~ i d s . ~  

The total number of parameters can be reduced to three by using the following em- 
pirical  expression^:^ 

in which 7, is the zero shear rate viscosity, A is a time constant, and a is a dimensionless 
constant (usually between 1.5 and 4). 

Since Eq. 8.4-6 is a linear differential equation, it can be integrated analytically, with 
the condition that the fluid is at rest at t = - w. Then when the various lk are summed 
according to Eq. 8.4-5, we get the integral form of the generalized Maxwell model: 

In this form, the "fading memory" idea is clearly present: the stress at time t depends on 
the velocity gradients at all past times t', but, because of the exponentials in the inte- 
grand, greatest weight is given to times t' that are near t; that is, the fluid "memory" is 
better for recent times than for more remote times in the past. The quantity within braces 
{ 1 is called the relaxation modulus of the fluid and is denoted by G(t - t'). The integral ex- 

This model was suggested by H. Jeffreys, The Earth, Cambridge University Press, 1st edition 
(1924), and 2nd edition (1929), p. 265, to describe the propagation of waves in the earth's mantle. The 
parameters in this model have been related to the structure of suspensions and emulsions by H. Frohlich 
and R. Sack, Proc. Roy. Soc., A185,415430 (1946) and by J. G. Oldroyd, Proc. Roy. Soc., AZ18,122-132 
(19531, respectively. Another interpretation of Eq. 8.4-4 is to regard it as the sum of a Newtonian solvent 
contribution ( s )  and a polymer contribution ( p ) ,  the latter being described by a Maxwell model: 

a 
T,= -q,y; T,+A,-T,= - 7 j  at P 

(8.4-4a, b) 

so that T = T, + T ~ .  Then if Eqs. 8.4-4a, 8.4-4b, and A, times the time derivative of Eq. 8.4-4a are added, we 
get the Jeffreys model of Eq. 8.44, with 7, = q, + qp and A, = (%/(q, + ?,))A,. 

* J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 3rd edition (1980). See also 
N. W. Tschoegl, The Phenommological Theory of Linear Viscoelastic Behavior, Springer-Verlag, Berlin (1989); 
and R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol.  I ,  Fluid Mechanics, 
Wiley-Interscience, New York, 2nd edition (1987), Chapter 5. 

T. W. Spriggs, Chem. Eng. Sci., 20,931-940 (1965). 
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pression in Eq. 8.4-9 is sometimes more convenient for solving linear viscoelastic prob- 
lems than are the differential equations in Eqs. 8.4-5 and 6. 

The Maxwell, Jeffreys, and generalized Maxwell models are all examples of linear 
viscoelastic models, and their use is restricted to motions with very small displacement 
gradients. Polymeric liquids have many internal degrees of freedom and therefore many 
relaxation times are needed to describe their linear response. For this reason, the general- 
ized Maxwell model has been widely used for interpreting experimental data on linear 
viscoelasticity. By fitting Eq. 8.4-9 to experimental data one can determine the relaxation 
function G(t - t'). One can then relate the shapes of the relaxation functions to the mole- 
cular structure of the polymer. In this way a sort of "mechanical spectroscopy" is devel- 
oped, which can be used to investigate structure via linear viscoelastic measurements 
(such as the complex viscosity). 

Models describing flows with very small displacement gradients might seem to 
have only limited interest to engineers. However, an important reason for studying them 
is that some background in linear viscoelasticity helps us in the study of nonlinear vis- 
coelasticity, where flows with large displacement gradients are discussed. 

Obtain an expression for the components of the complex viscosity by using the generalized 
Maxwell model. The system is described in Fig. 8.2-2. 

Small-Amplitude 
Oscillatory Motion 

We use the yx-component of Eq. 8.4-9, and for this problem the yx-component of the rate-of- 
strain tensor is 

dux j,,(t) = - = jU cos wt 
dY 

where w is the angular frequency. When this is substituted into Eq. 8.4-9, with the relaxation 
modulus (in braces) expressed as G(t - t'), we get 

t 

T, = -I-= G(t - t')? cos wt'dt' 

G(s) sin ws ds sin wt I (8.4-1 1) 

in which s = t - t'. When this equation is compared with Eq. 8.2-4, we obtain 

for the components of the complex viscosity r]* = r]' - iq". When the generalized Maxwell ex- 
pression for the relaxation modulus is introduced and the integrals are evaluated, we find that 

If the empiricisms in Eqs. 8.4-7 and 8 are used, it can be shown that both r]' and 7" decrease as 
1 / w ~ - ( ~ / 4  at very high frequencies (see Fig. 8.2-4). 
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Extend Example 4.1-3 to viscoelastic fluids, using the Maxwell model, and obtain the attenua- 
tion and phase shift in the "periodic steady state." 

Unsteady Viscoelastic 
FZOW ~ e b r  an 
Oscillating Plate 

SOLUTION 

For the postulated shearing flow, the equation of motion, written in terms of the stress tensor 
component gives 

The Maxwell model in integral form is like Eq. 8.4-9, but with a single exponential: 

Combining these two equations, we get 

d2v,(y, tr) 
p 2 = (Im {z exp[-(t - ~ Y / A , I  I dt' 

As in Example 4.1-3 we postulate a solution of the form 

where vO(y) is complex. Substituting this into Eq. 8.4-19, we get 

Removing the real operator then gives an equation for vO(y) 

Then if the complex quantity in the brackets [ I is set equal to (a + i~)', the solution to the dif- 
ferential equation is 

Multiplying this by eimt and taking the real part gives 

This result has the same form as that in Eq. 4.1-57, but the quantities a and /3 depend on fre- 
quency: 

That is, with increasing frequency, a decreases and /3 increases, because of the fluid elasticity. 
This result shows how elasticity affects the transmission of shear waves near an oscillating 
surface. 
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Note that there is an important difference between the problems in the last two ex- 
amples. In Example 8.4-1 the velocity profile is prescribed, and we have derived an ex- 
pression for the shear stress required to maintain the motion; the equation of motion was 
not used. In Example 8.4-2 no assumption was made about the velocity distribution, and 
we derived the velocity distribution by using the equation of motion. 

58.5 THE COROTATIONAL DERIVATIVES AND THE 
NONLINEAR VISCOELASTIC MODELS 

In the previous section it was shown that the inclusion of time derivatives (or time inte- 
grals) in the stress tensor expression allows for the description of elastic effects. The lin- 
ear viscoelastic models can describe the complex viscosity and the transmission of 
small-amplitude shearing waves. It can also be shown that the linear models can de- 
scribe elastic recoil, although the results are restricted to flows with negligible displace- 
ment gradients (and hence of little practical interest). 

In this section we introduce the hypothesis',2 that the relation between the stress ten- 
sor and the kinematic tensors at a fluid particle should be independent of the instanta- 
neous orientation of that particle in space. This seems like a reasonable hypothesis; if 
you measure the stress-strain relation in a rubber band, it should not matter whether 
you are stretching the rubber band in the north-south direction or the east-west direc- 
tion, or even rotating as you take data (provided, of course, that you do not rotate so 
rapidly that centrifugal forces interfere with the measurements). 

One way to implement the above hypothesis is to introduce at each fluid particle a 
corotating coordinate frame. This orthogonal frame rotates with the local instantaneous 
angular velocity as it moves along with the fluid particle through space (see Fig. 8.5-1). 
In the corotating coordinate system we can now write down some kind of relation 

\ 
Fluid particle 

at time t 
Fluid particle 

trajectory 

Fig. 8.5-1. Fixed coordinate fra_me*w$h origin at 0, and the coro- 
tating frame with unit vectors iil, &, ti3 that move with a fluid par- 
ticle and rotate with the local, instantaneous angular velocity 
;[v X V] of the fluid. 

-- 

' G. Jaumann, Grundlagen der Bewegungslehve, Leipzig (1905); Sitzungsberichte AM. Wiss. Wien, IIa, 120, 
385-530 (1911); S. Zaremba, Bull. Int. Acad. Sci., Cracovie, 594-614,614-621 (1903). Gustaf Andreas Johannes 
Jaumann (1863-1924) (pronounced "Yow-mahn") who taught at the German university in Briinn (now 
Brno), for whom the "Jaumann derivative" is named, was an important contributor to the field of 
continuum mechanics at the beginning of the twentieth century; he was the first to give the equation of 
change for entropy, including the "entropy flux" and the "rate of entropy production" (see s24.1). 

J. G. Oldroyd, Proc. Roy. Soc., A245,27&297 (1958). For an extension of the corotational idea, see 
L. E. Wedgewood, Rheol. Acfa, 38,91-99 (1999). 
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between the stress tensor and the rate-of-strain tensor; for example, we can write the Jef- 
freys model and then add some additional nonlinear terms for good measure: 

in which the circumflexes (A )  on the tensors indicate that their components are those 
with respect to the corotating coordinate frame. In Eq. 8.5-1 the constants A,, A,, p,, p,, 
and p, all have dimensions of time. 

Since the equations of continuity and motion are written for the usual xyz-coordinate 
frame, fixed in space, it seems reasonable to transform Eq. 8.5-1 from the 492 frame into 
the xyz frame. This is a purely mathematical problem, which was worked out long ago,' 
and the solution is well known. It can be shown that the partial time derivatives d / d t ,  
d2/dt2, . . . are changed into corotational (or Jaumann14) time derivatives 9/%, 912/9t', . . .  
The corotational time derivative of a second-order tensor is defined as 

in which w = Vv - (Vv)+ is the vorticity tensor, and D/Dt is the substantial time deriva- 
tive defined in 53.5. The tensor dot products appearing in Eq. 8.5-1, with components in 
the f 9 2  frame, transform into the corresponding dot products, with the components 
given in the xyz frame. 

When transformed into the xyz frame, Eq. 8.5-1 becomes 

which is the Oldroyd 6-constant model. This model, then, has no dependence on the local 
instantaneous orientation of the fluid particles in space. It should be emphasized that Eq. 
8.5-3 is an empirical model; the use of the corotating frame guarantees only that the in- 
stantaneous local rotation of the fluid has been "subtracted off." 

With proper choice of these parameters most of the observed phenomena in poly- 
mer fluid dynamics can be described qualitatively. As a result this model has been widely 
used in exploratory fluid dynamics calculations. A 3-constant simplification of Eq. 8.5-3 
with F~ = Alf p2 = hZf and p, = 0 is called the Oldroyd-B model. In Example 8.5-1 we show 
what Eq. 8.5-3 gives for the material functions defined in 58.2. 

Another nonlinear viscoelastic model is the 3-constant Giesekus model," which con- 
tains a term that is quadratic in the stress components: 

Here h is a time constant, v0 is the zero shear rate viscosity, and a is a dimensionless pa- 
rameter. This model gives reasonable shapes for most material functions, and the analyt- 
ical expressions for them are summarized in Table 8.5-1. Because of the (7 .T) term, they 

J. D. Goddard and C. Miller, Rheol. Acta, 5,177-184 (1966). 
R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 2,  Fluid Mechanics, 

Wiley, New York, 1st edition (19771, Chapters 7 and 8; the corotational models are not discussed in the 
second edition of this book, where emphasis is placed on the use of "convected coordinates" and the 
"codeforming" frame. For differential models, either the corotating or codeforming frame can be used, 
but the former is simpler conceptually and mathematically. 

H. Giesekus, J. Non-Newtonian Fluid Mech., 11,69-109 (1982); 12,367-374; Rheol. Acta, 21,366-375 
(1982). See also R. B. Bird and J. M. Wiest, 1. Rheol., 29,519-532 (1985), and R. 8. Bird, R. C. Armstrong, 
and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Dynamics, Wiley-Interscience, New York, 
2nd edition (1987),§7.3(~). 
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Table 8.5-1 Material Functions for the Giesekus Model 

Steady shear flow: 

q -  - - 
(1 - f )2 

' lo  1 + (1 - 2a) f  

1 f f 1 -- 
2770A d l  - f )  (A y)2 

where 

Small-amplitude oscillatory shear flow: 

- - - 1 rll1 - and - - Aw 
To 1 + rlo 1 + ( A W ) ~  

Steady elongational flow: 

are not particularly simple. Superpositions of Giesekus models can be made to describe 
the shapes of the measured material functions almost q ~ a n t i t a t i v e l ~ . ~  The model has 
been used widely for fluid dynamics calculations. 

EXAMPLE 8.5-1 

Material Functions for 
the Oldroyd 6-Constan 
~ o d e l ~ l ~  

Obtain the material functions for steady shear flow, small amplitude oscillatory motion, and 
steady uniaxial elongational flow. Make use of the fact that in shear flows, the stress tensor 
components 7,, and 7y, are zero, and that in elongational flow, the off-diagonal elements of 

t the stress tensor are zero (these results are obtained by symmetry arguments7). 

SOLUTION 

(a) First we simplify Eq. 8.5-3 for unsteady shear pow, with the velocity distribution v,(y, t )  = 
j ( t ) y .  By writing out the components of the equation we get 

-- - - - -  - - 

W. R. Burghardt, J.-M. Li, B. Khomarni, and B. Yang, J .  Rheol., 147,149-165 (1999). 
See, for example, R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, 

Vol. I, Fluid Dynamics, Wiley-Interscience, New York, 2nd edition (1987), 33.2. 
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(b) For steady-state shear flow, Eqs. 8.5-7 gives T,, = 0, and the other three equations give a set 
of simultaneous algebraic equations that can be solved to get the remaining stress tensor com- 
ponents. Then with the definitions of the material functions in 98.2, we can obtain 

The model thus gives a shear-rate-dependent viscosity as well as shear-rate-dependent normal- 
stress coefficients. (For the Oldroyd-B model the viscosity and normal-stress coefficients are 
independent of the shear rate.) For most polymers the non-Newtonian viscosity decreases 
with the shear rate, and for such fluids we conclude that 0 < a2 < u,. Moreover, since mea- 
sured values of always increase monotonically with shear rate, we also require that u2 > 
$u1. Although the model gives shear-rate-dependent viscosity and normal stresses, the shapes 
of the curves are not in satisfactory agreement with experimental data over a wide range of 
shear rates. 

If p1 < Al and p2 < A2, the second normal-stress coefficient has the opposite sign of the 
first normal-stress coefficient, in agreement with the data for most polymeric liquids. Since 
the second normal-stress coefficient is much smaller than the first for many fluids and in 
some flows plays a negligible role, setting p, = A, and p2 = A 2  may be reasonable, thereby re- 
ducing the number of parameters from 6 to 4. 

This discussion shows how to evaluate a proposed empirical model by comparing the 
model predictions with experimental data obtained in rheometric experiments. We have also 
seen that the experimental data may necessitate restrictions on the parameters. Clearly this is 
a tremendous task, but it is not unlike the problem that the thermodynamicist faces in devel- 
oping empirical equations of state for mixtures, for example. The rheologist, however, is deal- 
ing with tensor equations, whereas the thermodynamicist is concerned only with scalar 
equations. 

(c) For small-amplitude oscillatoy motion the nonlinear terms in Eqs. 8.5-5 to 8 may be omitted, 
and the material functions are the same as those obtained from the Jeffreys model of linear 
viscoelasticity: 

For 7' to be a monotone decreasing function of the frequency and for q" to be positive (as seen 
in all experiments), we have to require that A, < A,. Here again, the model gives qualitatively 
correct results, but the shapes of the curves are not correct. 

(d) For the steady elongational flow defined in 98.2, the Oldroyd 6-constant model gives 

Since, for most polymers, the slope of the elongational viscosity versus elongation rate curve 
is positive at L. = 0, we must require that p1 > p2. Equation 8.5-14 predicts that the elonga- 
tional viscosity may become infinite at some finite value of the elongation rate; this may pos- 
sibly present a problem in fiber-stretching calculations. 

Note that the time constants A,  and A, do not appear in the expression for elongational vis- 
cosity, whereas the constants po, pl, and p2 do not enter into the components of the complex 
viscosity in Eqs. 8.5-14 and 15. This emphasizes the fact that a wide range of rheometric experi- 
ments is necessary for determining the parameters in an empirical expression for the stress 
tensor. To put it in another way, various experiments emphasize different parts of the model. 
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58.6 MOLECULAR THEORIES FOR POLYMERIC LIQUIDS'~~  

It should be evident from the previous section that proposing and testing empirical 
expressions for the stress tensor in nonlinear viscoelasticity is a formidable task. Recall 
that, in turbulence, seeking empirical expressions for the Reynolds stress tensor is 
equally daunting. However, in nonlinear viscoelasticity we have the advantage that we 
can narrow the search for stress tensor expressions considerably by using molecular 
theory. Although the kinetic theory of polymers is considerably more complicated than 
the kinetic theory of gases, it nonetheless guides us in suggesting possible forms for the 
stress tensor. However, the constants appearing in the molecular expressions must still 
be determined from rheometric measurements. 

The kinetic theories for polymers can be divided roughly into two classes: network 
theories and single-molecule theories: 

a. The network theories3 were originally developed for describing the mechanical 
properties of rubber. One imagines that the polymer molecules in the rubber are joined 
chemically during vulcanization. The theories have been extended to describe molten 
polymers and concentrated solutions by postulating an ever-changing network in which 
the junction points are temporary, formed by adjacent strands that move together for a 
while and then gradually pull apart (see Fig. 8.6-1). It is necessary in the theory to make 
some empirical statements about the rates of formation and rupturing of the junctions. 

b. The single-molecule theories1 were originally designed for describing the poly- 
mer molecules in a very dilute solution, where polymer-polymer interactions are infre- 
quent. The molecule is usually represented by means of some kind of "bead spring" 
model, a series of small spheres connected by linear or nonlinear springs in such a way 
as to represent the molecular architecture; the bead spring model is then allowed to 
move about in the solvent, with the beads experiencing a Stokes' law drag force by the 
solvent as well as being buffeted about by Brownian motion (see Fig. 8.6-2a). Then from 
the kinetic theory one obtains the "distribution function" for the orientations of the mol- 
ecules (modeled as bead spring structures); once this function is known, various macro- 
scopic properties can be calculated. The same kind of theory may be applied to 
concentrated solutions and molten polymers by examining the motion of a single bead 
spring model in the "mean force field" exerted by the surrounding molecules. That is, 

Fig. 8.6-1. Portion of a polymer network 
formed by "temporary junctions," indi- 
cated here by circles. 

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 2, 
Kinetic Theory, Wiley-Interscience, New York, 2nd edition (1987). 

M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford (1986); 
J. D. Schieber, "Polymer Dynamics," in Encyclopedia of Applied Physics, Vol. 14, VCH Publishers, Inc. 
(1996), pp. 41543.  R. B. Bird and H. C. Ottinger, Ann. Rev. Phys. Chem., 43,371406 (1992). 

A. S, Lodge, Elastic Liquids, Academic Press, New York (1964); Body Tensor Fields in Continuum 
Mechanics, Academic Press, New York (1974); Understanding Elastomer Molecular Network Theory, 
Bannatek Press, Madison, Wis. (1999). 
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Fig. 8.6-2. Single-molecule bead spring models for 
(a) a dilute polymer solution, and (b)  an undiluted 
polymer (a polymer "melt" with no solvent). In 
the dilute solution, the polymer molecule can 
move about in all directions through the solvent. 
In the undiluted polymer, a typical polymer mole- 
cule (black beads) is constrained by the surround- 
ing molecules and tends to execute snakelike 
motion ("reptation") by sliding back and forth 
along its backbone direction. 

because of the proximity of the surrounding molecules, it is easier for the "beads" of the 
model to move in the direction of the polymer chain backbone than perpendicular to it. 
In other words, the polymer finds itself executing a sort of snakelike motion, called "rep- 
tation" (see Fig. 8.6-2b). 

As an illustration of the kinetic theory approach we discuss the results for a simple 
system: a dilute solution of a polymer, modeled as an elastic dumbbell consisting of two 
beads connected by a spring. We take the spring to be nonlinear and finitely extensible, 
with the force in the connecting spring being given by4 

in which His  a spring constant, Q is the end-to-end vector of the dumbbell representing 
the stretching and orientation of the dumbbell, and Qo is the maximum elongation of the 
spring. The friction coefficient for the motion of the beads through the solvent is given 
by Stokes' law as 6 = 6.rr7,a, where a is the bead radius and 7, is the solvent viscosity. Al- 
though this model is greatly oversimplified, it does embody the key physical ideas of 
molecular orientation, molecular stretching, and finite extensibility. 

When the details of the kinetic theory are worked out, one gets the following expres- 
sion for the stress tensor, written as the sum of a Newtonian solvent and a polymer con- 
tribution (see fn. 3 in ~ 8 . 4 ) : ~  

Here 

where n is the number density of polymer molecules (i.e., dumbbells), A, = 5/4H is a 
time constant (typically between 0.01 and 10 seconds), Z = 1 + (3/b)[l - (tr T ~ / ~ ~ K T ) ] ,  
and b = H Q ~ / K T  is the finite extensibility parameter, usually between 10 and 100. The 

* H. R. Warner, Jr., Ind. Eng. Chem. Fundamentals, 11,379-387 (1972); R. L. Christiansen and 
R. B. Bird, J. Nan-Newtonian Fluid Mech., 3,161-177 (1977/1978). 

R. I. Tanner, Trans. Soc. Rheol., 19,3745 (1975); R. B. Bird, P. J. Dotson, and N. L. Johnson, J. Non- 
Newtonian Fluid Mech., 7,213-235 (1980)-in the last publication, Eqs. 58-85 are in error. 
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molecular theory has thus resulted in a model with four adjustable constants: qs, AH, n, 
and b, which can be determined from rheometric experiments. Thus the molecular the- 
ory suggests the form of the stress tensor expression, and the rheometric data are used to 
determine the values of the parameters. The model described by Eqs. 8.6-2, 3, and 4 is 
called the FENE-P model (finitely extensible nonlinear elastic model, in the Peterlin ap- 
proximation) in which (Q/Qo)' in Eq. 8.6-1 is replaced by (Q2)/Qi. 

This model is more difficult to work with than the Oldroyd 6-constant model, be- 
cause it is nonlinear in the stresses. However, it gives better shapes for some of the mate- 
rial functions. Also, since we are dealing here with a molecular model, we can get 
information about the molecular stretching and orientation after a flow problem has 
been solved. For example, it can be shown that the average molecular stretching is given 
by (Q')/Q; = 1 - Z - I  where the angular brackets indicate a statistical average. 

The following examples illustrate how one obtains the material functions for the 
model and compares the results with experimental data. If the model is acceptable, then 
it must be combined with the equations of continuity and motion to solve interesting 
flow problems. This requires large-scale computing. 

Obtain the material functions for the steady-state shear flow and the steady-state elongational 
flow of a polymer described by the FENE-P model. 

Material Functions for 
the FENE-P Model SOLUTION 

(a) For steady-state shear flow the model gives the following equations for the nonvanishing 
components of the poIymer contribution to the stress tensor: 

Here the quantity Z is given by 

These equations can be combined to give a cubic equation for the dimensionless shear stress 
contribution Tvx = %,/3n~T 

in which p = (b/54) + (1/18) and q = (b/108)hHy. This cubic equation may be solved to give6 

T = -2~7'" sinh($ arcsinh qpP3'') 
YX 

(8.6-9) 

The non-Newtonian viscosity based on this function is shown in Fig. 8.6-3 along with some 
experimental data for some polymethyl-methacrylate solutions. From Eq. 8.6-9 we find for 
the limiting values of the viscosity 

For y = 0: 

For j +  m: 

Hence, at high shear rates one obtains a power law behavior (Eq. 8.3-3) with n = i. This can be 
taken as a molecular justification for use of the power law model. 

K. Rektorys, Survey of Applicable Mathematics, MIT Press, Cambridge, MA (19691, pp. 78-79. 
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Fig. 8.6-3. Viscosity and first-normal-stress difference data for polymethylmethacrylate solutions from 
D. D. Joseph, G. S. Beavers, A. Cers, C. Dewald, A. Hoger, and P. T. Than, J. Rheol., 28,325-345 (1984), along 
with the FENE-P curves for the following constants, determined by L. E. Wedgewood: 

Polymer 
concentration qo AH a b 

[%I [Pa. sl [sl [Pal [- - -1 

The quantity a =   KT was taken to be a parameter determined from the rheometric data. 

From Eq. 8.6-5 one finds that ?, is given by ?, = 2(7 - q s ) 2 / n ~ ~ ;  a comparison of this re- 
sult with experimental data is shown in Fig. 8.6-3. The second normal stress coefficient ?? for 
this model is zero. As pointed out above, once we have solved the flow problem, we can also 
get the molecular stretching from the quantity Z. In Fig. 8.6-4 we show how the molecules are 
stretched, on the average, as a function of the shear rate. 

Fig. 8.6-4. Molecular stretching as a function of shear rate y in steady shear flow, according to 
the FENE-P dumbbell model. The experimentally accessible time constant A, = [v,]q,M/RT, 
where [Q] is the zero shear rate intrinsic viscosity, is related to A, by A, = A,b/(b + 3). [From 
R. B. Bird, P. J. Dotson, and N. L. Johnson, J. Non-Newtonian Fluid Mech., 7,213-235 (1980).] 
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Fig. 8.6-5. Steady elongational 
- viscosity Tj as a function of the 

elongation rate .i according to 
the FENE-P dumbbell model. 

100 - - 
The time constant is given 

6- 3% by A, = AHb/(b + 3). [From 
3(70 - VS) - R. B. Bird, P. J. Dotson, and 

N. L. Johnson, I.  Non-Newton- 
- ion Fluid Mech., 7,213-235 

(1980).1 

0.01 0.1 1 10 100 

(b) For steady-state elongational flow we get 

This set of equations leads to a cubic equation for +, - rP,,, from which the elongational vis- 
cosity can be obtained (see Fig. 8.6-5). Limited experimental data on polymer solutions indi- 
cate that the shapes of the curves are probably approximately correct. 

The limiting expressions for the elongational viscosity are 

For E = 0: 

For E -+ m: 

Having found the stresses in the system, we can then get the average stretching of the mole- 
cules as a function of the elongation rate; this is shown in Fig. 8.6-6. 

It is worth noting that for a typical value of b-say, 50-the elongational viscosity can in- 
crease by a factor of about 30 as the elongation rate increases, thereby having a profound ef- 
fect on flows in which there is a strong elongational component.7 

The FENE-P and Giesekus models have been used successfully to describe the details of turbulent 
drag reduction, which is closely related to elongational viscosity, by R. Sureshkumar, A. N. Beris and 
R. A. Handler, Phys. Fluids, 9,743-755 (1997), and C. D. Dimitropoulos, R. Sureshkumar, and A. N. Beris, 
J. Non-Newtonian Fluid Mechanics, 79,433-468 (1998). 

Fig. 8.6-6. Molecular stretching as 
a function of the elongation rate .& 
in steady elongational flow, as 
predicted by the FENE-P dumb- 
bell model. The time constant is 
givenbyhe=A,b/(b+3).[From 
R. B. Bird, P. J. Dotson, and 
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QUESTIONS FOR DISCUSSION 

Compare the behavior of Newtonian liquids and polymeric liquids in the various experi- 
ments discussed in ss8.1 and 8.2. 
Why do we deal only with differences in normal stresses for incompressible liquids (see Eqs. 
8.2-2 and 3)? 
In Fig. 8.2-2 the postulated velocity profile is linear in y. What would you expect the velocity 
distribution to look like if the gap between the plates were not small and the fluid had a very 
low viscosity? 
How is the parameter n in Eq. 8.3-3 related to the parameter n in Eq. 8.3-4? How is it related to 
the slope of the non-Newtonian velocity curve from the dumbbell kinetic theory model in 
@.6? 
What limitations have to be placed on use of the generalized Newtonian models and the lin- 
ear viscoelastic models? 
Compare and contrast Examples 8.4-1 and 2 regarding the geometry of the flow system and 
the assumptions regarding the velocity profiles. 
To what extent does the Oldroyd model in Eq. 8.5-3 include a generalized Newtonian model 
and a linear viscoelastic model? Can the Oldroyd model describe effects that are not de- 
scribed by these other models? 
Why is it necessary to put restrictions on the parameters in the Oldroyd model? What is the 
relation between these restrictions and the subject of rheometry? 
What advantages do molecular expressions for the stress tensor have over the empirical ex- 
pressions? 
For what kinds of industrial problems would you use the various kinds of models described 
in this chapter? 
Why may the power law model be unsatisfactory for describing the axial flow in an annulus? 

PROBLEMS 8A.1 Flow of a polyisoprene solution in a pipe. A 13.5% (by weight) solution of polyisoprene in 
isopentane has the following power law parameters at 323 K: n = 0.2 and rn = 5 X lo3 Pa. sn. 
It is being pumped (in laminar flow) through a horizontal pipe that has a length of 10.2 m and 
an internal diameter of 1.3 cm. It is desired to use another pipe with a length of 30.6 m with 
the same mass flow rate and the same pressure drop. What should the pipe radius be? 

8A.2 Pumping of a polyethylene oxide solution. A 1% aqueous solution of polyethylene oxide at 
333 K has power law parameters n = 0.6 and rn = 0.50 Pa . sn. The solution is being pumped 
between two tanks, with the first tank at pressure p,  and the second at pressure p,. The pipe 
carrying the solution has a length of 14.7m and an internal diameter of 0.27 m. 

It has been decided to replace the single pipe by a pair of pipes of the same length, but 
with smaller diameter. What diameter should these pipes have so that the mass flow rate will 
be the same as in the single pipe? 

8B.1 Flow of a polymeric film. Work the problem in s2.2 for the power law fluid. Show that the 
result simplifies properly to the Newtonian result. 

8B.2 Power law flow in a narrow slit. In Example 8.3-2 show how to derive the velocity distribu- 
tion for the region -B 5 x 5 0. Is it possible to combine this result with that in Eq. 8.3-13 into 
one equation? 

8B.3 Non-Newtonian flow in an annulus. Rework Problem 2B.7 for the annular flow of a power 
law fluid with the flow being driven by the axial motion of the inner cylinder. 
(a) Show that the velocity distribution for the fluid is 
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(b) Verify that the result in (a) simplifies to the Newtonian result when n goes to unity. 
(c) Show that the mass flow rate in the annular region is given by 

(dl What is the mass flow rate for fluids with n = i? 
(e) Simplify Eq. 8B.3-2 for the Newtonian fluid. 

8B.4 Flow of a polymeric liquid in a tapered tube. Work Problem 2B.10 for a power law fluid, 
using the lubrication approximation. 

88.5 Slit flow of a Bingham fluid.' For thick suspensions and pastes it is found that no flow oc- 
curs until a certain critical stress, the yield stress, is reached, and then the fluid flows in such a 
way that part of the stream is in "plug flow." The simplest model of a fluid with a yield value 
is the Bingham model: 

r 
when r 5 TO 

70 when r 2 TO 

Y 

in which r0 is the yield stress, the stress below which no flow occurs, and po is a parameter 
with units of viscosity. The quantity r = is the magnitude of the stress tensor. 

Find the mass flow rate in a slit for the Bingham fluid (see Problem 2B.3 and Example 
8.3-2). The expression for the shear stress r,, as a function of position x in Eq. 2B.3-1 can be 
taken over here, since it does not depend on the type of fluid. We see that IT,,( is just equal to 
the yield stress r0 at x = kxo, where xo is defined by 

(a) Show that the upper equation of Eq. 8B.5-1 requires that dv,/dx = 0 for 1x1 5 x,, since 
rxz = -qdv,/dx and r,, is finite; this is then the "plug-flow" region. Then show that, since for 
x positive, y = -dv,/dx, and for x negative, j = +dv,/dx, the lower equation of Eq. 8B.5-1 
requires that 

-&(dv,/dx) + r0 for +xo 5 x 5 +B 
7x2 = -p&dv,/dx) - 7, for -B s x 5 -xo 

(8B.5-3) 

(b) To get the velocity distribution for +xo 5 x 5 +B, substitute the upper relation from Eq. 
8B.5-3 into Eq. 2B.3-1 and get the differential equation for v,. Show that this may be integrated 
with the boundary condition that the velocity is zero at x = B to give 

What is the velocity in the range 1x1 5 x,? Draw a sketch of v,(x). 
(c) The mass flow rate can then be obtained from 

- - - 

E. C. Bingham, Fluidity and Plasficity, McGraw-Hill, New York (19221, pp. 215-218. See R. 8. Bird, 
G. C. Dai, and B. J. Yarusso, Reviews in Chemical Engineering, 1,l-70 (1982) for a review of models with a 
yield stress. 
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The integration by parts allows the integration to be done more easily. Show that the final 
result is 

Verlfy that, when the yield stress goes to zero, this result simplifies to the Newtonian fluid 
result in Problem 2B.3. 

Derivation of the Buckingham-Reiner e q u a t i ~ n . ~  Rework Example 8.3-1 for the Bingham 
model. First find the velocity distribution. Then show that the mass rate of flow is given by 

in which 7, = (9, - 9,)R/2L is the shear stress at the tube wall. This expression is valid only 
when rR z TO. 

The complex-viscosity components for the Jeffreys fluid. 
(a) Work Example 8.4-1 for the Jeffreys model of Eq. 8.4-4, and show that the results are Eqs. 
8.5-12 and 13. How are these results related to Eqs. (F) and (G) of Table 8.5-I? 
(b) Obtain the complex-viscosity components for the Jeffreys model by using the superposi- 
tion suggested in fn. 3 of s8.4. 

Stress relaxation after cessation of shear flow. A viscoelastic fluid is in steady-state flow be- 
tween a pair of parallel plates, with v, = yy. If the flow is suddenly stopped (i.e., y becomes 
zero), the stresses do not go to zero as would be the case for a Newtonian fluid. Explore this stress 
relaxation phenomenon using a 3-constant Oldroyd model (Eq. 8.5-3 with A, = p2 = = po = 0). 
(a) Show that in steady-state flow 

To what extent does this expression agree with the experimental data in Fig. 8.2-4? 
(b) By using Example 8.5-1 (part a) show that, if the flow is stopped at t = 0, the shear stress 
for t 2 0 will be 

This shows why A, is called the "relaxation time." This relaxation of stresses after the fluid 
motion has stopped is characteristic of viscoelastic materials. 
(c) What is the normal stress 7,, during steady shear flow and after cessation of the flow? 

Draining of a tank with an exit pipe (Fig. 78.9). Rework Problem 7B.9(a) for the power law 
fluid. 

The Giesekus model. 
(a) Use the results in Table 8.5-1 to get the limiting values for the non-Newtonian viscosity 
and the normal stress differences as the shear rate goes to zero. 
(b) Find the limiting expressions for the non-Newtonian viscosity and the two normal-stress 
coefficients in the limit as the shear rate becomes infinitely large. 
(c) What is the steady-state elongational viscosity in the limit that the elongation rate tends to 
zero? Show that the elongational viscosity has a finite limit as the elongation rate goes to infinity. 

E. Buckingham, Proc. ASTM, 21,115P1161 (1921); M. Reiner, Deformation and Flow, Lewis, London 
(1949). 
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8C.1 The cone-and-plate viscometer (Fig. 2B.llL3 Review the Newtonian analysis of the cone- 
and-plate instrument in Problem 2B.11 and then do the following: 
(a) Show that the shear rate j /  is uniform throughout the gap and equal to j = -ye+ = il/q0. 
Because of the uniformity of y, the components of the stress tensor are also constant through- 
out the gap. 
(b) Show that the non-Newtonian viscosity is then obtained from measurements of the 
torque T, and rotation speed il by using 

(c) Show that for the cone-and-plate system the radial component of the equation of mo- 
tion is 

if the centrifugal force term -pv$/r can be neglected. Rearrange this to get 

Then introduce the normal stress coefficients, and use the result of (a) to replace d.lr,,/d In r by 
dn-,,/a In r, to get 

Integrate this from r to R and use the boundary condition n-JR) = pa to get 

in which p, is the atmospheric pressure acting on the fluid at the rim of the cone-and-plate 
instrument. 
(d) Show that the total thrust in the z direction exerted by the fluid on the cone is 

From this one can obtain the first normal-stress coefficient by measuring the force that the 
fluid exerts. 
(e) Suggest a method for measuring the second normal-stress coefficient using results in part 
(c) if small pressure transducers are flush-mounted in the plate at several different radial loca- 
tions. 

8C.2 Squeezing flow between parallel disks (Fig. 3C.1): Rework Problem 3C.l(g) for the power 
law fluid. This device can be useful for determining the power law parameters for materials 
that are highly viscous. Show that the power law analog of Eq. 3C.1-16 is 

R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics, 
Wiley-Interscience, New York, 2nd Edition (19871, pp. 521-524. 

P. J. Leider, Ind. Eng. Chem. Fundam., 13,342-346 (1974); R. J. Grimm, AlChE Journal, 24,427-439 
(1978). 
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8C.3 Verification of Giesekus viscosity f ~ n c t i o n . ~  
(a) To check the shear-flow entries in Table 8.5-1, introduce dimensionless stress tensor com- 
ponents Tij = ( A / ~ , ) T ~  and a dimensionless shear rate r = Aj, and then show that for steady- 
state shear flow Eq. 8.5-4 becomes 

T - 2 - a(T;, + q,) = 0 

T, - a(T& + Ti!,) = 0 

T,, - IT,, - aT,,(T,, + T,) = -I- 

There is also a fourth equation, which leads to T,, = 0. 
(b) Rewrite these equations in terms of the dimensionless normal-stress differences N, = Txl 
- T,, and N2 = Tyy - T,,, and T,,. 
(c) It is difficult to solve the equations in (b) to get the dimensionless shear stress and normal- 
stress differences in terms of the dimensionless shear rate. Instead, solve for N,, T,, and r as 
functions of N,: 

(dl Solve the last equation for N2 as a function of r to get 

where 

Then get the expression for the non-Newtonian viscosity and plot the curve of r](y). 

8C.4 Tube Flow for the Oldroyd 6-Constant Model. Find the mass flow rate for the steady flow 
in a long circular tube6 using Eq. 8.5-3. 

8C.5 Chain Models with Rigid-Rod Connectors. Read and discuss the following publications: 
M. Gottlieb, Computers in Chemisty, 1, 155-160 (1977); 0. Hassager, J. Chem. Phys., 60, 
2111-2124 (1974); X. J. Fan and T. W. Liu, J. Non-Newtonian Fluid Mech., 19, 303-321 (1986); 
T. W. Liu, J. Chem. Phys., 90, 5826-5842 (1989); H. H. Saab, R. B. Bird, and C. F. Curtiss, 
J. Chem. Phys., 77, 4758-4766 (1982); J. D. Schieber, J. Chem. Phys., 87, 49174927, 49284936 
(1987). Why are rodlike connectors more difficult to handle than springs? What kinds of prob- 
lems can be solved by computer simulations? 

H.  Giesekus, J. Non-Newtonian Fluid Mech., 11,69-109 (1982). 
M. C. Williams and R. B. Bird, AlClzE /ouvnal, 8,378-382 (1962). 
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Chapter 9 

Thermal Conductivity and the 
Mechanisms of Energy Transport 

Fourieis law of heat conduction (molecular energy transport) 

Temperature and pressure dependence of heat conductivity 

Theory of thermal conductivity of gases at low density 

Theory of thermal conductivity of liquids 

Thermal conductivity of solids 

Effective thermal conductivity of composite solids 

Convective transport of energy 

Work associated with molecular motions 

It is common knowledge that some materials such as metals conduct heat readily, 
whereas others such as wood act as thermal insulators. The physical property that de- 
scribes the rate at which heat is conducted is the thermal conductivity k. 

Heat conduction in fluids can be thought of as molecular energy transport, inasmuch 
as the basic mechanism is the motion of the constituent molecules. Energy can also be 
transported by the bulk motion of a fluid, and this is referred to as convective energy trans- 
port; this form of transport depends on the density p of the fluid. Another mechanism is 
that of difisive energy transport, which occurs in mixtures that are interdiffusing. In addi- 
tion, energy can be transmitted by means of radiative energy transport, which is quite dis- 
tinct in that this form of transport does not require a material medium as do conduction 
and convection. This chapter introduces the first two mechanisms, conduction and con- 
vection. Radiation is treated separately in Chapter 16, and the subject of diffusive heat 
transport arises in 519.3 and again in g24.2. 

We begin in 59.1 with the definition of the thermal conductivity k by Fourier's law 
for the heat flux vector q. In 59.2 we summarize the temperature and pressure depen- 
dence of k for fluids by means of the principle of corresponding states. Then in the next 
four sections we present information about thermal conductivities of gases, Liquids, 
solids, and solid composites, giving theoretical results when available. 

Since in Chapters 10 and 11 we will be setting up problems by using the law of con- 
servation of energy, we need to know not only how heat moves into and out of a system 
but also how work is done on or by a system by means of molecular mechanisms. The na- 
ture of the molecular work terms is discussed in 59.8. Finally, by combining the conduc- 
tive heat flux, the convective energy flux, and the work flux we can create a combined 
energy flux vector e, which is useful in setting up energy balances. 
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9 . 1  FOURIER'S LAW OF HEAT CONDUCTION 
(MOLECULAR ENERGY TRANSPORT) 

Consider a slab of solid material of area A located between two large parallel plates a 
distance Y apart. We imagine that initially (for time t < 0) the solid material is at a tem- 
perature To throughout. At t = 0 the lower plate is suddenly brought to a slightly higher 
temperature TI and maintained at that temperature. As time proceeds, the temperature 
profile in the slab changes, and ultimately a linear steady-state temperature distribution 
is attained (as shown in Fig. 9.1-1). When this steady-state condition has been reached, a 
constant rate of heat flow Q through the slab is required to maintain the temperature dif- 
ference AT = TI - To. It is found then that for sufficiently small values of AT the follow- 
ing relation holds: 

That is, the rate of heat flow per unit area is proportional to the temperature decrease 
over the distance Y. The constant of proportionality k is the thermal conductivity of the 
slab. Equation 9.1-1 is also valid if a liquid or gas is placed between the two plates, pro- 
vided that suitable precautions are taken to eliminate convection and radiation. 

In subsequent chapters it is better to work with the above equation in differential 
form. That is, we use the limiting form of Eq. 9.1-1 as the slab thickness approaches zero. 
The local rate of heat flow per unit area (heat flux) in the positive y direction is desig- 
nated by qy. In this notation Eq. 9.1-1 becomes 

This equation, which serves to define k, is the one-dimensional form of Fourier's law of 
heat cond~ction.',~ It states that the heat flux by conduction is proportional to the tempera- 

Solid initially at 
temperature To 

Lower plate 
suddenly raised 

to temperature TI 

Small t 

Large f 
Y y T(y) 

To Tl 

Fig. 9.1-1. Development of the 
steady-state temperature pro- 
file for a solid slab between two 
parallel plates. See Fig. 1.1-1 for 
the analogous situation for mo- 
mentum transport. 
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ture gradient, or, to put it pictorially, "heat slides downhill on the temperature versus 
distance graph." Actually Eq. 9.1-2 is not really a "law" of nature, but rather a sugges- 
tion, which has proven to be a very useful empiricism. However, it does have a theoreti- 
cal basis, as discussed in Appendix D. 

If the temperature varies in all three directions, then we can write an equation like 
Eq. 9.1-2 for each of the coordinate directions: 

If each of these equations is multiplied by the appropriate unit vector and the equations 
are then added, we get 

which is the three-dimensional form of Fourier's law. This equation describes the molec- 
ular transport of heat in isotropic media. By "isotropic" we mean that the material has 
no preferred direction, so that heat is conducted with the same thermal conductivity k in 
all directions. 

Some solids, such as single noncubic crystals, fibrous materials, and laminates, are 
anis~tropic.~ For such substances one has to replace Eq. 9.1-6 by 

in which K is a symmetric second-order tensor called the thermal conductivity tensor. 
Thus, the heat flux vector does not point in the same direction as the temperature gra- 
dient. For polymeric liquids in the shearing flow v,(y, t ) ,  the thermal conductivity may 
increase above the equilibrium value by 20% in the x direction and decrease by 10% in 
the z direction. Anisotropic heat conduction in packed beds is discussed briefly in 59.6. 

J. B. Fourier, Thkorie analytique de la chaleur, CEuvres de Fourier, Gauthier-Villars et Fils, Paris (1822). 
(Baron) Jean-Baptiste-Joseph Fourier (pronounced "Foo-ree-ay") (1768-1830) was not only a brilliant 
mathematician and the originator of the Fourier series and the Fourier transform, but also famous as an 
Egyptologist and a political figure (he was prefect of the province of Issre). 

'Some authors prefer to write Eq. 9.1-2 in the form 

in which J, is the "mechanical equivalent of heat," which displays explicitly the conversion of thermal 
units into mechanical units. For example, in the c.g.s. system one would use the following units: q,, [=I 
erg/cm2 - s, k [=] cal/cm s - C, T [=I  C, y [=] cm, and J,  [=I  erg/cal. We will not use Eq. 9.1-2a in this 
book. 

Although polymeric liquids at rest are isotropic, kinetic theory suggests that when they are 
flowing the heat conduction is anisotropic [see B. H. A. A. van den Brule, Rheol. Acta, 28,257-266 (1989); 
and C. F. Curtiss and R. B. Bird, Advances in Polymer Science, 25,l-101 (1996)l. Experimental 
measurements for shear and elongational flows have been reported by D. C. Venerus, J. D. Schieber, 
H. Iddir, J. D. Guzman, and A. W. Broerman, Phys. Rev. Letters, 82,366-369 (1999); A. W. Broerman, 
D. C. Venerus, and J. D. Schieber, J. Chem. Phys., 111,6965-6969 (1999); H .  Iddir, D. C. Venerus, and 
J. D. Schieber, AIChE Journal, 46,610-615 (2000). For oriented polymer solids, enhanced thermal conductiv- 
ity in the direction of orientation has been measured by B. Poulaert, J.-C. Chielens, C. Vandenhaende, 
J.-P. Issi, and R. Legras, Polymer Comm., 31,14&151(1989). In connection with the bead spring models of 
polymer thermal conductivity, it has been shown by R. B. Bird, C. F. Curtiss, and K. J. Beers [Rheol. Acfa, 
36,269-276 (1997)l that the predicted thermal conductivity is exceedingly sensitive to the form of the 
potential energy used for describing the springs. 
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Another possible generalization of Eq. 9.1-6 is to include a term containing the time 
derivative of q multiplied by a time constant, by analogy with the Maxwell model of lin- 
ear viscoelasticity in Eq. 8.4-3. There seems to be little experimental evidence that such a 
generalization is ~ a r r a n t e d . ~  

The reader will have noticed that Eq. 9.1-2 for heat conduction and Eq. 1.1-2 for vis- 
cous flow are quite similar. In both equations the flux is proportional to the negative of 
the gradient of a macroscopic variable, and the coefficient of proportionality is a physical 
property characteristic of the material and dependent on the temperature and pressure. 
For the situations in which there is three-dimensional transport, we find that Eq. 9.1-6 for 
heat conduction and Eq. 1.2-7 for viscous flow differ in appearance. This difference 
arises because energy is a scalar, whereas momentum is a vector, and the heat flux q is a 
vector with three components, whereas the momentum flux I is a second-order tensor 
with nine components. We can anticipate that the transport of energy and momentum 
will in general not be mathematically analogous except in certain geometrically simple 
situations. 

In addition to the thermal conductivity k, defined by Eq. 9.1-2, a quantity known as 
the thermal difisivity a is widely used. It is defined as 

Here Sp  is the heat capacity at constant pressure; the circumflex (A) over the symbol indi- 
cates a quantity "per unit mass." Occasionally we will need to use the symbol in 
which the tilde (-) over the symbol stands for a quantity "per mole." 

The thermal diffusivity a has the same dimensions as the kinematic viscosity v- 
namely, (length)*/time. When the assumption of constant physical properties is made, 
the quantities v and CY occur in similar ways in the equations of change for momentum 
and energy transport. Their ratio v / a  indicates the relative ease of momentum and en- 
ergy transport in flow systems. This dimensionless ratio 

is called the Prandtl number.%nother dimensionless group that we will encounter in 
subsequent chapters is the Piclet number: P6 = RePr. 

The units that are commonly used for thermal conductivity and related quantities 
are given in Table 9.1-1. Other units, as well as the interrelations among the various sys- 
tems, may be found in Appendix F. 

Thermal conductivity can vary all the way from about 0.01 W/m K for gases to 
about 1000 W/m . K for pure metals. Some experimental values of the thermal con- 

The linear theory of thermoviscoelasticity does predict relaxation effects in heat conduction, 
as discussed by R. M. Christensen, Theory of Viscoelasticity, Academic Press, 2nd edition (1982). The 
effect has also been found from a kinetic theory treatment of the energy equation by R. B. Bird and 
C. F. Curtiss, J. Non-Newtonian Fluid Mechanics, 79,255-259 (1998). 

"his dimensionless group, named for Ludwig Prandtl, involves only the physical properties of 
the fluid. 

Jean-Claude-Eug&ne Pkclet (pronounced "Pay-clay" with the second syllable accented) 
(1 793-1857) authored several books including one on heat conduction. 
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Table 9.1-1 Summary of Units for Quantities in Eqs. 9.1-2 and 9 

SI c.g.s. British 

call cm2 - s Btu/hr. ft2 
C F 
cm ft 
cal/cm - s .  C Btu/hr. ft . F 
cal/C a g Btu/F lb, 
cm2 / s ft2/s 
g/cm. s Ib,/ft - hr 

- 

Note: The watt (W) is the same as J/s, the joule (J) is the same as N - m, 
the newton (N) is kg. m/s2, and the Pascal (Pa) is N/m2. For more 
information on interconversion of units, see Appendix F. 

ductivity of gases, liquids, liquid metals, and solids are given in Tables 9.1-2, 9.1-3, 
9.1-4, and 9.1-5. In making calculations, experimental values should be used when 
possible. In the absence of experimental data, one can make estimates by using the 
methods outlined in the next several sections or by consulting various engineering 
 handbook^.^ 

Table 9.1-2 Thermal Conductivities, Heat Capacities, and Prandtl Numbers of Some 
Common Gases at 1 atm Pressuren 

Temperature Thermal conductivity Heat capacity Prandtl number 
Gas T (K) k (W/m.  K) C, (J/kg K) Pr (-4 

Taken from J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, 
New York, 2nd corrected printing (1964), Table 8.4-10. The k values are measured, the& values are 
calculated from spectroscopic data, and p is calculated from Eq. 1.4-18. The values of C,, for H, represent 
a 3: 1 ortho-para mixture. 

For example, W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds., Handbook of Heat Transfer, 
McGraw-Hill, New York (1998); Landolt-Bornstein, Zahlenwerte und Funktionen, Vol. II,5, Springer 
(1968-1969). 
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Measurement of 
Thermal Conductivity 

Table 9.1-3 Thermal Conductivities, Heat Capacities, and Prandtl Numbers 
for Some Nonmetallic Liquids at Their Saturation Pressuresa 

Thermal Heat Prandtl 
Temperature conductivity Viscosity capacity number 

T k x lo4 S, x lop3 Pr 
Liquid (K) (W/m K) (Pa . s) U/kg + K) (-1 

1 -Pentene 

CCl, 

(C2H5)20 

C2H50H 

Glycerol 

H2O 

a The entries in this table were prepared from functions provided by T. E. Daubert, R. P. Danner, 
H. M. Sibul, C. C. Stebbins, J. L. Oscarson, R. L. Rowley, W. V. Wilding, M. E. Adams, T. L. 
Marshall, and N. A. Zundel, DIPPRB Data Compilation of Pure Compound Properties, Design Institute 
for Physical Property Data@, AIChE, New York, NY (2000). 

A plastic panel of area A = 1 ft2 and thickness Y = 0.252 in. was found to conduct heat at a 
rate of 3.0 W at steady state with temperatures To = 24.00"C and T, = 26.00"C imposed on the 
two main surfaces. What is the thermal conductivity of the plastic in cal/cm. s K at 25"C? 

SOLUTION 

First convert units with the aid of Appendix F: 

A = 144 in.2 X (2.54)' = 929 cm2 

Y = 0.252 in. X 2.54 = 0.640 cm 

Q = 3.0 W X 0.23901 = 0.717 cal/s 

AT = 26.00 - 24.00 = 2.00K 

Substitution into Eq. 9.1-1 then gives 

For AT as small as 2 degrees C, it is reasonable to assume that the value of k applies at the 
average temperature, which in this case is 25°C. See Problem 10B.12 and 10C.l for methods of 
accounting for the variation of k with temperature. 



Table 9.1-4 Thermal Conductivities, Heat Capacities, and Prandtl Numbers of Some Liquid 
Metals at Atmospheric Pressurea 

Temperature Thermal conductivity Heat capacity Prandtl numberc 
Metal T (K) k (W/m K) c, (J/kg . K) Pr (-) 

" Data taken from Liquid Metals Handbook, 2nd edition, US. Government Printing Office, Washington, 
D.C. (1952), and from E. R. G. Eckert and R. M. Drake, Jr., Heat and Mass Transfer, McGraw-Hill, New 
York, 2nd edition (19591, Appendix A. 
* Based on an extrapolated heat capacity. 
' 56% Na by weight, 44% K by weight. 

Table 9.1-5 Experimental Values of Thermal Conductivities of Some Solidsa 

Substance 
Temperature Thermal conductivity 

T (K) k (W/m. K) 

Aluminum 

Cadmium 

Copper 

Steel 

Tin 

Brick (common red) 
Concrete (stone) 
Earth's crust (average) 
Glass (soda) 
Graphite 
Sand (dry) 
Wood (fir) 

parallel to axis 
normal to axis 

" Data taken from the Reactor Handbook, Vol. 2, Atomic Energy Commission AECD-3646, 
U.S. Government Printing Office, Washington, D.C. (May 19551, pp. 1766 et seq. 



272 Chapter 9 Thermal Conductivity and the Mechanisms of Energy Transport 

59.2 TEMPERATURE AND PRESSURE DEPENDENCE OF 
THERMAL CONDUCTIVITY 

When thermal conductivity data for a particular compound cannot be found, one can 
make an estimate by using the corresponding-states chart in Fig. 9.2-1, which is based on 
thermal conductivity data for several monatomic substances. This chart, which is similar 
to that for viscosity shown in Fig. 1.3-1, is a plot of the reduced thermal conductivity k, = 

k/k,, which is the thermal conductivity at pressure p and temperature T divided by the 
thermal conductivity at the critical point. This quantity is plotted as a function of the re- 
duced temperature T, = T/T, and the reduced pressure p, = p / ~ , .  Figure 9.2-1 is based 
on a limited amount of experimental data for monatomic substances, but may be used 

Fig. 9.2-1. Reduced thermal conductivity for monatomic substances as a 
function of the reduced temperature and pressure [E. J. Owens and 
G. Thodos, AlChE Journal, 3,454461 (1957)l. A large-scale version of this 
chart may be found in 0. A. Hougen, K. M. Watson, and R. A. Ragatz, 
Chemical Process Principles Charts, 2nd edition, Wiley, New York (1960). 
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for rough estimates for polyatomic materials. It should not be used in the neighborhood 
of the critical point.' 

It can be seen that the thermal conductivity of a gas approaches a limiting function 
of T at low pressures; for most gases this limit is reached at about 1 atm pressure. The 
thermal conductivities of gases at low density increase with increasing temperature, 
whereas the thermal conductivities of most liquids decrease with increasing temperature. 
The correlation is less reliable in the liquid region; polar or associated liquids, such as 
water, may exhibit a maximum in the curve of k  versus T. The main virtue of the 
corresponding-states chart is that one gets a global view of the behavior of the thermal 
conductivity of gases and liquids. 

The quantity kc may be estimated in one of two ways: (i) given k  at a known temper- 
ature and pressure, preferably close to the conditions at which k  is to be estimated, one 
can read k, from the chart and compute kc = k / k , ;  or (ii) one can estimate a value of k  in 
the low-density region by the methods given in 99.3 and then proceed as in (i). Values of 
kc obtained by method (i) are given in Appendix E. 

For mixtures, one might estimate the thermal conductivity by methods analogous to 
those described in 91.3. Very little is known about the accuracy of pseudocritical proce- 
dures as applied to thermal conductivity, largely because there are so few data on mix- 
tures at elevated pressures. 

Estimate the thermal conductivity of ethane at 153'F and 191.9 atm from the experimental 
value2 k  = 0.0159 Btu/hr. ft . F at 1 atm and 153°F. 

Effect of Pressure on 
Thermal Conductivity SOLmON 

Since a measured value of k  is known, we use method (i). First we calculate p, and T ,  at the 
condition of the measured value: 

From Fig. 9.2-1 we read k, = 0.36. Hence kc is 

At 153°F (T,  = 1.115) and 191.9 atm (p ,  = 3.98), we read from the chart k, = 2.07. The predicted 
thermal conductivity is then 

An observed value of 0.0453 Btu/hr ft F has been reported.' The poor agreement shows that 
one should not rely heavily on this correlation for polyatomic substances nor for conditions 
near the critical point. 

In the vicinity of the critical point, where the thermal conductivity diverges, it is customary to 
write k = kb + Ak, where kb is the "background" contribution and Ak is the "critical enhancement'' 
contribution. The kc being used in the corresponding states correlation is the background contribution. 
For the behavior of transport properties near the critical point, see J. V. Sengers and J. Luettmer 
Strathmann, in Transport Properties of Fluids (J. H.  Dymond, J. Millat, and C. A. Nieto de Castro, eds.), 
Cambridge University Press (1995); E. P. Sakonidou, H. R. van den Berg, C. A. ten Seldam, and 
J. V. Sengers, J. Chem. Phys., 105,10535-10555 (1996) and 109,717-736 (1998). 

J. M. Lenoir, W. A. Junk, and E. W. Comings, Chem. Eng. Progr., 49,539-542 (1949). 
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59.3 THEORY OF THERMAL CONDUCTIVITY 
OF GASES AT LOW DENSITY 

The thermal conductivities of dilute monatomic gases are well understood and can be de- 
scribed by the kinetic theory of gases at low density. Although detailed theories for poly- 
atomic gases have been developed,' it is customary to use some simple approximate 
theories. Here, as in 91.5, we give a simplified mean free path derivation for monatomic 
gases, and then summarize the result of the Chapman-Enskog kinetic theory of gases. 

We use the model of rigid, nonattracting spheres of mass m and diameter d. The gas 
as a whole is at rest (v = O), but the molecular motions must be accounted for. 

As in 91.5, we use the following results for a rigid-sphere gas: 

ii = @ = mean molecular speed (9.3-1) 

Z = in@ = wall collision frequency per unit area (9.3-2) 

h = = mean free path 
* d 2 n  

The molecules reaching any plane in the gas have had, on an average, their last collision 
at a distance a from the plane, where 

In these equations K is the Boltzmann constant, n is the number of molecules per unit 
volume, and m is the mass of a molecule. 

The only form of energy that can be exchanged in a collision between two smooth 
rigid spheres is translational energy. The mean translational energy per molecule under 
equilibrium conditions is 

as shown in Prob. 1C.1. For such a gas, the molar heat capacity at constant volume is 

in which R is the gas constant. Equation 9.3-6 is satisfactory for monatomic gases up to 
temperatures of several thousand degrees. 

To determine the thermal conductivity, we examine the behavior of the gas under a 
temperature gradient dT/dy (see Fig. 9.3-1). We assume that Eqs. 9.3-1 to 6 remain valid 
in this nonequilibrium situation, except that $rnZ in Eq. 9.3-5 is taken as the average ki- 
netic energy for molecules that had their last collision in a region of temperature T. The 
heat flux qy across any plane of constant y is found by summing the kinetic energies of 
the molecules that cross the plane per unit time in the positive y direction and subtract- 
ing the kinetic energies of the equal number that cross in the negative y direction: 

' C. S. Wang Chang, G. E. Uhlenbeck, and J. de Boer, Studies in Statistical Mechanics, Wiley- 
Interscience, New York, Vol. I1 (1964, pp. 241-265; E. A. Mason and L. Monchick, J. Chem. Phys., 35, 
1676-1697 (1961) and 36,1622-1639,2746-2757 (1962); L. Monchick, A. N. G. Pereira, and E. A. Mason, 
J .  Chem. Phys., 42,3241-3256 (1965). For an introduction to the kinetic theory of the transport properties, 
see R. S. Berry, S. A. Rice, and J. Ross, Physical Chemistry, 2nd edition (2000), Chapter 28. 
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Fig. 9.3-1. Molecular transport 
of (kinetic) energy from plane 
at (y - a) to plane at y. 

Equation 9.3-7 is based on the assumption that all molecules have velocities representa- 
tive of the region of their last collision and that the temperature profile T(y) is linear for a 
distance of several mean free paths. In view of the latter assumption we may write 

By combining the last three equations we get 

This corresponds to Fourier's law of heat conduction (Eq. 9.1-2) with the thermal con- 
ductivity given by 

k = fn~iih = iP tv i i~  (monatomic gas) (9.3-1 1) 

in which p = nrn is the gas density, and kV = f K / m  (from Eq. 9.3-6). 
Substitution of the expressions for ii and A from Eqs. 9.3-1 and 3 then gives 

k = - - - - tv (monatomic gas) 
,d2 3%- r d 2  

which is the thermal conductivity of a dilute gas composed of rigid spheres of diameter 
d. This equation predicts that k is independent of pressure. Figure 9.2-1 indicates that this 
prediction is in good agreement with experimental data up to about 10 atm for most 
gases. The predicted temperature dependence is too weak, as was the case for viscosity. 

For a more accurate treatment of the monatomic gas, we turn again to the rigorous 
Chapman-Enskog treatment discussed in 51.5. The Chapman-Enskog formula2 for the 
thermal conductivity of a monatomic gas at low density and temperature T is 

k = - vmii 25w?v or k =  1.9891 X 10'- (monatomic gas) (9.3-13) 
32 .rra21nk a 2CRk 

In the second form of this equation, k [=I  cal/cm . s K, T [=I K, a [=I  A, and the "colli- 
sion integral" for thermal conductivity, SZk, is identical to that for viscosity, a, in 51.4. 

J. 0. Hirschfelder, C .  F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New 
York, 2nd corrected printing (19641, p. 534. 
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Values of ilk = a, are given for the Lennard-Jones intermolecular potential in Table E.2 
as a function of the dimensionless temperature KT/&. Equation 9.3-13, together with 
Table E.2, has been found to be remarkably accurate for predicting thermal conductivi- 
ties of monatomic gases when the parameters o and E deduced from viscosity measure- 
ments are used (that is, the values given in Table E.l). 

Equation 9.3-13 is very similar to the corresponding viscosity formula, Eq. 1.4-14. 
From these two equations we can then get 

15 R k = -- 5 - 
p = 2 Cvp (monatomic gas) (9.3-14) 

The simplified rigid-sphere theory (see Eqs. 1.4-8 and 9.3-11) gives k = evP and is thus in 
error by a factor 2.5. This is not surprising in view of the many approximations that were 
made in the simple treatment. 

So far we have discussed only monatomic gases. We know from the discussion in 50.3 
that, in binary collisions between diatomic molecules, there may be interchanges be- 
tween kinetic and internal (i.e., vibrational and rotational) energy. Such interchanges are 
not taken into account in the Chapman-Enskog theory for monatomic gases. It can there- 
fore be anticipated that the Chapman-Enskog theory will not be adequate for describing 
the thermal conductivity of polyatomic molecules. 

A simple semiempirical method of accounting for the energy exchange in poly- 
atomic gases was developed by E ~ c k e n . ~  His equation for thermal conductivity of a 
polyatomic gas at low density is 

k = ( *  C, + - El) - p (polyatomic gas) 

This Eucken formula includes the monatomic formula (Eq. 9.3-14) as a special case, be- 
cause ?, = ~ ( R / M )  for monatomic gases. Hirschfelder4 obtained a formula similar to that 
of Eucken by using multicomponent-mixture theory (see Example 19.4-4). Other theo- 
ries, correlations, and empirical formulas are also a~ai lable .~ ,~  

Equation 9.3-15 provides a simple method for estimating the Prandtl number, de- 
fined in Eq. 9.1-8: - 

This equation is fairly satisfactory for nonpolar polyatomic gases at low density, as can 
be seen in Table 9.3-1; it is less accurate for polar molecules. 

The thermal conductivities for gas mixtures at low density may be estimated by a 
method7 analogous to that previously given for viscosity (see Eqs. 1.4-15 and 16): 

The x, are the mole fractions, and the k, are the thermal conductivities of the pure chem- 
ical species. The coefficients are identical to those appearing in the viscosity equation 

- - 

A. Eucken, Physik. Z., 14,324-333 (1913); "Eucken" is pronounced "Oy-ken." 
J. 0. Hirschfelder, J. Chem. Phys., 26,274-281,282-285 (1957). 
J.  H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in  Gases, North-Holland, 

Amsterdam (1972). 
' R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, New 

York, 4th edition (1987). 
E. A. Mason and S. C. Saxena, Physics of Fluids, 1,361-369 (1958). Their method is an 

approximation to a more accurate method given by J. 0. Hirschfelder, J. Chem. Phys., 26,274-281, 
282-285 (1957). With Professor Mason's approval we have omitted here an empirical factor 1.065 in his 
Qii expression for i # j to establish self-consistency for mixtures of identical species. 
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Table 9.3-1 Predicted and Observed Values of the Prandtl Number for Gases 
at Atmospheric Pressurea 

- -- 

& ~ / k  from ePr / k from observed 
Gas T(K) Eq. 9.3-16 values of C,, p, and k 

N2 
0 2  

Air 
CO 
NO 
c4 

" Calculated from values given by M. Jakob, Heaf Transfer, Wiley, New York (19491, pp. 75-76. 
J. 0. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, 

New York, corrected printing (1964), p. 16. 

(see Eq. 1.4-16). All values of k, in Eq. 9.3-17 and p, in Eq. 1.4-16 are low-density values 
at the give; temperature. If viscosity data are not available, they may be estimated 
from k and C, via Eq. 9.3-15. Comparisons with experimental data7 indicate an average 
deviation of about 4% for mixtures containing nonpolar polyatomic gases, including 
02, N2, CO, C2H2, and CH,. 

Compute the thermal conductivity of Ne at 1 atm and 373.2K. 

Computation of the SOLUTION 
lhenal Conductivity From Table E.l the Lennard-Jones constants for neon are u = 2.789 A and E/K  = 35.7K, and 
'fa Monatomic Gas its molecular weight M is 20.183. Then, at 373.2K, we have KT/E = 373.2/35.7 = 10.45. From 
a t  Low Density Table E.2 we find that flk = fl, = 0.821. Substitution into Eq. 9.3-13 gives 

A measured value of 1.35 X cal/cm. s . K has been reported8 at 1 atm and 373.2K. 

W. G. Kannuluik and E. H. Carman, Proc. Phys. Soc. (London), 65B, 701-704 (1952). 
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Estimation of the 
Thermal Conductivity 
of a Polyatomic Gas 
at Low Density 

EXAMPLE 9.3-3 

Prediction of the 
Thermal Conductivity 
of a Gas Mixture a t  
Low Density 

Estimate the thermal conductivity of molecular oxygen at 300K and low pressure. 

SOLUTION 

The molecular weight of O2 is 32.0000; its molar heat capacity tp at 300°K and low pressure is 
7.019 cal/g-mole . K. From Table E.l we find the Lennard-Jones parameters for molecular 
oxygen to be a = 3.433 A and E / K  = 113K. At 300K, then, K T / E  = 300/113 = 2.655. From 
Table E.2, we find R, = 1.074. The viscosity, from Eq. 1.4-14, is 

Then, from Eq. 9.3-15, the Eucken approximation to the thermal conductivity is 

This compares favorably with the experimental value of 0.02657 W/m K in Table 9.1-2. 

Predict the thermal conductivity of the following gas mixture at 1 atm and 293K from the 
given data on the pure components at the same pressure and temperature: 

- - 

Mole Molecular 
fraction weight x lo7 k, x lo7 

Species a X, M ,  (g/cm. s) (cal/cm - s . K) 

SOLUTION 

Use Eq. 9.3-17. We note that the for this gas mixture at these conditions have already been 
computed in the viscosity calculation in Example 1.4-2. In that example we evaluated the fol- 
lowing summations, which also appear in Eq. 9.3-17: 

Substitution in Eq. 9.3-17 gives 

No data are available for comparison at these conditions. 
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59.4 THEORY OF THERMAL CONDUCTIVITY OF LIQUIDS 

A very detailed kinetic theory for the thermal conductivity of monatomic liquids was 
developed a half-century ago,' but it has not yet been possible to implement it for prac- 
tical calculations. As a result we have to use rough theories or empirical estimation 
methods.' 

We choose to discuss here Bridgman's simple theory3 of energy transport in pure 
liquids. He assumed that the molecules are arranged in a cubic lattice, with a center- 
to-center spacing given by in which ?/N is the volume per molecule. He 
further assumed energy to be transferred from one lattice plane to the next at the 
sonic velocity v, for the given fluid. The development is based on a reinterpretation of 
Eq. 9.3-11 of the rigid-sphere gas theory: 

The heat capacity at constant volume of a monatomic liquid is about the scme as for a 
solid at high temperature, which is given by the Dulong and Petit formula4 Cv = 3(~/m) .  
The mean molecular speed in the y direction, m, is replaced by the sonic velocity us. The 
distance a that the energy travels between two successive collisions is taken to be the lat- 
tice spacing (?/I?)'13. Making these substitutions in Eq. 9.4-1 gives 

which is Bridgrnan's equation. Experimental data show good agreement with Eq. 9.4-2, 
even for polyatomic liquids, but the numerical coefficient is somewhat too high. Better 
agreement is obtained if the coefficient is changed to 2.80: 

This equation is limited to densities well above the critical density, because of the tacit 
assumption that each molecule oscillates in a "cage" formed by its nearest neighbors. 
The success of this equation for polyatomic fluids seems to imply that the energy trans- 
fer in collisions of polyatomic molecules is incomplete, since the heat capacity used here, 
kv = 3(~/rn), is less than the heat capacities of polyatomic liquids. 

The velocity of low-frequency sound is given (see Problem 11C.1) by 

The quantity (dp/dp), may be obtained from isothermal compressibility measurements 
or from an equation of state, and (Cp/Cv) is very nearly unity for liquids, except near the 
critical point. 

' J. H. Irving and J. G. Kirkwood, I. Chem. Phys., 18,817-829 (1950). This theory has been extended 
to polymeric liquids by C. F. Curtiss and R. B. Bird, J .  Chem. Phys., 107,5254-5267 (1997). 

R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, McGraw-Hill, 
New York (1987); L. Riedel, Chemie-1ng.-Techn., 27,209-213 (1955). 

". W. Bridgman, Proc. Am. Acad. Arts and Sci., 59,141-169 (1923). Bridgman's equation is often 
misquoted, because he gave it in terms of a little-known gas constant equal to SK. 

This empirical equation has been justified, and extended, by A. Einstein [Ann. Phys. [41,22, 
180-190 (1907)l and P. Debye [Ann. Phys., [4139,789-839 (1912)l. 

Equation 9.4-3 is in approximate agreement with a formula derived by R. E. Powell, 
W. E. Roseveare, and H. Eyring, Ind. Eng. Chem., 33,430-435 (1941). 
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EXAMPLE 9.4-1 

Prediction of the 

The density of liquid CCI, at 20°C and 1 atm is 1.595 g/cm3, and its isothermal compressibility 
( l /p ) (ap /a~)~  is 90.7 X atm-'. What is its thermal conductivity? 

Thermal Conductivity SOLUTION 
of a Liquid 

First compute 

= 7.00 X lo9 cm2/s2 (using Appendix F) (9.4-5) 

Assuming that CJC, = 1.0, we get from Eq. 9.4-4 

The molar volume is = M / p  = 153.84/1.595 = 96.5 cm3/g-mole. Substitution of these val- 
ues in Eq. 9.4-3 gives 

The experimental value as interpolated from Table 9.1-3 is 0.101 W/m K. 

s9.5 THERMAL CONDUCTIVITY OF SOLIDS 

Thermal conductivities of solids have to be measured experimentally, since they depend 
on many factors that are difficult to measure or predict.' In crystalline materials, the 
phase and crystallite size are important; in amorphous solids the degree of molecular 
orientation has a considerable effect. In porous solids, the thermal conductivity is 
strongly dependent on the void fraction, the pore size, and the fluid contained in the 
pores. A detailed discussion of thermal conductivity of solids has been given by Jakob.' 

In general, metals are better heat conductors than nonmetals, and crystalline materi- 
als conduct heat more readily than amorphous materials. Dry porous solids are very 
poor heat conductors and are therefore excellent for thermal insulation. The conductivi- 
ties of most pure metals decrease with increasing temperature, whereas the conductivi- 
ties of nonmetals increase; alloys show intermediate behavior. Perhaps the most useful 
of the rules of thumb is that thermal and electrical conductivity go hand in hand. 

For pure metals, as opposed to alloys, the thermal conductivity k and the electrical 
conductivity k, are related approximately3 as follows: 

-- - L = constant 
k J  

This is the Wiedemann-Franz-Lorenz equation; this equation can also be explained theoret- 
ically (see Problem 9A.6). The "Lorenz number" L is about 22 to 29 X lop9 volt2/K2 for 

A. Goldsmith, T. E. Waterman, and H. J. Hirschhorn, eds., Handbook of Thermophysical Properfies of 
Solids, Macmillan, New York (1961). 

M. Jakob, Heat Transfer, Vol. 1, Wiley, New York (1949), Chapter 6. See also W. H. Rohsenow, 
J. P. Hartnett, and Y. I. Cho, eds., Handbook of Heat Transfer, McGraw-Hill, New York (1998). 

%. Wiedemann and R. Franz, Ann. Phys. u. Chernie, 89,497-531 (1853); L. Lorenz, Poggendorff's 
Annalen, 147,429-452 (1872). 
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pure metals at 0°C and changes but little with temperatures above O°C, increases of 
10-20% per 1000°C being typical. At very low temperatures (-269.4"C for mercury) met- 
als become superconductors of electricity but not of heat, and L thus varies strongly with 
temperature near the superconducting region. Equation 9.5-1 is of limited use for alloys, 
since L varies strongly with composition and, in some cases, with temperature. 

The success of Eq. 9.5-1 for pure metals is due to the fact that free electrons are the 
major heat carriers in pure metals. The equation is not suitable for nonmetals, in which 
the concentration of free electrons is so low that energy transport by molecular motion 
predominates. 

59.6 EFFECTIVE THERMAL CONDUCTIVITY 
OF COMPOSITE SOLIDS 

Up to this point we have discussed homogeneous materials. Now we turn our attention 
briefly to the thermal conductivity of two-phase solids--one solid phase dispersed in a 
second solid phase, or solids containing pores, such as granular materials, sintered met- 
als, and plastic foams. A complete description of the heat transport through such materi- 
als is clearly extremely complicated. However, for steady conduction these materials can 
be regarded as homogeneous materials with an effective thermal conductivity keff, and the 
temperature and heat flux components are reinterpreted as the analogous quantities av- 
eraged over a volume that is large with respect to the scale of the heterogeneity but small 
with respect to the overall dimensions of the heat conduction system. 

The first major contribution to the estimation of the conductivity of heterogeneous 
solids was by Maxwell.' He considered a material made of spheres of thermal conductiv- 
ity k, embedded in a continuous solid phase with thermal conductivity ko. The volume 
fraction 4 of embedded spheres is taken to be sufficiently small that the spheres do not 
"interact" thermally; that is, one needs to consider only the thermal conduction in a large 
medium containing only one embedded sphere. Then by means of a surprisingly simple 
derivation, Maxwell showed that for small volume fraction 4 

(see Problems llB.8 and llC.5). 
For large volume fraction 4, Rayleigh2 showed that, if the spheres are located at the in- 

tersections of a cubic lattice, the thermal conductivity of the composite is given by 

Comparison of this result with Eq. 9.6-1 shows that the interaction between the spheres 
is small, even at 4 = in, the maximum possible value of 4 for the cubic lattice arrange- 
ment. Therefore the simpler result of Maxwell is often used, and the effects of nonuni- 
form sphere distribution are usually neglected. 

Maxwell's derivation was for electrical conductivity, but the same arguments apply for thermal 
conductivity. See J. C. Maxwell, A Treatise on Electricity and Magnetism, Oxford University Press, 3rd 
edition (1891, reprinted 1998), Vol. 1, s314; H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 
Clarendon Press, Oxford, 2nd edition (1959), p. 428. 

J. W. Strutt (Lord Rayleigh), Phil. Mag. (5), 34,431-502 (1892). 
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For nonspherical inclusions, however, Eq. 9.6-1 does require modification. Thus for 
square arrays of long cylinders parallel to the z axis, ~ a y l e i ~ h ~  showed that the zz com- 
ponent of the thermal conductivity tensor K is 

and the other two components are 

Keff, xx Keff, yy - - 1 + 24 
(9.6-4) 

ko ko kl - ko 
(0.305844~ + 0.0133634~ + . . -1 

That is, 
the composite solid containing aligned embedded cylinders is anisotropic. The effective 
thermal conductivity tensor has been computed up to 0(+') for a medium containing 
spheroidal  inclusion^.^ 

For complex nonspherical inclusions, often encountered in practice, no exact treatment 
is possible, but some approximate relations are a~a i lab le .~ ,~ ,~  For simple unconsolidated 
granular beds the following expression has proven successful: 

in which 

The gk are "shape factors" for the granules of the medium: and they must satisfy g, t 
g2 + g3 = 1. For spheres g1 = g2 = g3 = & and Eq. 9.6-5 reduces to Eq. 9.6-1. For unconsol- 
idated soils? gl = g2 = d and g3 = 2. The structure of consolidated porous beds-for ex- 
ample, sandstones-is considerably more complex. Some success is claimed for 
predicting the effective conductivity of such s~bstances;l.~,~ but the generality of the 
methods is not yet known. 

For solids containing gas  pocket^,^ thermal radiation (see Chapter 16) may be impor- 
tant. The special case of parallel planar fissures perpendicular to the direction of heat 
conduction is particularly important for high-temperature insulation. For such systems it 
may be shown that 

where a is the Stefan-Boltzmann constant, k1 is the thermal conductivity of the gas, and 
L is the total thickness of the material in the direction of the heat conduction. A modifica- 
tion of this equation for fissures of other shapes and orientations is a~ailable.~ 

S.-Y. Lu and S. Kim, AIChE lournal, 36,927-938 (1990). 
". I. Odelevskii, J. Tech. Phys. (USSR), 24,667 and 697 (1954); F. Euler, J. Appl. Phys., 28,1342-1346 

(1957). 
D. A. de Vries, Mededelingen van de Landbouwhogeschool te Wageningen, (1952); see also Ref. 6 and 

D. A. de Vries, Chapter 7 in Physics of Plant Environment, W. R. van Wijk, ed., Wiley, New York (1963). 
W. Woodside and J. H. Messmer, J. Appl. Phys., 32,1688-1699,1699-1706 (1961). 
A. L. Loeb, J. Amer. Ceramic Soc., 37,96-99 (1954). 
Sh. N. Plyat, Soviet Physics JETP, 2,2588-2589 (1957). 
M. Jakob, Heat Transfer, Wiley, New York (1959), Vol. 1,§6.5. 
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For gas-filled granular beds6r9 a different type of complication arises. Since the thermal 
conductivities of gases are much lower than those of solids, most of the gas-phase heat 
conduction is concentrated near the points of contact of adjacent solid particles. As a re- 
sult, the distances over which the heat is conducted through the gas may approach the 
mean free path of the gas molecules. When this is true, the conditions for the develop- 
ments of 59.3 are violated, and the thermal conductivity of the gas decreases. Very effec- 
tive insulators can thus be prepared from partially evacuated beds of fine powders. 

Cylindrical ducts filled with granular materials through which a fluid is flowing (in the z di- 
rection) are of considerable importance in separation processes and chemical reactors. In 
such systems the effective thermal conductivities in the radial and axial directions are 
quite different and are designated1' by K ~ ~ ~ , ~ ~  and K,,,,,. Conduction, convection, and radia- 
tion all contribute to the flow of heat through the porous medium." For highly turbulent 
flow, the energy is transported primarily by the tortuous flow of the fluid in the inter- 
stices of the granular material; this gives rise to a highly anisotropic thermal conductivity. 
For a bed of uniform spheres, the radial and axial components are approximately 

in which vo is the "superficial velocity" defined in 54.3 and 56.4, and D, is the diameter of 
the spherical particles. These simplified relations hold for Re = D,vop/p greater than 
200. The behavior at lower Reynolds numbers is discussed in several references.12 Also, 
the behavior of the effective thermal conductivity tensor as a function of the Pkclet num- 
ber has been studied in considerable detail.13 

59.7 CONVECTIVE TRANSPORT OF ENERGY 

In 59.1 we gave Fourier's law of heat conduction, which accounts for the energy trans- 
ported through a medium by virtue of the molecular motions. 

Energy may also be transported by the bulk motion of the fluid. In Fig. 9.7-1 we 
show three mutually perpendicular elements of area dS at the point P, where the fluid 

Fig. 9.7-1. Three mutually perpendicular surface elements of area dS across which energy is 
being transported by convection by the fluid moving with the velocity v. The volume rate of 
flow across the faceperpendicular to the x-axis is v,dS, and the rate of flow of energy across 
dS is then (ipv2 + pU)v,dS. Similar expressions can be written for the surface elements per- 
pendicular to the y- and z-axes. 

In See Eq. 9.1-7 for the modification of Fourier's law for anisotropic materials. The subscripts rr and 
zz emphasize that these quantities are components of a second-order symmetrical tensor. 

"W. B. Argo and J. M. Smith, Chem. Engr. Progress, 49,443-451 (1953). 
l2 J. Beek, Adv. Chem. Engr., 3,203-271 (1962); H.  Kramers and K. R. Westerterp, Elements of Chemical 

Reacfor Design and Operation, Academic Press, New York (1963), gIII.9; 0. Levenspiel and K. B. Bischoff, 
Adv. Chem. Engr., 4,95-198 (1963). 

l3 D. L. Koch and J. F. Brady, J. Fluid Mech., 154,399427 (1985). 



284 Chapter 9 Thermal Conductivity and the Mechanisms of Energy Transport 

velocity is v. The volume rate of flow across the surface element dS perpendicular to the 
x-axis is v,dS. The rate at which energy is being swept across the same surface element is 
then 

in which $pv2 = $p(v: + 4 + vi) is the kinetic energy per unit volume, and pir is the inter- 
nal energy per unit volume. 

The definition of the internal energy in a nonequilibrium situation requires some 
care. From the continuum point of view, the internal energy at position r and time t is as- 
sumed to be the same function of the local, instantaneous density and temperature that 
one would have at equilibrium. From the molecular point of view, the internal energy 
consists of the sum of the kinetic energies of all the constituent atoms (relative to the 
flow velocity v), the intramolecular potential energies, and the intermolecular energies, 
within a small region about the point r at time t. 

Recall that, in the discussion of molecular collisions in 50.3, we found it convenient 
to regard the energy of a colliding pair of molecules to be the sum of the kinetic energies 
referred to the center of mass of the molecule plus the intramolecular potential energy of 
the molecule. Here also we split the energy of the fluid (regarded as a continuum) into 
kinetic energy associated with the bulk fluid motion and the internal energy associated 
with the kinetic energy of the molecules with respect to the flow velocity and the intra- 
and intermolecular potential energies. 

We can write expressions similar to Eq. 9.7-1 for the rate at which energy is being 
swept through the surface elements perpendicular to the y- and z-axes. If we now multi- 
ply each of the three expressions by the corresponding unit vector and add, we then get, 
after division by dS, 

and this quantity is called the convective energy flux vector. To get the convective energy 
flux across a_ unit surface whose normal unit vector is n, we form the dot product 
(n . ($v2 + pU)v). It is understood that this is the flux from the negative side of the sur- 
face to the positive side. Compare this with the convective momentum flux in Fig. 1.7-2. 

g9.8 WORK ASSOCIATED WITH MOLECULAR MOTIONS 

Presently we will be concerned with applying the law of conservation of energy to 
"shells" (as in the shell balances in Chapter 10) or to small elements of volume fixed in 
space (to develop the equation of change for energy in §11.1). The law of conservation of 
energy for an open flow system is an extension of the first law of classical thermodynam- 
ics (for a closed system at rest). In the latter we state that the change in internal energy is 
equal to the amount of heat added to the system plus the amount of work done on the 
system. For flow systems we shall need to account for the heat added to the system (by 
molecular motions and by bulk fluid motion) and also for the work done on the system 
by the molecular motions. Therefore it is appropriate that we develop here the expres- 
sion for the rate of work done by the molecular motions. 

First we recall that, when a force F acts on a body and causes it to move through a 
distance dr, the work done is dW = (F dr). Then the rate of doing work is dW/dt = 

(F . drldt) = (F v)-that is, the dot product of the force times the velocity. We now 
apply this formula to the three perpendicular planes at a point P in space shown in 
Fig. 9.8-1. 

First we consider the surface element perpendicular to the x-axis. The fluid on the 
minus side of the surface exerts a force IT# on the fluid that is on the plus side (see 
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Fig. 9.8-1. Three mutually perpendicular surface elements of area dS at point P along with 
the stress vectors m,, my, n, acting on these surfaces. In the first figure, the rate at which 
work is done by the fluid on the minus side of dS on the fluid on the plus side of dS is then 
(a,. v)dS = [m v],dS. Similar expressions hold for the surface elements perpendicular to 
the other two coordinate axes. 

Table 1.2-1). Since the fluid is moving with a velocity v, the rate at which work is done 
by the minus fluid on the plus fluid is (n, v)dS. Similar expressions may be written for 
the work done across the other two surface elements. When written out in component 
form, these rate of work expressions, per unit area, become 

When these scalar components are multiplied by the unit vectors and added, we get the 
"rate of doing work vector per unit area," and we can call this, for short, the work flux: 

Furthermore, the rate of doing work across a unit area of surface with orientation given 
by the unit vector n is (n . [n - v]). 

Equations 9.8-1 to 9.8-4 are easily written for cylindrical coordinates by replacing 
x, y, z by r,  8, z and, for spherical coordinates by replacing x, y, z by r, 6, 4. 

We now define, for later use, the combined energy flux vector e as follows: 

The e vector is the sum of (a) the convective energy flux, (b) the rate of doing work (per 
unit area) by molecular mechanisms, and (c) the rate of transporting heat (per unit area) 
by molecular mechanisms. All the terms in Eq. 9.8-5 have the same sign convention, so 
that ex is the energy transport in the positive x direction per unit area per unit time. 

The total molecular stress tensor .rr can now be split into two parts: n = p6 + T 
so that [n . v] = pv + [T v]. The term py can then be combined with !he internal 
energy term to give an enthalpy term pUv + pv = p ( ~  + (p/p))v = p(U + pi3v = 

&v, so that 

e = ($pv2 + p k v  + [T . v] + q (9.8-6) 

We shall usually use the e vector in this form. For a surface element dS of orientation n, 
the quantity (n . e) gives the convective energy flux, the heat flux, and the work flux 
across the surface element dS from the negative side to the positive side of dS. 
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Table 9.8-1 Summary of Notation for Energy Fluxes 

Symbol Meaning Reference 

(ipv2 + pinv convective energy flux vector Eq. 9.7-2 

molecular heat flux vector Eq. 9.1-6 

molecular work flux vector Eq. 9.8-4 

e = q + [P . VI + (ipv2 + p k v  combined energy flux vector Eq. 9.8-5,6 
= q + [7 ' "1 + (ipv2 + p k v  

In Table 9.8-1 we summarize the notation for the various energy flux vectors intro- 
duced in this section. All of them have the same sign convention. 

To evaluate the enthalpy in Eq. 9.8-6, we make use of the standard equilibrium ther- 
modynamics formula 

A ($), (z;)~ A 

d H =  - dT+ - dp=C,dT+ V - T  - 
[ A  (:P))p 

When this is integrated from some reference state pol To to the state p, TI we then get1 

in which H" is the enthalpy per unit mass at the reference state. The integral over p is 
zero for a? ideal gas and (l/p)(p - pO) for fluids of constant density. The integral over T 
becomes C,(T - To) if the heat capacity can be regarded as constant over the relevant 
temperature range. It is assumed that Eq. 9.8-7 is valid in nonequilibrium systems, 
where p and Tare the local values of the pressure and temperature. 

QUESTIONS FOR DISCUSSION 

1. Define and give the dimensions of thermal conductivity k, thermal diffusivity a, heat capacity 
C,, heat flux q, and combined energy flux e. For the dimensions use m = mass, I = length, T = 

temperature, and t = time. 
2. Compare the orders of magnitude of the thermal conductivities of gases, liquids, and solids. 
3. In what way are Newton's law of viscosity and Fourier's law of heat conduction similar? Dis- 

similar? 
4. Are gas viscosities and thermal conductivities related? If so, how? 
5. Compare the temperature dependence of the thermal conductivities of gases, liquids, and 

solids. 
6. Compare the orders of magnitudes of Prandtl numbers for gases and liquids. 
7. Are the thermal conductivities of gaseous Ne20 and Ne22 the same? 
8. Is the relation ?, - ?, = R true only for ideal gases, or is it also true for liquids? If it is not 

true for liquids, what formula should be used? 
9. What is the kinetic energy flux in the axial direction for the laminar Poiseuille flow of a New- 

tonian liquid in a circular tube? 
10. What is [P vl = pv + [T vl for Poiseuille flow? 

' See, for example, R. J. Silbey and R. A. Alberty, Physical Chemistry, Wiley, 3rd edition (2001), s2.11. 
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PROBLEMS 

9A.1 Prediction of thermal conductivities of gases at 
low density. 
(a) Compute the thermal conductivity of argon at 100°C 
and atmospheric pressure, using the Chapman-Enskog 
theory and the Lennard-Jones constants derived from vis- 
cosity data. Compare your result with the observed value1 
of 506 X cal/cm. s . K. 
(b) Compute the thermal conductivities of NO and CH, at 
300K and atmospheric pressure from the following data 
for these conditions: 

p X lo7 (g/cm - s) (cal/g-mole . K) 

Compare your results with the experimental values given 
in Table 9.1-2. 

9A.2 Computation of the Prandtl numbers for gases at 
low density. 
(a) By using the Eucken formula and experimental heat 
capacity data, estimate the Prandtl number at 1 atm and 
300K for each of the gases listed in the table. 
(b) For the same gases, compute the Prandtl number di- 
rectly by substituting the following value: of the physical 
properties into the defining formula Pr = C,p/k, and com- 
pare the values with the results obtained in (a). All proper- 
ties are given at low pressure and 300K. 

He 5.193 1.995 0.1546 
Ar 0.5204 2.278 0.01784 
H2 14.28 0.8944 0.1789 
Air 1.001 1.854 0.02614 
(9 0.8484 1.506 0.01661 
H20 1.864 1 .041 0.02250 

The entries in this table were prepared 
from functions provided by T. E. Daubert, 
R. P.Danner, H. M. Sibul, C. C. Stebbins, 
J. L. Oscarson, R. L. Rowley, W. V. Wilding, 
M. E. Adams, T. L. Marshall, and N. A. Zundel, 
DIPPR @ Data Compilation of Pure Compound 
Properties, Design Institute for Physical Property 
Data@, AKkE, New York (2000). 

9A.3. Estimation of the thermal conductivity of a dense 
gas. Predict the thermal conductivity of methane at 110.4 
atm and 127°F by the following methods: 
(a) Use Fig. 9.2-1. Obtain the necessary critical properties 
from Appendix E. 
(b) Use the Eucken formula to get the thermal conductiv- 
ity at 127°F and low pressure. Then apply a pressure cor- 
rection by using Fig. 9.2-1. The experimental value2 is 
0.0282 Btu/hr ft F. 
Answer: (a) 0.0294 Btu/hr. ft - F. 

9A.4. Prediction of the thermal conductivity of a gas 
mixture. Calculate the thermal conductivity of a mixture 
containing 20 mole % C02 and 80 mole % H2 at 1 atm 
and 300K. Use the data of Problem 9A.2 for your cal- 
cula tions. 
Answer: 0.1204 W/m . K 

9A.5. Estimation of the thermal conductivity of a pure 
liquid. Predict the thermal conductivity of liquid H20 at 
40°C and 40 megabars pressure (1 megabar = 10' 
dyn/cm2). The isothermal compressibility, (1 / p) (dp/dp), 
is 38 X megabar-' and the density is 0.9938 g/cm3. 
Assume that 2; = ?,. 
Answer: 0.375 Btu/hr ft . F 
9A.6. Calculation of the Lorenz number. 
(a) Application of kinetic theory to the "electron gas" in a 
metap gives for the Lorenz number 

in which K is the Boltzmann constant and e is the charge 
on the electron. Compute L in the units given under 
Eq. 9.5-1. 
(b) The electrical resistivity, l /k , ,  of copper at 20°C is 
1.72X lop6 ohm cm. Estimate its thermal conduc- 
tivity in W/m e K using Eq. 9A.6-1, and compare 
your result with the experimental value given in 
Table 9.1-4. 
Answers: (a) 2.44 X lop8  volt'/^^; (b) 416 W/m . K 
9A.7. Corroboration of the Wiedemann-Franz-Lorenz 
law. Given the following experimental data at 20°C for 
pure metals, compute the corresponding values of the 
Lorenz number, L, defined in Eq. 9.5-1. 

' J. M. Lenoir, W. A. Junk, and E. W. Comings, Chem. Engr. 
Prog., 49,539-542 (1953). 

' W. G. Kannuluik and E. H. Carman, Proc. Pkys. Soc. J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley, 
(London), 65B, 701-704 (1952). New York (1946), p. 412; P. Drude, Ann. Phys., 1,566-613 (1900). 
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Metal (1 /kc) (ohm . cm) k (cal/cm . s . K) 

9A.8. Thermal conductivity and Prandtl number of a 
polyatomic gas. 
(a) Estimate the thermal conductivity of CH, at 1500K and 
1.37 atm. The molar heat capacity at constant pressure4 at 
1500K is 20.71 cal/g-mole . K. 
(b) What is the Prandtl number at the same pressure and 
temperature? 
Answers: (a) 5.06 X lop4 cal/cm s . K; (b) 0.89 

9A.9. Thermal conductivity of gaseous chlorine. Use 
Eq. 9.3-15 to calculate the thermal conductivity of gaseous 
chlorine. To do this you will need to use Eq. 1.4-14 to esti- 
mate the viscosity, and will also need the following values 
of the heat capacity: 

T (K) 200 300 400 500 600 
(cal/g-mole . K) (8.06) 8.12 8.44 8.62 8.74 

Check to see how well the calculated values agree with the 
following experimental thermal conductivity data5 

0. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical 
Process Principles, Vol. 1, Wiley, New York (1954), p. 253. 

Interpolated from data of E. U. Frank, Z. Elektrochem., 55, 
636 (1951), as reported in Nouveau Trait6 de Chimie Minerale, 
P. Pascal, ed., Masson et Cie, Paris (1960), pp. 158-159. 

9A.10. Thermal conductivity of chlorine-air mixtures. 
Using Eq. 9.3-17, predict thermal conductivities of chlo- 
rine-air mixtures at 297K and 1 atm for the following mole 
fractions of chlorine: 0.25, 0.50, 0.75. Air may be consid- 
ered a single substance, and the following data may be 
assumed: 

Substancea p (Pa s) k (W/m K) e, (J/kg K) 

Air 1.854 X lo-' 2.614 X lo-' 1.001 X lo3 

Chlorine 1.351 X lo-' 8.960 X 4.798 X 10' 

" The entries in this table were prepared from functions provided 
by T. E. Daubert, R. P. Danner, H. M. Sibul, C. C. Stebbins, 
J. L. Oscarson, R. L. Rowley, W. V. Wilding, M. E. Adams, 
T. L. Marshall, and N. A. Zundel, DIPPR @ Data Compilation of 
Pure Compound Properties, Design Institute for Physical Property 
Data@, AIChE, New York (2000). 

9A.11. Thermal conductivity of quartz sand. A typical 
sample of quartz sand has the following properties at 20°C: 

Component Volume fraction 4, k cal/cm s . K 

i = 1: Silica 0.510 20.4 x lo-3 
i = 2: Feldspar 0.063 7.0 X 

Continuous phase (i = 0) is one of the following: 
(i) Water 0.427 1.42 X lop3 
(ii) Air 0.427 0.0615 X lop3 

Estimate the thermal conductivity of the sand (i) when it is 
water saturated, and (ii) when it is completely dry. 
(a) Use the following generalization of Eqs. 9.6-5 and 6: 

Here N is the number of solid phases. Compare the predic- 
tion for spheres (g, = g2 = g3 = i) with the recommenda- 
tion of de Vries (gl = g2 = i; g3 = 9 ) .   he latter gi values 
closely approximate the fitted ones6 for the present sam- 
ple. The right-hand member of Eq. 9A.11-1 is to be multi- 
plied by 1.25 for completely dry sand.6 
(b) Use Eq. 9.6-1 with k, = 18.9 X cal/cm s . K, 
which is the volume-average thermal conductivity of the 
two solids. Observed values, accurate within about 3%, are 

The behavior of partially wetted soil has been treated by 
D. A. de Vries, Chapter 7 in Physics and Plant Environment, 
W. R. van Wijk, ed., Wiley, New York (1963). 
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6.2 and 0.58 x W3 cal/cm . s . K for wet and dry sand, re- These three equations give the density corrections to the 
spe~tively.~ viscosity and thermal conductivity of a hypothetical gas 

Answers in cal/cm. s K for wet and dry sand respectively: made up rigid 

(a) Eq. 9A.11-1 gives keff = 6.3 X 10" and 0.38 x 10" with Enskog further suggested that for real gases, (i) y can 

g, = g, = g3 =$ VS. 6.2 X and 0.54 X with g, = g2 = be given empirically 

and g, = $. (b) Eq. 9.6-1 gives keff = 5.1 X 10" and 0.30 X 

(9C.1-4) 

9A.12. Calculation of molecular diameters from trans- 
port properties. where experimental p - V - ~  data are used, and (ii) bo can be 
(a) Determine the molecular diameter d for argon from Eq. determined by fitting the minimum in the curve of 
1.4-9 and the experimental viscosity given in Problem 9A.2. (p/pO)V versus Y. 
(b) Repeat part (a), but using Eq. 9.3-12 and the measured 
thermal conductivity in Problem 9A.2. Compare this result 
with the value obtained in (a). 
(c) Calculate and compare the values of the Lennard-Jones 
collision diameter a from the same experimental data used 
in (a) and (b), using E / K  from Table E.1. 
(d) What can be concluded from the above calculations? 
Answer: (a) 2.95 A; (b) 1.86 A; (c) 3.415 A from Eq. 1.4-14, 
3.409 A from Eq. 9.3-13 

9C.1. Enskog theory for dense gases. ~ n s k o ~ ~  devel- 
oped a kinetic theory for the transport properties of dense 
gases. He showed that for molecules that are idealized as 
rigid spheres of diameter wo 

(a) A useful way to summarize the equation of state is to 
use the correspon_ding-states presentation8 of Z = Z(p,, 
T,), where Z = pV/XT, p, = plp,, and T, = T/T,. Show 
that the quantity y defined by Eq. 9C.1-4 can be com- 
puted as a function of the reduced pressure and tempera- 
ture from 

1 + (aln Z/aln T , ) ,  
y = z  

1 - (aln Z/aln p,),  - (9C.1-5) 

(b) Show how Eqs. 9C.1-1, 2, and 5, together with the 
Hougen-Watson Z-chart and the Uyehara-Watson p/p, 
chart in Fig. 1.3-1, can be used to develop a chart of k/k,. as 
a function of p, and T,. What would be the limitations of 
the resulting chart? Such a procedure (but using specific 
~ V - T  data instead of the Hougen-Watson Z-chart) was 
used by Comings and Natham9 
(c) How might one use the Redlich and  won^'^ equation 

(9C-1-2) of state 

Here p" and k" are the low-pressure properties (computed, a (c - b) = RT (9C.l-6) 
for example, from Eqs. 1.4-14 and 9.3-13), V is the molar 

and b0 = jnNdf where ' is Avogadro's number' for the same purpose? The quantities a and b are constants 
The quantity y is related to the equation of state of a gas of charactenstic of each gas. 
rigid spheres: 

y = RT - 1 = ($) + 0.6250(!!)2 + 0.2869($r + . 
(9C.1-3) 0. A. Hougen and K. M. Watson, Chemical Process 

Principles, Vol. 11, Wiley, New York (1947), p. 489. 
D. Enskog, Kungliga Svenska Vetenskapsakademiens E. W. Comings and M. F. Nathan, Ind. Eng. Chem., 39, 

Handlingar, 62, No. 4 (1922), in German. See also J. 0. Hirschfelder, 964-970 (1947). 
C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, lo 0. Redlich and J. N. S. Kwong, Chem. Rev., 44,233-244 
2nd printing with corrections (1964), pp. 647-652. (1949). 



Chapter 10 

Shell Energy Balances and 
Temperature Distributions in 
Solids and Laminar Flow 

Shell energy balances; boundary conditions 

Heat conduction with an electrical heat source 

Heat conduction with a nuclear heat source 

Heat conduction with a viscous heat source 

Heat conduction with a chemical heat source 

Heat conduction through composite walls 

Heat conduction in a cooling fin 

Forced convection 

Free convection 

In Chapter 2 we saw how certain simple viscous flow problems are solved by a two-step 
procedure: (i) a momentum balance is made over a thin slab or shell perpendicular to the 
direction of momentum transport, which leads to a first-order differential equation that 
gives the momentum flux distribution; (ii) then into the expression for the momentum 
flux we insert Newton's law of viscosity, which leads to a first-order differential equa- 
tion for the fluid velocity as a function of position. The integration constants that appear 
are evaluated by using the boundary conditions, which specify the velocity or momen- 
tum flux at the bounding surfaces. 

In this chapter we show how a number of heat conduction problems are solved by 
an analogous procedure: (i) an energy balance is made over a thin slab or shell perpen- 
dicular to the direction of the heat flow, and this balance leads to a first-order differential 
equation from which the heat flux distribution is obtained; (ii) then into this expression 
for the heat flux, we substitute Fourier's law of heat conduction, which gives a first-order 
differential equation for the temperature as a function of position. The integration con- 
stants are then determined by use of boundary conditions for the temperature or heat 
flux at the bounding surfaces. 

It should be clear from the similar wording of the preceding two paragraphs that the 
mathematical methods used in this chapter are the same as those introduced in Chapter 
2-only the notation and terminology are different. However, we will encounter here a 
number of physical phenomena that have no counterpart in Chapter 2. 

After a brief introduction to the shell energy balance in §10.1, we give an analysis of 
the heat conduction in a series of uncomplicated systems. Although these examples are 
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somewhat idealized, the results find application in numerous standard engineering cal- 
culations. The problems were chosen to introduce the beginner to a number of important 
physical concepts associated with the heat transfer field. In addition, they serve to show 
how to use a variety of boundary conditions and to illustrate problem solving in Carte- 
sian, cylindrical, and spherical coordinates. In §§10.2-10.5 we consider four kinds of heat 
sources: electrical, nuclear, viscous, and chemical. In 9510.6 and 10.7 we cover two topics 
with widespread applications-namely, heat flow through composite walls and heat 
loss from fins. Finally, in §§10.8 and 10.9, we analyze two limiting cases of heat transfer 
in moving fluids: forced convection and free convection. The study of these topics paves 
the way for the general equations in Chapter 11. 

$10.1 SHELL ENERGY BALANCES; BOUNDARY CONDITIONS 

The problems discussed in this chapter are set up by means of shell energy balances. We 
select a slab (or shell), the surfaces of which are normal to the direction of heat conduc- 
tion, and then we write for this system a statement of the law of conservation of energy. 
For steady-state (i.e., time-independent) systems, we write: 

(rate energy of in ] - [rate energy of out ) + ("te of ] - (rate of ) 
energy in energy out + 

by convective by convective by molecular by molecular 
transport transport transport transport 

rate of 

The convective transport of energy was discussed in 59.7, and the molecular transport (heat 
conduction) in 99.1. The molecular work terms were explained in s9.8. These three terms 
can be added to give the "combined energy flux" el as shown in Eq. 9.8-6. In setting up 
problems here (and in the next chapter) we will use the e vector along with the expres- 
sion for the enthalpy in Eq. 9.8-8. Note that in nonflow systems (for which v is zero) the e 
vector simplifies to the q vector, which is given by Fourier's law. 

The energy production term in Eq. 10.1-1 includes (i) the degradation of electrical en- 
ergy into heat, (ii) the heat produced by slowing down of neutrons and nuclear frag- 
ments liberated in the fission process, (iii) the heat produced by viscous dissipation, and 
(iv) the heat produced in chemical reactions. The chemical reaction heat source will be 
discussed further in Chapter 19. Equation 10.1-1 is a statement of the first law of thermo- 
dynamics, written for an "open" system at steady-state conditions. In Chapter 11 this 
same statement-extended to unsteady-state systems-will be written as an equation of 
change. 

After Eq. 10.1-1 has been written for a thin slab or shell of material, the thickness of 
the slab or shell is allowed to approach zero. This procedure leads ultimately to an ex- 
pression for the temperature distribution containing constants of integration, which we 
evaluate by use of boundary conditions. The commonest types of boundary conditions 
are: 

a. The temperature may be specified at a surface. 

b. The heat flux normal to a surface may be given (this is equivalent to specifying 
the normal component of the temperature gradient). 

c. At interfaces the continuity of temperature and of the heat flux normal to the in- 
terface are required. 
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d. At a solid-fluid interface, the normal heat flux component may be related to the 
difference between the solid surface temperature To and the "bulk" fluid temper- 
ature Tb: 

q = h(To - Td (1 0.1-2) 

This relation is referred to as Newton's law of cooling. It is not really a "law" but 
rather the defining equation for h, which is called the heat transfer coejyrcient. 
Chapter 14 deals with methods for estimating heat-transfer coefficients. 

All four types of boundary conditions are encountered in this chapter. Still other kinds 
of boundary conditions are possible, and they will be introduced as needed. 

910.2 HEAT CONDUCTION WITH AN 
ELECTRICAL HEAT SOURCE 

The first system we consider is an electric wire of circular cross section with radius R and 
electrical conductivity k, ohm-' cm-'. Through this wire there is an electric current with 
current density I amp/cm2. The transmission of an electric current is an irreversible 
process, and some electrical energy is converted into heat (thermal energy). The rate of 
heat production per unit volume is given by the expression 

The quantity S, is the heat source resulting from electrical dissipation. We assume here 
that the temperature rise in the wire is not so large that the temperature dependence of 
either the thermal or electrical conductivity need be considered. The surface of the wire 
is maintained at temperature To. We now show how to find the radial temperature distri- 
bution within the wire. 

For the energy balance we take the system to be a cylindrical shell of thickness Ar 
and length L (see Fig. 10.2-1). Since v = 0 in this system, the only contributions to the en- 
ergy balance are 

Rate of heat in 
across cylindrical (2.1rvL)qrlr) = (2.1rvLqr)l, 
surface at r 
Rate of heat out 
across cylindrical (2dr  + Ar)L)(qrlr+Ar) = (2mLqr)lr+br 
surface at r + Ar 
Rate of thermal 
energy production by (2mArL) S, 
electrical dissipation 

The notation qr means "heat flux in the r direction," and (a . ) l r + 8 r  means "evaluated at 
r + Ar." Note that we take "in" and "out" to be in the positive r direction. 

We now substitute these quantities into the energy balance of Eq. 9.1-1. Division by 
2rLAr and taking the limit as Ar goes to zero gives 

The expression on the left side is the first derivative of rq, with respect to r, so that Eq. 
10.2-5 becomes 
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Fig. 10.2-1. An electrically heated wire, show- 
ing the cylindrical shell over which the energy 

Uniform heat balance is made. 
production 
by electrical 

heating 
st! 

I I I I I I I q4 H q r i r + A r  

1 I Heat in by I I Heat out by 
I l conduction I I conduction 
I I 

I I I I 

I I 

-- 
/ 

I 

This is a first-order differential equation for the energy flux, and it may be integrated to give 

The integration constant C, must be zero because of the boundary condition that 

B.C. 1: at r = 0, q, is not infinite (10.2-8) 

Hence the final expression for the heat flux distribution is 
I I 

This states that the heat flux increases linearly with r. 
We now substitute Fourier's law in the form 9, = -k(dT/dr) (see Eq. B.2-4) into 

Eq. 10.2-9 to obtain 

When k is assumed to be constant, this first-order differential equation can be integrated 
to give 

The integration constant is determined from 

B.C. 2: a t r = R ,  T = T o  (10.2-12) 

Hence C, = (S,~'/4k) + To and Eq. 10.2-11 becomes 

I I 

Equation 10.2-13 gives the temperature rise as a parabolic function of the distance r from 
the wire axis. 
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Once the temperature and heat flux distributions are known, various information 
about the system may be obtained: 

(i) Maximum temperature rise (at r = 0) 

(ii) Average temperature rise 

Thus the temperature rise, averaged over the cross section, is half the maximum temper- 
ature rise. 

(iii) Heat outflow at the surface (for a length L of wire) 

This result is not surprising, since, at steady state, all the heat produced by electrical dis- 
sipation in the volume TR'L must leave through the surface r = R. 

The reader, while going through this development, may well have had the feeling of 
de'ja vu. There is, after all, a pronounced similarity between the heated wire problem and 
the viscous flow in a circular tube. Only the notation is different: 

- 

Tube flow Heated wire 

First integration gives r,(d 9 A y )  

Second integration gives UJY) T(r) - To 
Boundary condition at r = 0  rrz = finite q, = finite 
Boundary condition at r = R v, = 0  T - T o = O  
Transport property E". k 
Source term (9'0 - 9'L)/L s, 
Assumptions p = constant k, k, = constant 

That is, when the quantities are properly chosen, the differential equations and the 
boundary conditions for the two problems are identical, and the physical processes are 
said to be "analogous." Not all problems in momentum transfer have analogs in energy 
and mass transport. However, when such analogies can be found, they may be useful in 
taking over known results from one field and applying them in another. For example, 
the reader should have no trouble in finding a heat conduction analog for the viscous 
flow in a liquid film on an inclined plane. 

There are many examples of heat conduction problems in the electrical industry.' 
The minimizing of temperature rises inside electrical machinery prolongs insulation life. 
One example is the use of internally liquid-cooled stator conductors in very large 
(500,000 kw) AC generators. 

M. Jakob, Heat  Transfer, Vol. 1, Wiley, New York (19491, Chapter 10, pp. 167-199. 
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To illustrate further problems in electrical heating, we give two examples concern- 
ing the temperature rise in wires: the first indicates the order of magnitude of the heating 
effect, and the second shows how to handle different boundary conditions. In addition, 
in Problem 10C.2 we show how to take into account the temperature dependence of the 
thermal and electrical conductivities. 

A copper wire has a radius of 2 mm and a length of 5 m. For what voltage drop would the 
temperature rise at the wire axis be 10°C, if the surface temperature of the wire is 20°C? 

Voltage Required for a 
Given Temperature Rise SOLUTION 
in a Wire Heated by an 
Electric Current Combining Eq. 10.2-14 and 10.2-1 gives 

EXAMPLE 10.2.2 

Heated Wire wi th 
Specified Heat Transfer 

The current density is related to the voltage drop E over a length L by 

Hence 

from which 

For copper, the Lorenz number of 59.5 is k/keTo = 2.23 X lo-' VO~P/K~.  Therefore, the voltage 
drop needed to cause a 10°C temperature rise is 

8 volt v- E = 2(5000 2 mm mm)~2 .23  X 10- - K (293)(10)K 

= (5000)(1.49 X 1oP4)(54.1) = 40 volts 

Repeat the analysis in 510.2, assuming that To is not known, but that instead the heat flux at 
the wall is given by Newton's "law of cooling" (Eq. 10.1-2). Assume that the heat transfer co- 
efficient h and the ambient air temperature Tair are known. 

Coefficient and SOLUTION I 
Ambient Air 
Temperature The solution proceeds as before through Eq. 10.2-11, but the second integration constant is de- 

termined from Eq. 10.1-2: 

B.C. 2': 
dT a t r = R ,  -k-=h(T-TaiJ (10.2-22) 
dr 

Substituting Eq. 10.2-11 into Eq. 10.2-22 gives C2 = (SeR/2h) + (S,R2/4k) + Tair, and the tem- 
perature profile is then 

From this the surface temperature of the wire is found to be Ta,, + SJV2h. 
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SOLUTION II 

Another method makes use of the result obtained previously in Eq. 10.2-13. Although To is 
not known in the present problem, we can nonetheless use the result. From Eqs. 10.1-2 and 
10.2-16 we can get the temperature difference 

Substraction of Eq. 10.2-24 from Eq. 10.2-13 enables us to eliminate the unknown To and gives 
Eq. 10.2-23. 

s10.3 HEAT CONDUCTION WITH A NUCLEAR HEAT SOURCE 

We consider a spherical nuclear fuel element as shown in Fig. 10.3-1. It consists of a 
sphere of fissionable material with radius R'~', surrounded by a spherical shell of alu- 
minum "cladding" with outer radius R"'. Inside the fuel element, fission fragments are 
produced that have very high kinetic energies. Collisions between these fragments and 
the atoms of the fissionable material provide the major source of thermal energy in the 
reactor. Such a volume source of thermal energy resulting from nuclear fission we call S,, 
(cal/cm3. s). This source will not be uniform throughout the sphere of fissionable mater- 
ial; it will be the smallest at the center of the sphere. For the purpose of this problem, we 
assume that the source can be approximated by a simple parabolic function 

Here S,,, is the volume rate of heat production at the center of the sphere, and b is a di- 
mensionless positive constant. 

We select as the system a spherical shell of thickness Ar within the sphere of fission- 
able material. Since the system is not in motion, the energy balance will consist only of 
heat conduction terms and a source term. The various contributions to the energy bal- 
ance are: 

Coolant 

Fig. 10.3-1. A spherical nuclear fuel assembly, showing 
the temperature distribution within the system. 
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Rate of heat out 
by conduction qlF)l r+Ar 4v(r  + A d 2  = (4dq lF ' )  
a t r  + Ar 
Rate of thermal 
energy produced S, - 4 d  Ar 
by nuclear fission 

Substitution of these terms into the energy balance of Eq. 10.1-1 gives, after dividing by 
4 ~ r  Ar and taking the limit as Ar + 0 

Taking the limit and introducing the expression in Eq. 10.3-1 leads to 

The differential equation for the heat flux qlc' in the cladding is of the same form as Eq. 
10.3-6, except that there is no significant source term: 

Integration of these two equations gives 

in which c;" and CjC' are integration constants. These are evaluated by means of the 
boundary conditions: 

B.C. I: 
B.C. 2: 

Evaluation of the constants then leads to 

These are the heat flux distributions in the fissionable sphere and in the spherical-shell 
cladding. 

Into these distributions we now substitute Fourier's law of heat conduction (Eq. 
B.2-7): 
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These equations may be integrated for constant Ic'~' and k(" to give 

The integration constants can be determined from the boundary conditions 

B.C. 3: 
B.C. 4: 

where To is the known temperature at the outside of the cladding. The final expressions 
for the temperature profiles are 

ko find the maximum 
temperature in the sphere of fissionable material, all we have to do is set r equal to zero 
in Eq. 10.3-20. This is a quantity one might well want to know when making estimates of 
thermal deterioration. 

This problem has illustrated two points: (i) how to handle a position-dependent 
source term, and (ii) the application of the continuity of temperature and normal heat 
flux at the boundary between two solid materials. 

510.4 HEAT CONDUCTION WITH A VISCOUS HEAT SOURCE 

Next we consider the flow of an incompressible Newtonian fluid between two coaxial 
cylinders as shown in Fig. 10.4-1. The surfaces of the inner and outer cylinders are main- 
tained at T = To and T = Tb, respectively. We can expect that T will be a function of r 
alone. 

Outer cylinder moves with 
angular velocity 51 ----- 

Fig. 10.4-1. Flow between cylinders with viscous 
heat generation. That part of the system enclosed 
within the dotted lines is shown in modified form 
in Fig. 10.4-2. 
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T~~ surface moves with velocity vb = ~a Fig. 10.4-2. Modification of a portion of the flow 
system in Fig. 10.4-1, in which the curvature of the 
bounding surfaces is neglected. 

X 

~tationar$ surface 

As the outer cylinder rotates, each cylindrical shell of fluid "rubs" against an adja- 
cent shell of fluid. This friction between adjacent layers of the fluid produces heat; that 
is, the mechanical energy is degraded into thermal energy. The volume heat source re- 
sulting from this "viscous dissipation," which can be designated by S,, appears automat- 
ically in the shell balance when we use the combined energy flux vector e defined at the 
end of Chapter 9, as we shall see presently. 

If the slit width b is small with respect to the radius R of the outer cylinder, then the 
problem can be solved approximately by using the somewhat simplified system de- 
picted in Fig. 10.4-2. That is, we ignore curvature effects and solve the problem in Carte- 
sian coordinates. The velocity distribution is then v, = vb(x/b), where vb = flR. 

We now make an energy balance over a shell of thickness Ax, width W, and length L. 
Since the fluid is in motion, we use the combined energy flux vector e as written in Eq. 
9.8-6. The balance then reads 

Dividing by WL Ax and letting the shell thickness Ax go to zero then gives 

This equation may be integrated to give 

Since we do not know any boundary conditions for ex, we cannot evaluate the integra- 
tion constant at this point. 

We now insert the expression for e, f;om Eq. 9.8-6. Since the velocity component in 
the x direction is zero, the term (ipv2 + pLnv can be discarded. The x-component of q is 
-k(dT/dx) according to Fourier's law. The x-component of [T . v] is, as shown in Eq. 
9.8-1, T,,v, + ~~~v~ + T,,v,. Since the only nonzero component of the velocity is v, and 
since T,, = -p(dv,/dx) according to Newton's law of viscosity, the x-component of [T . vl 
is -pu,(dv,/dx). We conclude, then, that Eq. 10.4-3 becomes 

When the linear velocity profile v, = vb(x/b) is inserted, we get 

in which p ( ~ [ , / b ) ~  can be identified as the rate of viscous heat production per unit volume S,. 
When Eq. 10.4-5 is integrated we get 
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The two integration constants are determined from the boundary conditions 

B.C. 1: 
B.C. 2: 

This yields finally, for Tb + To 

Here Br = pz;/k(Tb - To) is the dimensionless Brinkman number,' which is a measure of 
the importance of the viscous dissipation term. If Tb = To, then Eq. 10.4-9 can be written 
as 

and the maximum temperature is at x/b = $. 
If the temperature rise is appreciable, the temperature dependence of the viscosity 

has to be taken into account. This is discussed in Problem 10C.l. 
The viscous heating term S, = p(vb/b)' may be understood by the following argu- 

ments. For the system in Fig. 10.4-2, the rate at which work is done is the force acting on 
the upper plate times the velocity with which it moves, or (-T~=WL)(V~). The rate of en- 
ergy addition per unit volume is then obtained by dividing this quantity by WLb, which 
gives (-7,,vb/b) = p ( ~ ~ / b ) ~ .  This energy all appears as heat and is hence S,. 

In most flow problems viscous heating is not important. However if there are large 
velocity gradients, then it cannot be neglected. Examples of situations where viscous 
heating must be accounted for include: (i) flow of a lubricant between rapidly moving 
parts, (ii) flow of molten polymers through dies in high-speed extrusion, (iii) flow of 
highly viscous fluids in high-speed viscometers, and (iv) flow of air in the boundary 
layer near an earth satellite or rocket during reentry into the earth's atmosphere. The 
first two of these are further complicated because many lubricants and molten plastics 
are non-Newtonian fluids. Viscous heating for non-Newtonian fluids is illustrated in 
Problem 10B. 5. 

510.5 HEAT CONDUCTION WITH A CHEMICAL HEAT SOURCE 

A chemical reaction is being carried out in a tubular, fixed-bed flow reactor with inner 
radius X as shown in Fig. 10.5-1. The reactor extends from z = - to z = + 63 and is di- 
vided into three zones: 

Zone I: Entrance zone packed with noncatalytic spheres 

Zone 11: Reaction zone packed with catalyst spheres, extending from z = 0 to z = L 

Zone 111: Exit zone packed with noncatalytic spheres 

It is assumed that the fluid proceeds through the reactor tube in "plug flowM-that is, 
with axial velocity uniform at a superficial value vo = w / m - ~ ~ ~  (see text below Eq. 6.4-1 
for the definition of "superficial velocity"). The density, mass flow rate, and superficial 

' H. C. Brinkman, Appl. Sci. Research, A2,120-124 (1951), solved the viscous dissipation heating 
problem for the Poiseuille flow in a circular tube. Other dimensionless groups that may be used for 
characterizing viscous heating have been summarized by R. B. Bird, R. C. Armstrong, and 0. Hassager, 
Dynamics of Polymeric Liquids, Vol. 1,2nd edition, Wiley, New York (1987), pp. 207-208. 
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Insulated Inert Catalyst Inert 
wall \ particles particles qAzr particles 

- Zone I Zone I1 A Zone I11 --+ 

z = 0 z = L  

Fig. 10.5-1. Fixed-bed axial-flow reactor. Reactants enter at 
z = - m and leave at z = + m. The reaction zone extends 
from z = 0 to z = L. 

velocity are all treated as independent of r and z. In addition, the reactor wall is assumed 
to be well insulated, so that the temperature can be considered essentially independent 
of r. It is desired to find the steady-state axial temperature distribution T(z) when the 
fluid enters at z = -03 with a uniform temperature TI. 

When a chemical reaction occurs, thermal energy is produced or consumed when 
the reactant molecules rearrange to form the products. The volume rate of thermal en- 
ergy production by chemical reaction, s,, is in general a complicated function of pres- 
sure, temperature, composition, and catalyst activity. For simplicity, we represent S, 
here as a function of temperature only: S, = SclF(Q), where Q = (T - To)/(Tl - To). Here 
T is the local temperature in the catalyst bed (assumed equal for catalyst and fluid), and 
S,, and To are empirical constants for the given reactor inlet conditions. 

For the shell balance we select a disk of radius R  and thickness Az in the catalyst 
zone (see Fig. 10.5-I), and we choose Az to be much larger than the catalyst particle di- 
mensions. In setting up the energy balance, we use the combined energy flux vector e inas- 
much as we are dealing with a flow system. Then, at steady state, the energy balance is 

Next we divide by r R 2  AZ and take the limit as Az goes to zero. Strictly speaking, this op- 
eration is not "legal," since we are not dealing with a continuum but rather with a gran- 
ular structure. Nevertheless, we perform this limiting process with the understanding 
that the resulting equation describes, not point values, but rather average values of e, 
and S, for reactor cross sections of constant z. This gives 

Now we substitute the z-component of Eq. 9.8-6 into this equation to get 

We now use Fourier's law for q,, Eq. 1.2-6 for r,,, and the enthalpy expression in Eq. 9.8-8 
(with the assumption that the heat capacity is constant) to get 

in which the effective thermal conductivity in the z direction K , ~ ~ , ~ ~  has been used (see Eq. 
9.6-9). The first, fourth and fifth terms on the left side may be discarded, since the veloc- 
ity is not changing with z. The third term may be discarded if the pressure does not 
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change significantly in the axial direction. Then in the second term we replace v, by the 
superficial velocity v,, because the latter is the effective fluid velocity in the reactor. Then 
Eq. 10.5-4 becomes 

This is the differential equation for the temperature in zone 11. The same equation ap- 
plies in zones I and I11 with the source term set equal to zero. The differential equations 
for the temperature are then 

Zone I 

Zone I1 

Zone I11 

Here we have assumed that we can use the same value of the effective thermal conduc- 
tivity in all three zones. These three second-order differential equations are subject to the 
following six boundary conditions: 

B.C. 1: atz=--03, T1=T1 
B.C. 2: at z = 0, = TII 

B.C. 3: 

B.C. 4: at z = L, ~ 1 1  = ~ " 1  (10.5-12) 

B.C. 5: a tz  = L, dTn - d T"' 
Keff,zz - - Keff,zz - dz dz 

B.C. 6: a tz  = m, TI" = finite (10.5-14) 

Equations 10.5-10 to 13 express the continuity of temperature and heat flux at the bound- 
aries between the zones. Equations 10.5-9 and 14 specify requirements at the two ends of 
the system. 

The solution of Eqs. 10.5-6 to 14 is considered here for arbitrary F(O). In many cases 
of practical interest, the convective heat transport is far more important than the axial 
conductive heat transport. Therefore, here we drop the conductive terms entirely (those 
containing K , ~ ~ , ~ ~ ) .  This treatment of the problem still contains the salient features of the 
solution in the limit of large P6 = RePr (see Problem 10B.18 for a fuller treatment). 

If we introduce a dimensio_nless axial coordinate Z = z / L  and a dimensionless 
chemical heat source N = ScIL/pC,~ti(Tl - TO), then Eqs. 10.5-6 to 8 become 

Zone I 
dO1 

(Z < 0) = 0 (10.5-15) 

Zone 11 ( o < z < I )  -- d@I1 - j,gqO) 
dZ 

(10.5-16) 

d@III 
Zone I11 (Z>1)  -- - 0 (10.5-17) 

dZ 

for which we need three boundary conditions: 

B.C. 1: 
B.C. 2: 
B.C. 3: 
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Zone I1 in which heat 
is produced by 

Zone I chemical reaction Zone I11 

Dimensionless axial coordinate Z = z/L 

Fig. 10.5-2. Predicted temperature profiles in a fixed-bed 
axial-flow reactor when the heat production varies linearly 
with the temperature and when there is negligible axial 
diffusion. 

The above first-order, separable differential equations, with boundary conditions, are 
easily solved to get 

Zone I 

Zone I1 

Zone I11 

These results are shown in Fig. 10.5-2 for a simple choice for the source function- 
namely, F ( 0 )  = @-which is reasonable for small changes in temperature, if the reaction 
rate is insensitive to concentration. 

Here in this section we ended up discarding the axial conduction terms. In Problem 
10B.18, these terms are not discarded, and then the solution shows that there is some 
preheating (or precooling) in region I. 

510.6 HEAT CONDUCTION THROUGH COMPOSITE WALLS 

In industrial heat transfer problems one is often concerned with conduction through 
walls made up of layers of various materials, each with its own characteristic thermal 
conductivity. In this section we show how the various resistances to heat transfer are 
combined into a total resistance. 

In Fig. 10.6-1 we show a composite wall made up of three materials of different 
thicknesses, x, - x,, x, - x,, and x, - x,, and different thermal conductivities k,,, k,,, and 
k2,. At x = x,, substance 01 is in contact with a fluid with ambient temperature T,, and at 
x = x,, substance 23 is in contact with a fluid at temperature Tb. The heat transfer at the 
boundaries x = xo and x = x, is given by Newton's "law of cooling" with heat transfer 
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Sub- 
Substance stance Substance 

1 

Fluid 

------ 
0 xo XI x2 x3 

Distance, x --+ 

Fig. 10.6-1. Heat conduction through a composite wall, located be- 
tween two fluid streams at temperatures T, and Tb. 

coefficients ho and h3, respectively. The anticipated temperature profile is sketched in Fig. 
10.6-1. 

First we set up the energy balance for the problem. Since we are dealing with heat 
conduction in a solid, the terms containing velocity in the e vector can be discarded, and 
the only relevant contribution is the q vector, describing heat conduction. We first write 
the energy balance for a slab of volume WH Ax 

Region 01 : ~ x ~ x W  - q x l x + ~ x ~  = 0 (10.6-1) 

which states that the heat entering at x must be equal to the heat leaving at x + Ax, since 
no heat is produced within the region. After division by WH Ax and taking the limit as 
Ax + 0, we get 

Region 01 : dqx -- - 0 (10.6-2) 
dx 

Integration of this equation gives 

Region 01 : q, = q, (a constant) (1 0.6-3) 

The constant of integration, qo, is the heat flux at the plane x = xo. The development in 
Eqs. 10.6-1,2, and 3 can be repeated for regions 12 and 23 with continuity conditions on 
q, at interfaces, so that the heat flux is constant and the same for all three slabs: 

Regions 01,12,23: qX = 40 (10.6-4) 

with the same constant for each of the regions. We may now introduce a Fourier's law 
for each of the three regions and get 

Region 01: - 

Region 12: - 

Region 23: - 
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We now assume that k,,, k,,, and k2, are constants. Then we integrate each equation over 
the entire thickness of the relevant slab of material to get 

Region 01: 

Region 12: 

Region 23: 

In addition we have the two statements regarding the heat transfer at the surfaces ac- 
cording to Newton's law of cooling: 

At surface 0: 

At surface 3: 

Addition of these last five equations then gives 

Sometimes this result is rewritten in a form reminiscent of Newton's law of cooling, ei- 
ther in terms of the heat flux qo (J/m2 s) or the heat flow Q, U/s): 

The quantity U, called the "overall heat transfer coefficient," is given then by the follow- 
ing famous formula for the "additivity of resistances": 

Here we have generalized the formula to a system with n slabs of material. Equations 
10.6-15 and 16 are useful for calculating the heat transfer rate through a composite wall 
separating two fluid streams, when the heat transfer coefficients and thermal conductivi- 
ties are known. The estimation of heat transfer coefficients is discussed in Chapter 14. 

In the above development it has been tacitly assumed that the solid slabs are con- 
tiguous with no intervening "air spaces." If the solid surfaces touch each other only at 
several points, the resistance to heat transfer will be appreciably increased. 

Develop a formula for the overall heat transfer coefficient for the composite cylindrical pipe 
wall shown in Fig. 10.6-2. 

Composite Cylindrical 
Walls SOLUTION 

An energy balance on a shell of volume 2m-L Ar for region 01 is 

Region 01: q,l, - 2mL - q,l,+A,. 2 r ( r  + Ar)L = 0 
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which can also be written as 

Region 01: 

Fig. 10.6-2. Heat conduction through a lami- 
nated tube with a fluid at temperature T, in- 
side the tube and temperature Tb outside. 

Dividing by 2.rrL Ar and taking the limit as Ar goes to zero gives 

Region 01: d F ('4,) = 0 (10.6-19) 

Integration of this equation gives 

in which ro is the inner radius of region 01, and 90 is the heat flux there. In regions 12 and 23, 
rq, is equal to the same constant. Application of Fourier's law to the three regions gives 

Region 01: dT -kolr - = r,q, (10.6-21) 
dr 

Region 12: dT 
- k,,r - = r,qo (10.6-22) 

dr 

Region 23: dT 
- k 2 3 ~  - = TogD 

dr 
(10.6-23) 

If we assume that the thermal conductivities in the three annular regions are constants, then 
each of the above three equations can be integrated across its region to give 

Region 10: 

Region 12: 
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Region 23: 

At the two fluid-solid interfaces we can write Newton's law of cooling: 

Surface 0: 

Surface 3: 

Addition of the preceding five equations gives an equation for T, - T,. Then the equation is 
solved for qo to give 

We now define an "overall heat transfer coefficient based on the inner surface" Uo by 

Combination of the last two equations gives, on generalizing to a system with n annular 
layers, 

The subscript "0" on Uo indicates that the overall heat transfer coefficient is referred to the 
radius ro. 

510.7 HEAT CONDUCTION IN A COOLING FIN' 

Another simple, but practical application of heat conduction is the calculation of the effi- 
ciency of a cooling fin. Fins are used to increase the area available for heat transfer be- 
tween metal walls and poorly conducting fluids such as gases. A simple rectangular fin 
is shown in Fig. 10.7-1. The wall temperature is T,  and the ambient air temperature is T,. 

wall temperature 
known to be T,  

Fig. 10.7-1. A simple cooling fin with 
B<<LandB<< W. 

For further information on fins, see M. Jakob, Heat Transfer, Vol. I ,  Wiley, New York (19491, 
Chapter 11; and H. D. Baehr and K. Stephan, Heat and Mass Transfeu, Springer, Berlin (1998), 52.2.3. 
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A reasonably good description of the system may be obtained by approximating the 
true physical situation by a simplified model: 

True situation Model 

1. T is a function of x, y, and z, but the 1. 
dependence on z is most important. 

2. A small quantity of heat is lost from the 2. 
fin at the end (area 2BW) and at the 
edges (area (2BL + 2BL). 

3. The heat transfer coefficient is a function 3. 
of position. 

T is a function of z alone. 

No heat is lost from the end or from the 
edges. 

The heat flux at the surface is given by 
q, = h(T - T,), where h is constant and 
T depends on z. 

The energy balance is made over a segment Az of the bar. Since the bar is stationary, the 
terms containing v in the combined energy flux vector e may be discarded, and the only 
contribution to the energy flux is q. Therefore the energy balance is 

Division by 2BW Az and taking the limit as Az approaches zero gives 

We now insert Fourier's law (q, = -kdT/dz), in which k is the thermal conductivity of 
the metal. If we assume that k is constant, we then get 

This equation is to be solved with the boundary conditions 

B.C. 1: at z = 0, T = T ,  

B.C. 2: a t z = L ,  -- d T O  
dz 

We now introduce the following dimensionless quantities: 

T - T, 
@=-- - dimensionless temperature 

Tw - T', 
Z 5 = - 
L 

= dimensionless distance 

2 - hL2 N - - = dimensionless heat transfer coefficient2 
kB 

(10.7-8) 

The problem then takes the form 

-- d2@ - N20 with @ I i = .  = 1 and - (10.7-9,10,11) 
d l 2  

The quantity may be rewritten as N2 = (hL/k)(L/B) = Bi(L/B), where Bi is called the Biot 
number, named after Jean Baptiste Biot (1774-1862) (pronounced "Bee-oh"). Professor of physics at the 
CollPge de France, he received the Rumford Medal for his development of a simple, nondestructive test 
to determine sugar concentration. 
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Equation 10.7-9 may be integrated to give hyperbolic functions (see Eq. C.l-4 and 9C.5). 
When the two integration constants have been determined, we get 

O = cosh N{ - (tanh N) sinh N{ (10.7-12) 

This may be rearranged to give 

cosh N(1 - 5) 
cosh N 

This result is reasonable only if the heat lost at the end and at the edges is negligible. 
The "effectiveness" of the fin surface is defined3 by 

actual rate of heat loss from the fin " = rate of heat loss from an isothermal fin at T,. 
(10.7-14) 

For the problem being considered here is then 

in which N is the dimensionless quantity defined in Eq. 10.7-8. 

In Fig. 10.7-2 a thermocouple is shown in a cylindrical well inserted into a gas stream. Esti- 
mate the true temperature of the gas stream if 

Error in Thermocouple 
Measurement TI = 500°F = temperature indicated by thermocouple 

T, = 350°F = wall temperature 

h = 120 Btu/hr. ft2 F = heat transfer coefficient 

k = 60 Btu/hr ft3 . F = thermal conductivity of well wall 

B = 0.08 in. = thickness of well wall 

L = 0.2 ft = length of well 

Thermocouvle wires 

Pipe wall at T,. + to potentlometer 

Well wall of - thickness B - 
Thermocouple Fig. 10.7-2. A thermocouple in a cylindrical 
junction at well. 

M. Jakob, Heat Transfer, Vol. I ,  Wiley, New York (19491, p. 235. 
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SOLUTION 

The thermocouple well wall of thickness B is in contact with the gas stream on one side only, 
and the tube thickness is small compared with the diameter. Hence the temperature distribu- 
tion along this wall will be about the same as that along a bar of thickness 2B, in contact with 
the gas stream on both sides. According to Eq. 10.7-13, the temperature at the end of the well 
(that registered by the thermocouple) satisfies 

Hence the actual ambient gas temperature is obtained by solving this equation for T,: 

and the result is 

Therefore, the reading is 10 I?' too low. 
This example has focused on one kind of error that can occur in thermometry. Fre- 

quently a simple analysis, such as the foregoing, can be used to estimate the measurement 
errors4 

510.8 FORCED CONVECTION 

In the preceding sections the emphasis has been placed on heat conduction in solids. 
In this and the following section we study two limiting types of heat transport in flu- 
ids: forced convection and free convection (also called natural convection). The main dif- 
ferences between these two modes of convection are shown in Fig. 10.8-1. Most 
industrial heat transfer problems are usually put into either one or the other of these 
two limiting categories. In some problems, however, both effects must be taken into 
account, and then we speak of mixed convection (see 514.6 for some empiricisms for 
handling this situation). 

In this section we consider forced convection in a circular tube, a limiting case of 
which is simple enough to be solved analyti~all~. ' ,~ A viscous fluid with physical prop- 
erties (p, k, p, Cp) assumed constant is in laminar flow in a circular tube of radius R. For 
z < 0 the fluid temperature is uniform at the inlet temperature TI. For z > 0 there is a 
constant radial heat flux q, = -qo at the wall. Such a situation exists, for example, when a 
pipe is wrapped uniformly with an electrical heating coil, in which case qo is positive. If 
the pipe is being chilled, then q,, has to be taken as negative. 

As indicated in Fig. 10.8-1, the first step in solving a forced convection heat transfer 
problem is the calculation of the velocity profiles in the system. We have seen in 52.3 

For further discussion, see M. Jakob, Heat Transfer, Vol. 11, Wiley, New York (1949), Chapter 33, 
pp. 147-201. 

A. Eagle and R. M. Ferguson, Proc. Roy. Soc. (London), A127,540-566 (1930). 
S. Goldstein, Modern Developments in Fluid Dynamics, Oxford University Press (1938), Dover 

Edition (1965), Vol. 11, p. 622. 
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Forced Convection 
Heat Transfer 

Heat swept to right by forced 
stream of air 

1. The flow patterns are 
determined primarily by 
some external force 

2 First, the velocity profiles are 
found; then they are used to 
find the temperature profiles 
(usual procedure for fluids 
with constant physical 
properties) 

3. The Nusselt number depends 
on the Reynolds and Prandtl 
numbers (see Chapter 14) 

Free Convection 
Heat Transfer 

Heat transported upward by 
heated air that rises 

1. The flow patterns are 
determined by the buoyant 
force on the heated fluid 

2. The velocity profiles and 
temperature profiles are 
interdependent 

3. The Nusselt number depends 
on the Grashof and Prandtl 
numbers (see Chapter 14) 

Fig. 10.8-1. A comparison of forced and free convection in non- 
isothermal systems. 

how this may be done for tube flow by using the shell balance method. We know that 
the velocity distribution so obtained is v, = 0, v, = 0, and 

This parabolic distribution is valid sufficiently far downstream from the inlet that the en- 
trance length has been exceeded. 

In this problem, heat is being transported in both the r and the z directions. There- 
fore, for the energy balance we use a "washer-shaped" system, which is formed by the 
intersection of an annular region of thickness Ar with a slab of thickness Az (see Fig. 10.8- 
2). In this problem, we are dealing with a flowing fluid, and therefore all terms in the e 
vector will be retained. The various contributions to Eq. 10.1-1 are 

Total energy in at r e,l, 2mAz = (2me,)Jr Az (10.8-2) 

Total energy out at r + Ar erlr+hr 27dr + Ar)Az = ( 2 ~ r e , ) ) , + ~ ~  AZ (10.8-3) 

Total energy in at z ezlZ -2mAr (10.8-4) 

Total energy out at z + Az eZlz+~, 2m.A~ (10.8-5) 

Work done on fluid by gravity pv,g, 2.rruArA.z (10.8-6) 

The last contribution is the rate at which work is done on the fluid within the ring by 
gravity-that is, the force per unit volume pg, times the volume 2 m  Ar Az multiplied by 
the downward velocity of the fluid. 
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I u Fluid inlet 

temperature T: 

Fig. 10.8-2. Heating of a fluid in laminar flow through a cir- 
cular tube, showing the annular ring over which the energy 
balance is made. 

The energy balance is obtained by summing these contributions and equating the 
sum to zero. Then we divide by 2v Ar Az to get 

In the limit as Ar and Az go to zero, we find 

The subscript z in g, has been omitted, since the gravity vector is acting in the + z  direc- 
tion. 

Next we use Eqs. 9.8-6 and 9.8-8 to write out the expressions for the r- and z-compo- 
nents of the combined energy flux vector, using the fact that the only nonzero compo- 
nent of v is the axial component v,: 

Substituting these flux expressions into Eq. 10.8-8 and using the fact that v, depends only 
on r gives, after some rearrangement, 

The second bracket is exactly zero, as can be seen from Eq. 3.6-4, which is the z-component 
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term containing the viscosity is the viscous heating, which we shall neglect in this dis- 
cussion. The last term in the first bracket, corresponding to heat conduction in the axial 
direction, will be omitted, since we know from experience that it is usually small in com- 
parison with the heat convection in the axial direction. Therefore, the equation that we 
want to solve here is 

This partial differential equation, when solved, describes the temperature in the fluid as 
a function of r and z. The boundary conditions are 

B.C. 1: at r = 0, T = finite (10.8-13) 

B.C. 2: dT at r = R, k - = qo (constant) dr 
(10.8-14) 

B.C. 3: at z = 0, T = TI (10.8-15) 

We now put the problem statement into dimensionless form. The choice of the dimen- 
sionless quantities is arbitrary. We choose 

Generally one tries to select dimensionless quantities so as to minimize the number of 
parameters in the final problem formulation. In this problem the choice of 5 = r/R is a 
natural one, because of the appearance of r/R in the differential equation. The choice for 
the dimensionless temperature is suggested by the second and third boundary condi- 
tions. Having specified these two dimensionless variables, the choice of dimensionless 
axial coordinate follows naturally. 

The resulting problem statement, in dimensionless form, is now 

with boundary conditions 

B.C. 1: at t = 0, (3 = finite (10.8-20) 

B.C. 2: - 1 a t ( =  I, --- 

a t  
(10.8-21) 

B.C. 3: at 5 = 0, a = o (10.8-22) 

The partial differential equation in Eq. 10.8-19 has been solved for these boundary condi- 
tions: but in this section we do not give the complete solution. 

It is, however, instructive to obtain the asymptotic solution to Eq. 10.8-19 for large 5. 
After the fluid is sufficiently far downstream from the beginning of the heated section, 
one expects that the constant heat flux through the wall will result in a rise of the fluid 
temperature that is linear in 5. One further expects that the shape of the temperature pro- 
files as a function of ,$ will ultimately not undergo further change with increasing (see 
Fig. 10.8-3). Hence a solution of the following form seems reasonable for large 6: 

in which C, is a constant to be determined presently. 

%. Siegel, E. M. Sparrow, and T. M. Hallman, Appl. Sci. Research, A7,386-392 (1958). See Example 
12.2-1 for the complete solution and Example 12.2-2 for the asymptotic solution for small 5. 
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Tube wall 

z = o  

Region of 
small z 

Region of 
large z 

- slope at r = R 
same for all z 

Shape of profiles 
is same-they 
are displaced 
upward with 
increasing z  

Fig. 10.8-3. Sketch showing how one expects the temperature 
T(r, z )  to look for the system shown in Fig. 10.8-2 when the 
fluid is heated by means of a heating coil wrapped uniformly 
around the tube (corresponding to qo positive). 

The function in Eq. 10.8-23 is clearly not the complete solution to the problem; it 
does allow the partial differential equation and boundary conditions 1 and 2 to be satis- 
fied, but clearly does not satisfy boundary condition 3. Hence we replace the latter by an 
integral condition (see Fig. 10.8-41, 

Condition 4: 21~Xzq~ = /021 loR - T,)u,r dr dB (1 0.8-24) 

or, in dimensionless form, 

This condition states that the energy entering through the walls over a distance 5 is the 
same as the difference between the energy leaving through the cross section at 5 and that 
entering at 5 = 0. 

Substitution of the postulated function of Eq. 10.8-23 into Eq. 10.8-19 leads to the fol- 
lowing ordinary differential equation for (see Eq. C.l-11): 
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Uniform Plane at arbitrary 
temperature TI downstream position z 

No energy enters here, ~ e a t ' i n  by Energy leaving here is 
since datum temperature heating coil 

was chosen to be TI is 2rRzqO 

Fig. 10.8-4. Energy balance used for boundary condition 4 
given in Eq. 10.8-24. 

This equation may be integrated twice with respect to 5 and the result substituted into 
Eq. 10.8-23 to give 

The three constants are determined from the conditions 1,2, and 4 above: 

B.C. 1: 

B.C. 2: 
Condition 4: 

Substitution of these values into Eq. 10.8-27 gives finally 

Both averages are functions of z. The quantity ( T )  is the arithmetic average of the temper- 
atures over the cross section at z. The "bulk temperature" Tb is the temperature one 
would obtain if the tube were chopped off at z and if the fluid issuing forth were col- 
lected in a container and thoroughly mixed. This average temperature is sometimes re- 
ferred to as the "cup-mixing temperature" or the "flow-average temperature." 

O(&[) = 45 + 3 - at4 - 5 (10.8-31) 

This result gives the dimensionless temperature as a function of the dimensionless radial 
and axial coordinates. It is exact in the limit as 5 + m; for 5 > 0.1, it predicts the local 
value of O to within about 2%. 

Once the temperature distribution is known, one can get various derived quantities. 
There are two kinds of average t$mperatures commonly used in connection with the 
flow of fluids with constant p and C,: 
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Now let us evaluate the local heat transfer driving force, To - Tb, which is the differ- 
ence between the wall and bulk temperatures at a distance z down the tube: 

where D is the tube diameter. We may now rearrange this result in the form of a dimen- 
sionless wall heat flux 

which, in Chapter 14, will be identified as a Nusselt number. 
Before leaving this section, we point out that the dimensionless axial coordinate l in- 

troduced above may be rewritten in the following way: 

Here D is the tube diameter, Re is the Reynolds number used in Part I, and Pr and Pi. are 
the Prandtl and Pkclet numbers introduced in Chapter 9. We shall find in Chapter 11 that 
the Reynolds and Prandtl numbers can be expected to appear in forced convection prob- 
lems. This point will be reinforced in Chapter 14 in connection with correlations for heat 
transfer coefficients. 

510.9 FREE CONVECTION 

In 510.8 we gave an example of forced convection. In this section we turn our attention 
to an elementary free convection problem-namely, the flow between two parallel walls 
maintained at different temperatures (see Fig. 10.9-1). 

A fluid with density p and viscosity p is located between two vertical walls a dis- 
tance 2B apart. The heated wall at y = -B is maintained at temperature T,, and the 
cooled wall at y = + B is maintained at temperature TI. It is assumed that the tempera- 
ture difference is sufficiently small that terms containing (An2 can be neglected. 

Because of the temperature gradient in the system, the fluid near the hot wall rises 
and that near the cold wall descends. The system is closed at the top and bottom, so that 
the fluid is continuously circulating between the plates. The mass rate of flow of the 

Fig. 10.9-1. Laminar free convection flow between 
two vertical plates at two different temperatures. The 
velocity is a cubic function of the coordinate y. 
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fluid in the upward-moving stream is the same as that in the downward-moving 
stream. The plates are presumed to be very tall, so that end effects near the top and bot- 
tom can be disregarded. Then for all practical purposes the temperature is a function of 
y alone. 

An energy balance can now be made over a thin slab of fluid of thickness Ay, using 
the y-component of the combined energy flux vector e as given in Eq. 9.8-6. The term 
containing the kinetic energy and enthalpy can be disregarded, since the y-component of 
the v vector is zero. The y-component of the term [T . vl is rYv, = -p(dv,/dy)v,, which 
would lead to the viscous heating contribution discussed in 510.4. However, in the very 
slow flows encountered in free convection, this term will be extremely small and can be 
neglected. The energy balance then leads to the equation 

for constant k. The temperature equation is to be solved with the boundary conditions: 

B.C. 1: 
B.C. 2: 

The solution to this problem is 

in which AT = T, - TI is the difference of the wall temperatures, and = +(T, + T2) is 
their arithmetic mean. 

By making a momentum balance over the same slab of thickness Ay, one arrives at a 
differential equation for the velocity distribution 

Here the viscosity has been assumed constant (see Problem 10B.ll for a solution with 
temperature-dependent viscosity). 

The phenomenon of free convection results from the fact that when the fluid is 
heated, the density (usually) decreases and the fluid rises. The mathematical description 
of the system must take this essential feature of the phenomenon into account. Because 
the temperature difference AT = T2 - TI is taken to be small in this problem, it can be ex- 
pected that the density changes in the system will be small. This suggests that we should 
expand p in a Taylor series about the temperature T = f (T, + T2) thus: 

Here 5 and p are the density and coefficient of volume expansion evaluated at the tem- 
perature T .  The coefficient of volume expansion is defined as 

We now introduce the "Taylor-made" equation of state of Eq. 10.9-6 (keeping two terms 
only) into the equation of motion in Eq. 10.9-5 to get 
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This equation describes the balance amonx the viscous force, the pressure force, the 
gravity force, and the buoyant force -&3(T - T )  (all per unit volume). Into this we 
now substitute the temperature distribution given in Eq. 10.9-4 to get the differential 
equation 

which is to be solved with the boundary conditions 

B.C. 1: 

B.C. 2: 

a t y =  -B, v,=O 

aty = +B, v, = 0 

The solution is 

We now require that the net mass flow in the z direction be zero, that is, 

Substitution of v, from Eq. 10.9-12 and p from Eqs. 10.9-6 and 4 into this integral leads to 
the conclusion that 

when terms containing the square of the small quantity AT are neglected. Equation 10.9- 
14 states that the pressure gradient in the system is due solely to the weight of the fluid, 
and the usual hydrostatic pressure distribution prevails. Therefore the second term on 
the right side of Eq. 10.9-12 drops out and the final expression for the velocity distribu- 
tion is 

The average velocity in the upward-moving stream is 

The motion of the fluid is thus a direct result of the buoyant force term in Eq. 10.9-8, as- 
sociated with the temperature gradient in the system. The velocity distribution of Eq. 
10.9-15 is shown in Fig. 10.9-1. It is this sort of velocity distribution that occurs in the air 
space in a double-pane window or in double-wall panels in buildings. It is also this kind 
of flow that occurs in the operation of a Clusius-Dickel column used for separating iso- 
topes or organic liquid mixtures by the combined effects of thermal diffusion and free 
convection.' 

Thermal diffusion is the diffusion resulting from a temperature gradient. For a lucid discussion 
of the Clusius-Dickel column see K. E. Grew and T. L. Ibbs, Thermal Diffusion in Gases, Cambridge 
University Press (1952), pp. 94-106. 
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The velocity distribution in Eq. 10.9-15 may be rewritten using a dimensionless ve- 
locity 6, = Bv,p/p and a dimensionless coordinate 5 = y/B thus: 

Here Gr is the dimensionless Gmshof number: defined by 

where Ap = p, - p,. The second form of the Grashof number is obtained from the first 
form by using Eq. 10.9-6. The Grashof number is the characteristic group occurring in 
analyses of free convection, as is shown by dimensional analysis in Chapter 11. It arises 
in heat transfer coefficient correlations in Chapter 14. 

QUESTIONS FOR DISCUSSION 

1. Verify that the Brinkman, Biot, Prandtl, and Grashof numbers are dimensionless. 
2. To what problem in electrical circuits is the addition of thermal resistances analogous? 
3. What is the coefficient of volume expansion for an ideal gas? What is the corresponding ex- 

pression for the Grashof number? 
4. What might be some consequences of large temperature gradients produced by viscous heat- 

ing in viscometry, lubrication, and plastics extrusion? 
5. In 510.8 would there be any advantage to choosing the dimensionless temperature and di- 

mensionless axial coordinate to be O = (T - T1)/Tl and { = z/R? 
6. What would happen in s9.9 if the fluid were water and T were 4"C? 
7. Is there any advantage to solving Eq. 9.7-9 in terms of hyperbolic functions rather than expo- 

nential functions? 
8. In going from Eq. 10.8-11 to Eq. 10.8-12 the axial conduction term was neglected with respect 

to the axial convection term. To justify this, put in some reasonable numerical values to esti- 
mate the relative sizes of the terms. 

9. How serious is it to neglect the dependence of viscosity on temperature in solving forced con- 
vection problems? Viscous dissipation heating problems? 

10. At steady state the temperature profiles in a laminated system appear thus: 
Which material has the higher thermal conductivity? 

Distance - 
11. Show that Eq. 10.6-4 can be obtained directly by rewriting Eq. 10.6-1 with x + Ax replaced by 

x,. Similarly, one gets Eq. 10.6-20 from Eq. 10.6-17, with r + Ar replaced by r,. 

Named for Franz Grashof (1826-1893) (pronounced "Grahss-hoff). He was professor of applied 
mechanics in Karlsruhe and one of the founders of the Verein Deutscher Ingenieure in 1856. 
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PROBLEMS 10A.1. Heat loss from an insulated pipe. A standard schedule 40,2-in. steel pipe (inside diameter 
2.067 in. and wall thickness 0.154 in.) carrying steam is insulated with 2 in. of 85% magnesia 
covered in turn with 2 in. of cork. Estimate the heat loss per hour per foot of pipe if the inner 
surface of the pipe is at 250°F and the outer surface of the cork is at 90°F. The thermal 
conductivities (in Btu/hr ft . F) of the substances concerned are: steel, 26.1; 85% magnesia, 
0.04; cork, 0.03. 
Answer: 24 Btu/ hr - ft 

10.A.2. Heat loss from a rectangular fin. Calculate the heat loss from a rectangular fin (see Fig. 10.7-1) 
for the following conditions: 

Air temperature 
Wall temperature 
Thermal conductivity of fin 
Thermal conductivity of air 
Heat transfer coefficient 
Length of fin 
Width of fin 
Thickness of fin 
Answer: 2074 Btu/hr 

350°F 
500°F 
60 Btu/hr. ft . F  
0.0022 Btu/hr ft F 
120 Btu/hr ft? . F 
0.2 ft 
1.0 ft 
0.16 in. 

10A.3. Maximum temperature in a lubricant. An oil is acting as a lubricant for a pair of cylindrical 
surfaces such as those shown in Fig. 10.4-1. The angular velocity of the outer cylinder is 7908 
rpm. The outer cylinder has a radius of 5.06 cm, and the clearance between the cylinders is 
0.027 cm. What is the maximum temperature in the oil if both wall temperatures are known to 
be 15S°F? The physical properties of the oil are assumed constant at the following values: 

Viscosity 92.3 cp 
Density 1.22 g/cm3 
Thermal conductivity 0.0055 cal/s . cm - C 
Answer: 174°F 

10A.4. Current-carrying capacity of wire. A copper wire of 0.040 in. diameter is insulated uni- 
formly with plastic to an outer diameter of 0.12 in. and is exposed to surroundings at 100°F. 
The heat transfer coefficient from the outer surface of the plastic to the surroundings is 1.5 
Btu/hr ft? . F. What is the maximum steady current, in amperes, that this wire can carry 
without heating any part of the plastic above its operating limit of 200°F? The thermal and 
electrical conductivities may be assumed constant at the values given here: 

Copper 220 5.1 x lo5 
Plastic 0.20 0.0 

Answer: 13.4 amp 

10A.5. Free convection velocity. 
(a) Verify the expression for the average velocity in the upward-moving stream in Eq. 10.9-16. 
(b) Evaluate p for the conditions given below. 
(c) What is the average velocity in the upward-moving stream in the system described in Fig. 
10.9-1 for air flowing under these conditions? 

Pressure 1 atm 
Temperature of the heated wall 100°C 
Temperature of the cooled wall 20°C 
Spacing between the walls 0.6 cm 
Answer: 2.3 cm/s 
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Plastic panel has 
thermal conductivity 
k = 0.075 
Btu/hr ft . "F 
(average value between 
TI and T2) 

Fig. 10A.6. Determination of the thermal resistance of 
a wall. 

10A.6. Insulating power of a wall (Fig. 10A.6). The "insulating power" of a wall can be measured 
by means of the arrangement shown in the figure. One places a plastic panel against the wall. 
In the pane1 two thermocouples are mounted flush with the panel surfaces. The thermal con- 
ductivity and thickness of the plastic panel are known. From the measured steady-state tem- 
peratures shown in the figure, calculate: 
(a) The steady-state heat flux through the wall (and panel). 
(b) The "thermal resistance" (wall thickness divided by thermal conductivity). 
Answers: (a) 14.3 Btu/hr ft2; (b) 4.2 f?. hr . F/Btu 

10A.7. Viscous heating in a ball-point pen. You are asked to decide whether the apparent decrease 
in viscosity in ball-point pen inks during writing results from "shear thinning" (decrease in 
viscosity because of non-Newtonian effects) or "temperature thinning" (decrease in viscosity 
because of temperature rise caused by viscous heating). If the temperature rise is less than lK, 
then "temperature thinning" will not be important. Estimate the temperature rise using Eq. 
10.4-9 and the following estimated data: 

Clearance between ball and holding cavity 5 X in. 
Diameter of ball I mrn 
Viscosity of ink lo4 CP 
Speed of writing 100 in. /min 
Thermal conductivity of ink (rough guess) 5 X cal/s cm . C 

10A.8. Temperature rise in an electrical wire. 
(a) A copper wire, 5 mm in diameter and 15 ft long, has a voltage drop of 0.6 volts. Find the 
maximum temperature in the wire if the ambient air temperature is 25°C and the heat transfer 
coefficient h is 5.7 Btu/hr. f@.  F. 
(b) Compare the temperature drops across the wire and the surrounding air. 

10B.l. Heat conduction from a sphere to a stagnant fluid. A heated sphere of radius R is sus- 
pended in a large, motionless body of fluid. It is desired to study the heat conduction in the 
fluid surrounding the sphere in the absence of convection. 
(a) Set up the differential equation describing the temperature Tin the surrounding fluid as a 
function of r, the distance from the center of the sphere. The thermal conductivity k of the 
fluid is considered constant. 
(b) Integrate the differential equation and use these boundary conditions to determine the in- 
tegration constants: at r = R, T = TR; and at r = w, T = T,. 
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Fig. 10B.3. Temperature distribution in a cylindrical fuel- 
rod assembly. 

(c) From the temperature profile, obtain an expression for the heat flux at the surface. Equate 
this result to the heat flux given by "Newton's law of cooling" and show that a dimensionless 
heat transfer coefficient (known as the Nusselt number) is given by 

in which D is the sphere diameter. This well-known result provides the limiting value of Nu 
for heat transfer from spheres at low Reynolds and Grashof numbers (see s14.4). 
(d) In what respect are the Biot number and the Nusselt number different? 

10B.2. Viscous heating in slit flow. Find the temperature profile for the viscous heating problem 
shown in Fig. 10.4-2, when given the following boundary conditions: at x = 0, T = T,; at x = b, 
qx = 0. 

Answer: - - 

10B.3 Heat conduction in a nuclear fuel rod assembly (Fig. 10B.3). Consider a long cylindrical nu- 
clear fuel rod, surrounded by an annular layer of aluminum cladding. Within the fuel rod 
heat is produced by fission; this heat source depends on position approximately as 

Here Sno and b are known constants, and r is the radial coordinate measured from the axis of 
the cylindrical fuel rod. Calculate the maximum temperature in the fuel rod if the outer sur- 
face of the cladding is in contact with a liquid coolant at temperature TL. The heat transfer co- 
efficient at the cladding-coolant interface is h,, and the thermal conductivities of the fuel rod 
and cladding are k, and kc. 

Answer: TF,max - TL = - 

10B.4. Heat conduction in an annulus (Fig. 10B.4). 
(a) Heat is flowing through an annular wall of inside radius r,, and outside radius r,. The 
thermal conductivity varies linearly with temperature from ko at To  to k, at TI .  Develop an ex- 
pression for the heat flow through the wall. 
(b) Show how the expression in (a) can be simplified when (r, - r,)/r, is very small. Interpret 
the result physically. 
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'i! Fig. 10B.4. Temperature profile in an annular wall. 

10B.5. Viscous heat generation in a polymer melt. Rework the problem discussed in 510.4 for a 
molten polymer, whose viscosity can be adequately described by the power law model (see 
Chapter 8). Show that the temperature distribution is the same as that in Eq. 10.4-9 but with 
the Brinkrnan number replaced by 

Br, = 

10B.6. Insulation thickness for a furnace wall (Fig. 10B.6). A furnace wall consists of three layers: 
(i) a layer of heat-resistant or refractory brick, (ii) a layer of insulating brick, and (iii) a steel 
plate, 0.25 in. thick, for mechanical protection. Calculate the thickness of each layer of brick to 
give minimum total wall thickness if the heat loss through the wall is to be 5000 ~ t u / f t ~  hr, 
assuming that the layers are in excellent thermal contact. The following information is 
available: 

Maximum Thermal conductivity 
allowable (Btu/hr ft - F) 

Material temperature at 100°F at 2000°F 

Refractory brick 2600°F 1.8 3.6 
Insulating brick 2000°F 0.9 1.8 
Steel - 26.1 - 

Answer: Refractory brick, 0.39 ft; insulating brick, 0.51 ft. 

10B.7. Forced-convection heat transfer in flow between parallel plates (Fig. 10B.7). A viscous fluid 
with temperature-independent physical properties is in fully developed laminar flow be- 
tween two flat surfaces placed a distance 2B apart. For z < 0 the fluid temperature is uniform 
at T = T,. For z > 0 heat is added at a constant, uniform flux qo at both walls. Find the temper- 
ature distribution T(x, z )  for large z. 
(a) Make a shell energy balance to obtain the differential equation for T(x, z). Then discard 
the viscous dissipation term and the axial heat conduction term. 

Steel plate, 
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Fig. 10B.7. Laminar, incompressible flow 
between parallel plates, both of which are 
being heated by a uniform wall heat flux q, 
starting at z = 0. 

(b) Recast the problem in terms of the dimensionless quantities 

(c) Obtain the asymptotic solution for large z: 

10B.8. Electrical heating of a pipe (Fig. 10B.8). In the manufacture of glass-coated steel pipes, it is 
common practice first to heat the pipe to the melting range of glass and then to contact the hot 
pipe surface with glass granules. These granules melt and wet the pipe surface to form a 
tightly adhering nonporous coat. In one method of preheating the pipe, an electric current is 
passed along the pipe, with the result that the pipe is heated (as in g10.2). For the purpose of 
this problem make the following assumptions: 

(i) The electrical conductivity of the pipe k, is constant over the temperature range of in- 
terest. The local rate of electrical heat production S, is then uniform throughout the pipe wall. 

(ii) The top and bottom of the pipe are capped in such a way that heat losses through 
them are negligible. 

(iii) Heat loss from the outer surface of the pipe to the surroundings is given by New- 
ton's law of cooling: q, = h(T, - T,). Here h is a suitable heat transfer coefficient. 

How much electrical power is needed to maintain the inner pipe surface at some desired 
temperature, TK, for known k, Tat h, and pipe dimensions? 

1 -  I Ambient air 
L 

1 -  
temperature Ta 

1 Pipe wall 

Electrical heating of a pipe. - Fig. 10B.8. 
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rR2(1 - K ~ ) L ( T ~  - To) 
Answer: P = 

10B.9. Plug flow with forced-convection heat transfer. Very thick slurries and pastes sometimes 
move in channels almost as a solid plug. Thus, one can approximate the velocity by a con- 
stant value v, over the conduit cross section. 
(a) Rework the problem of 510.8 for plug flow in a circular tube of radius R. Show that the 
temperature distribution analogous to Eq. 10.8-31 is 

in which [ = ~ Z / ~ ? ~ V , R ~ ,  and @ and are defined as in 510.8. 
(b) Show that for plug flow in a plane slit of width 2B the temperature distribution analogous 
to Eq. 10B.7-4 is 

in which 5 = k ~ / ~ ~ , v , ~ ~ ,  and O and a are defined as in Problem 108.7. 

10B.lO. Free convection in an annulus of finite height (Fig. 10B.10). A fluid is contained in a vertical 
annulus closed at the top and bottom. The inner wall of radius KR is maintained at the tem- 
perature T,, and the outer wall of radius R is kept at temperature TI.  Using the assumptions 
and approach of 510.9, obtain the velocity distribution produced by free convection. 
(a) First derive the temperature distribution 

in which l =  r/R. 
(b) Then show that the equation of motion is 

in which A = (~~/p)(dp/dz  + pig) and B = ((p1gp,AT)R2/p In K) where AT = TI - T,. 
(c) Integrate the equation of motion (see Eq. C.l-11) and apply the boundary conditions to 
evaluate the constants of integration. Then show that A can be evaluated by the requirement 
of no net mass flow through any plane z = constant, with the final resdt that 

Fig. 10B.10. Free convection pattern in an annular space 
with TI > T,. 
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Free convection with temperature-dependent viscosity. Rework the problem in 510.9, tak- 
ing into account the variation of viscosity with temperature. Assume that the "fluidity" (reci- 
procal of viscosity) is the following linear function of the temperature 

Use the q, &, and Gr defined in 510.9 (but with ji instead of p) and in addition 

b, = :PAT, b, = %,AT and P = 

and show that the differential equation for the velocity distribution is 

Follow the procedure in 510.9, discarding terms containing the third and higher powers of 
AT. Show that this leads to P = & Grb, + & Grb, and finally: 

Sketch the result to show how the velocity profile becomes skewed because of the tempera- 
ture-dependent viscosity. 

Heat conduction with temperature-dependent thermal conductivity (Fig. 108.12). The 
curved surfaces and the end surfaces (both shaded in the figure) of the solid in the shape of a 
half-cylindrical shell are insulated. The surface 0 = 0, of area (r2 - r,)L, is maintained at tem- 
perature To, and the surface at 8 = T, also of area (r, - rJL, is kept at temperature T,. 

The thermal conductivity of the solid varies linearly with temperature from ko at T = To 
tok,at T =  T,. 
(a) Find the steady-state temperature distribution. 
(b) Find the total heat flow through the surface at 8 = 0. 

Flow reactor with exponentially temperature-dependent source. Formulate the function 
F(O) of Eq. 10.5-7 for a zero-order reaction with the temperature dependence 

in which K and E are constants, and R is the gas constant. Then insert F(O) into Eqs. 10.5-15 
through 20 and solve for the dimensionless temperature profile with kz,e, neglected. 

Evaporation loss from an oxygen tank. 
(a) Liquefied gases are sometimes stored in well-insulated spherical containers vented to the 
atmosphere. Develop an expression for the steady-state heat transfer rate through the walls of 
such a container, with the radii of the inner and outer walls being r, and r, respectively and 

~urface'L r2 

at T, 
1 - r  '\ 

Surface at To 

Fig. 10B.12. Tangential heat conduction in an annular shell. 
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the temperatures at the inner and outer walls being To and TI. The thermal conductivity of the 
insulation varies linearly with temperature from ko at To to k, at TI. 
(b) Estimate the rate of evaporation of liquid oxygen from a spherical container of 6 ft inside 
diameter covered with a 1-ft-thick annular evacuated jacket filled with particulate insulation. 
The following information is available: 

Temperature at inner surface of insulation - 183°C 
Temperature at outer surface of insulation 0°C 
Boiling point of O2 - 183°C 
Heat of vaporization of 0, 1636 cal/g-mol 
Thermal conductivity of insulation at 0°C 9.0 X Btu/hr ft . F 
Thermal conductivity of insulation at -183°C 7.2 X Btu/hr. ft . F 

ko + k1 To - TI 
Answers: (a) Q, = 4morl ( - ) (  - - . (b) 0.198 k g h r  

10B.15. Radial temperature gradients in an annular chemical reactor. A catalytic reaction is being 
carried out at constant pressure in a packed bed between coaxial cylindrical walls with inner 
radius ro and outer radius r,. Such a configuration occurs when temperatures are measured 
with a centered thermowell, and is in addition useful for controlling temperature gradients if 
a thin annulus is used. The entire inner wall is at uniform temperature To, and it can be as- 
sumed that there is no heat transfer through this surface. The reaction releases heat at a uni- 
form volumetric rate S, throughout the reactor. The effective thermal conductivity of the 
reactor contents is to be treated as a constant throughout. 
(a) By a shell energy balance, derive a second-order differential equation that describes the 
temperature profiles, assuming that the temperature gradients in the axial direction can be 
neglected. What boundary conditions must be used? 
(b) Rewrite the differential equation and boundary conditions in terms of the dimensionless 
radial coordinate and dimensionless temperature defined as 

Explain why these are logical choices. 
(c) Integrate the dimensionless differential equation to get the radial temperature profile. To 
what viscous flow problem is this conduction problem analogous? 
(d) Develop expressions for the temperature at the outer wall and for the volumetric average 
temperature of the catalyst bed. 
(e) Calculate the outer wall temperature when r, = 0.45 in., r, = 0.50 in., k,, = 0.3 Btu/hr. ft . 
F, To = 900°F, and S, = 4800 cal/hr cm3. 
(f) How would the results of part (e) be affected if the inner and outer radii were doubled? 
Answer: (e) 888°F 

10B.16. Temperature distribution in a hot-wire anemometer. A hot-wire anemometer is essentially 
a fine wire, usually made of platinum, which is heated electrically and exposed to a flowing 
fluid. Its temperature, which is a function of the fluid temperature, fluid velocity, and the rate 
of heating, may be determined by measuring its electrical resistance. It is used for measuring 
velocities and velocity fluctuations in flow systems. In this problem we analyze the tempera- 
ture distribution in the wire element. 

We consider a wire of diameter D and length 2L supported at its ends (z  = -L and z = 
+L) and mounted perpendicular to an air stream. An electric current of density I amp/cm2 
flows through the wire, and the heat thus generated is partially lost by convection to the air 
stream (see Eq. 10.1-2) and partially by conduction toward the ends of the wire. Because of 
their size and their high electrical and thermal conductivity, the supports are not appreciably 
heated by the current, but remain at the temperature TL , which is the same as that of the ap- 
proaching air stream. Heat loss by radiation is to be neglected. 
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(a) Derive an equation for the steady-state temperature distribution in the wire, assuming 
that T depends on z alone; that is, the radial temperature variation in the wire is neglected. 
Further, assume uniform thermal and electrical conductivities in the wire, and a uniform heat 
transfer coefficient from the wire to the air stream. 
(b) Sketch the temperature profile obtained in (a). 
(c) Compute the current, in amperes, required to heat a platinum wire to a midpoint temper- 
ature of 50°C under the following conditions: 

TL = 20°C h = 100 Btu/hr. ft2 F 

D = 0.127 mm k = 40.2 Btu/hr ft F 

L = 0.5 cm k, = 1.00 x lo5 ohm-' cm-' 

Answers: (a) T - T - - 1 - cOsh?!h!!?); (c)  1.01 amp 
- ( c o s h d 4 h / k ~ ~  

10B.17. Non-Newtonian flow with forced-convection heat transfer? For estimating the effect of 
non-Newtonian viscosity on heat transfer in ducts, the power law model of Chapter 8 gives 
velocity profiles that show rather well the deviation from parabolic shape. 
(a) Rework the problem of 510.8 (heat transfer in a circular tube) for the power law model 
given in Eqs. 8.3-2,3. Show that the final temperature profile is 

in which s = 1 /n. 
(b) Rework Problem 10B.7 (heat transfer in a plane slit) for the power law model. Obtain the 
dimensionless temperature profile: 

Note that these results contain the Newtonian results (s = 1) and the plug flow results (s = to). 

See Problem 10D.2 for a generalization of this approach. 

10B.18. Reactor temperature profiles with axial heat flux2 (Fig. 10B.18). 
(a) Show that for a heat source that depends linearly on the temperature, Eqs. 10.5-6 to 14 
have the solutions (for m+ # m-) 

m+m-(exp m+ - exp m-) 
@ ' = I +  

2 2 exp [(m, + m-)Zl 
m+ exp m+ - m- exp m- 

m+ (exp m+)(exp m-Z) - m- (exp mdexp m+Z) 0" = (m+ + m-) (10B.18-2) 
m: exp m+ - m2_ exp m- 

2 m: - m -  
@"I = 

2 exp (m, + m-) m: exp m+ - m exp m- 

Here mf = iB(1 i dl - (4N/B), in which B = pvo~p~ /~e f f , , , .  Some profiles calculated from 
these equations are shown in Fig. 108.18. 

-- 

I R. B. Bird, Chem.-Ing. Technik, 31,569-572 (1959). 
Taken from the corresponding results of G. Damkohler, Z. Elektrochem., 43,l-8,9-13 (1937), and 

J. F. Wehner and R. H. Wilhelm, Chern. Engr. Sci., 6,89-93 (1956); 8,309 (1958), for isothermal flow reactors 
with longitudinal diffusion and first-order reaction. Gerhard Damkohler (190&1944) achieved fame for 
his work on chemical reactions in flowing, diffusing systems; a key publication was in Der Chemie- 
Ingenieur, Leipzig (19371, pp. 359485. Richard Herman Wilhelm (1909-1968), chairman of the Chemical 
Engineering Department at Princeton University, was well known for his work on fixed-bed catalytic 
reactors, fluidized transport, and the "parametric pumping" separation process. 
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Zone I1 in which heat is produced 
Zone I by chemical reaction Zone I11 

". - 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

Dimensionless axial coordinate Z = z / L  

Fig. 10B.18. Predicted temperature profiles in a fixed-bed axial-flow 
reactor for B = 8 and various values of N. 

(b) Show that, in the limit as B goes to infinity, the above solution agrees with that in Eqs. 
10.5-21,22, and 23. 
(c) Make numerical comparisons of the results in Eq. 10.5-22 and Fig. 10B.18 for N = 2 at Z = 0.0, 
0.5,0.9, and 1.0. 
(dl Assuming the applicability of Eq. 9.6-9, show that the results in Fig. 10B.18 correspond to 
a catalyst bed length L of 4 particle diameters. Since the ratio L I D ,  is seldom less than 100 in 
industrial reactors, it follows that the neglect of K,,,,~, is a reasonable assumption in steady- 
state design calculations. 

10C.l. Heating of an electric wire with temperature-dependent electrical and thermal conductiv- 
 it^.^ Find the temperature distribution in an electrically heated wire when the thermal and 
electrical conductivities vary with temperature as follows: 

Here ko and k,  are the values of the conductivities at temperature To, and O = (T - To) /To  is a 
dimensionless temperature rise. The coefficients ai and Pi are constants. Such series expan- 
sions are useful over moderate temperature ranges. 
(a) Because of the temperature gradient in the wire, the electrical conductivity is a function of 
position, k,(r). Therefore, the current density is also a function of Y :  I(r) = ke(r) . (EIL) ,  and the 
electrical heat source also is position dependent: Se(r) = k,(r) (EIL)'. The equation for the 
temperature distribution is then 

- -  --- 

The solution given here was suggested by L. J. F. Broer (personal communication, 20 August 1958). 
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Now introduce the dimensionless quantities 6 = r / R  and B = kJ?.2E2/k,,~2~o and show that 
Ea. 10C.l-3 then becomes 

When the power series expressions for the conductivities are inserted into this equation we get 

This is the equation that is to be solved for the dimensionless temperature distribution. 
(b) Begin by noting that if all the ai and Pi were zero (that is, both conductivities constant), 
then Eq. 10C.l-5 would simplify to 

When this is solved with the boundary conditions that @ = finite at 4 = 0,-and O = 0 at 5 = 1, 
we get 

0 = $B(l - f )  (lOC.l-7) 

This is Eq. 10.2-13 in dimensionless notation. 
Note that Eq. 10C.-5 will have the solution in Eq. 10C.l-7 for small values of B-that is, 

for weak heat sources. For stronger heat sources, postulate that the temperature distribution 
can be expressed as a power series in the dimensionless heat source strength B: 

Here the 0, are functions of 6 but not of B. Substitute Eq. 10C.1-8 into Eq. 10C.l-5, and equate 
the coefficients of like powers of B to get a set of ordinary differential equations for the @,,,with 
n = 1,2,3, . . . . These may be solved with the boundary conditions that O,, = finite at 6 = 0 and 
0, = 0 at 5 = 1. In this way obtain 

where 0(B2) means "terms of the order of B2 and higher." 
(c) For materials that are described by the Wiedemann-Franz-Lorenz law (see §9.5), the ratio 
k / k J  is a constant (independent of temperature). Hence 

Combine this with Eqs. 10C.l-1 and 2 to get 

Equate coefficients of equal powers of the dimensionless temperature to get relations among 
the ai and the Pi: a, = PI - I, a, = p, + p,, and so on. Use these relations to get 

10C.2. Viscous heating with temperature-dependent viscosity and thermal conductivity (Figs. 
10.4-1 and 2). Consider the flow situation shown in Fig. 10.4-2. Both the stationary surface 
and the moving surface are maintained at a constant temperature To. The temperature depen- 
dences of k and p are given by 

in which the ai and Pi are constants, rp = is the fluidity, and the subscript "0" means 
"evaluated at T = To." The dimensionless temperature is defined as @ = (T - To)/T,,. 
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(a) Show that the differential equations describing the viscous flow and heat conduction may 
be written in the forms 

in which 4 = vz/vb, 5 = X/  b, and Br = pod/hTo (the Brinkman number). 
(b) The equation for the dimensionless velocity distribution may be integrated once to give 
d~$/dt = C, . (v/&, in which C, is an integration constant. This expression is then substituted 
into the energy equation to get 

Obtain the first two terms of a solution in the form 

It is further suggested that the constant of integration C1 also be expanded as a power series 
in the Brinkman number, thus 

(c) Repeat the problem, changing the boundary condition at y = b to q, = 0 (instead of speci- 
fying the temperat~re).~ 
Answers: (b) 4 = 5 - & ~ r p , ( t  - 35' + 2t3) + . . . 

@ = i ~ r ( t  - e2) - t ~ r ~ ~ y , ( f  - 2t3 + 9) - & ~ 3 p ~ ( ~  - 25' + 2t3 - $) + . . 
(c) 4 = 6 - : ~ r ~ , ( 2 (  - 35' + P )  + . 

@ = Br(& - $5') - ~ ~ r ' a ~ ( 4 [ ~  - 4$ + $) + &~rZp,(-8{ + 8 9  - 4e3 + e4) + . . 
10C.3. Viscous heating in a cone-and-plate viscometer? In Eq. 2B.11-3 there is an expression for 

the torque 9 required to maintain an angular velocity fl in a cone-and-plate viscometer 
with included angle t,b0 (see Fig. 2B.11). It is desired to obtain a correction factor to account 
for the change in torque caused by the change in viscosity resulting from viscous heating. 
This effect can be a disturbing factor in viscometric measurements, causing errors as large 
as 20%. 
(a) Adapt the result of Problem 10C.2 to the cone-and-plate system as was done in Problem 
2B.ll(a). The boundary condition of zero heat flux at the cone surface seems to be more realis- 
tic than the assumption that the cone and plate temperatures are the same, inasmuch as the 
plate is thermostatted and the cone is not. 
(b) Show that this leads to the following modification of Eq. 2B.11-3: 

where = pof12R2/koT, is the Brinkman number. The symbol po stands for the viscosity at 
the temperature To. 

R. M. Turian and R. B. Bird, Chem. Eng. Sci., 18,689-696 (1963). 
%. M. Turian, Chem. Eng. Sci., 20,771-781 (1965); the viscous heating correction for non-Newtonian 

fluids is discussed in this publication (see also R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of 
Polymeric Liquids, Vol. 1,2nd edition, Wiley-Interscience, New York (1987), pp. 223-227. 
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Fig. 10D.l. Circular fin on a 
perature T = To at r = Ro heated pipe. 

Heat loss from a circular fin (Fig. 10D.1). 
(a) Obtain the temperature profile T(r) for a circular fin of thickness 2B on a pipe with outside 
wall temperature To. Make the same assumptions that were made in the study of the rectan- 
gular fin in 510.7. 
(b) Derive an expression for the total heat loss from the fin. 

Duct flow with constant wall heat flux and arbitrary velocity distribution. 
(a) Rework the problem in 510.8 for an arbitrary fully developed, axisyrnrnetric flow velocity 
distribution v,/v,,,,, = 4(6), where 5 = r/R.  venfy that the temperature distribution is given by 

in which 

Show that C1 = 0 and C0 = [I(l)]-'. Then show that the remaining constant is 

Venfy that the above equations lead to Eqs. 10.8-27 to 30 when the velocity profile is parabolic. 
These results can be used to compute the temperature profiles for the fully developed 

tube flow of any kind of material as long as a reasonable estimation can be made for the ve- 
locity distribution. As special cases, one can get results for Newtonian flow, plug flow, non- 
Newtonian flow, and even, with some modifications, turbulent flow (see §13.4).6 
(b) Show that the dimensionless temperature difference driving force O, - Ob is 

(c) Verify that the dimensionless wall heat flux is 

and that, for the laminar flow of Newtonian fluids, this quantity has the value g. 
(d) What is the physical interpretation of IU)? 

R. N. Lyon, Chem. Engr. Prog., 47,75-59 (1951); note that the definition of +(&) used here is different 
from that in Tables 14.2-1 and 2. 



Chapter 11 

The Equations of Change for 
Nonisothermal Systems 
911.1 The energy equation 

911.2 Special forms of the energy equation 

511.3 The Boussinesq equation of motion for forced and free convection 

911.4 Use of the equations of change to solve steady-state problems 

511.5 Dimensional analysis of the equations of change for nonisothermal systems 

In Chapter 10 we introduced the shell energy balance method for solving relatively sim- 
ple, steady-state heat flow problems. We obtained the temperature profiles, as well as 
some derived properties such as average temperature and energy fluxes. In this chapter 
we generalize the shell energy balance and obtain the equation of energy, a partial differ- 
ential equation that describes the transport of energy in a homogeneous fluid or solid. 

This chapter is also closely related to Chapter 3, where we introduced the equation 
of continuity (conservation of mass) and the equation of motion (conservation of mo- 
mentum). The addition of the equation of energy (conservation of energy) allows us to 
extend our problem-solving ability to include nonisothermal systems. 

We begin in §11.1 by deriving the equation of change for the total energy. As in 
Chapter 10, we use the combined energy flux vector e in applying the law of conserva- 
tion of energy. In 511.2 we subtract the mechanical energy equation (given in 53.3) from 
the total energy equation to get an equation of change for the internal energy. From the 
latter we can get an equation of change for the temperature, and it is this kind of energy 
equation that is most commonly used. 

Although our main concern in this chapter will be with the various energy equa- 
tions just mentioned, we find it useful to discuss in 511.3 an approximate equation of 
motion that is convenient for solving problems involving free convection. 

In 511.4 we summarize the equations of change encountered up to this point. Then 
we proceed to illustrate the use of these equations in a series of examples, in which we 
begin with the general equations and discard terms that are not needed. In this way we 
have a standard procedure for setting up and solving problems. 

Finally, in 511.5 we extend the dimensional analysis discussion of 53.7 and show 
how additional dimensionless groups arise in heat transfer problems. 

$11.1 THE ENERGY EQUATION 

The equation of change for energy is obtained by applying the law of conservation of en- 
ergy to a small element of volume Ax Ay Az (see Fig. 3.1-1) and then allowing the dimen- 
sions of the volume element to become vanishingly small. The law of conservation of 
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energy is an extension of the first law of classical thermodynamics, which concerns the 
difference in internal energies of two equilibrium states of a closed system because of 
the heat added to the system and the work done on the system (that is, the familiar 
A u = Q + W ) . '  

Here we are interested in a stationary volume element, fixed in space, through 
which a fluid is flowing. Both kinetic energy and internal energy may be entering and 
leaving the system by convective transport. Heat may enter and leave the system by heat 
conduction as well. As we saw in Chapter 9, heat conduction is fundamentally a molecu- 
lar process. Work may be done on the moving fluid by the stresses, and this, too, is a 
molecular process. This term includes the work done by pressure forces and by viscous 
forces. In addition, work may be done on the system by virtue of the external forces, 
such as gravity. 

We can summarize the preceding paragraph by writing the conservation of energy 
in words as follows: 

net rate of kinetic net rate of heat E; kinetic and of = [nd energy internal addition + [;:=by molecular + 
by convective 
transport (conduction) 

rate of work rate of work 
done on system done on system 
by molecular + by external 

(mechanisms (i.e., by stresses) L r c e s  (e.g., by gravity) 1 (11.1-1) 

In developing the energy equation we will use the e vector of Eq. 9.8-5 or 6, which in- 
cludes the first three brackets on the right side of Eq. 11.1-1. Several comments need to 
be made before proceeding: 

(i) By kinetic energy we mean that energy associated with the observable motion of 
the fluid, which is ipv2 = gp(v . v), per unit volume. Here v is the fluid velocity 
vector. 

(ii) By internal energy we mean the kinetic energies of the constituent molecules cal- 
culated in a frame moving with the velocity v, plus the energies associated with 
the vibrational and rotational motions of the molecules and also the energies of 
interaction among all the molecules. It is assumed that the internal energy U for 
a flowing fluid is the same function of temperature and density as that for a 
fluid at equilibrium. Keep in mind that a similar assumption is made for the 
thermodynamic pressure p(p, T )  for a flowing fluid. 

(iii) The potential energy does not appear in Eq. 11.1-1, since we prefer instead to 
consider the work done on the system by gravity. At the end of this section, 
however, we show how to express this work in terms of the potential energy. 

(iv) In Eq. 10.1-1 various source terms were included in the shell energy balance. In 
510.4 the viscous heat source S, appeared automatically, because the mechani- 
cal energy terms in e were properly accounted for; the same situation prevails 
here, and the viscous heating term -(T:VV) will appear automatically in Eq. 
11.2-1. The chemical, electrical, and nuclear source terms (S,, S,, and S,) do not 
appear automatically, since chemical reactions, electrical effects, and nuclear 

- -  -- -- 

I R. J. Silbey and R. A. Albert~, Physical Chemistry, Wiley, New York, 3rd edition (2001),§2.3. 
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disintegrations have not been included in the energy balance. In Chapter 19, 
where the energy equation for mixtures with chemical reactions is considered, 
the chemical heat source S, appears naturally, as does a "diffusive source 
term," ZJj, . g,). 

We now translate Eq. 11.1-1 into mathematical terms. The rate of increase of kinetic 
and internal energy within the volume element Ax Ay Az is 

Here is the internalAenergy per unit mass (sometimes called the "specific internal en- 
ergy"). The product pU is the internal energy per unit volume, and $v2 = ;p(vz + vi + v:) 
is the kinetic energy per unit volume. 

Next we have to know how much energy enters and leaves across the faces of the 
volume element Ax Ay Az. 

Keep in mind that the e vector includes the convective transport of kinetic and internal 
energy, the heat conduction, and the work associated with molecular processes. 

The rate at which work is done on the fluid by the external force is the dot product 
of the fluid velocity v and the force acting on the fluid (p Ax Ay Az)g, or 

We now insert these various contributions into Eq. 11.1-1 and then divide by Ax Ay 
Az. When Ax, Ay, and Az are allowed to go to zero, we get 

This equation may be written more compactly in vector notation as 

Next we insert the expression for the e vector from Eq. 9.8-5 to get the equation of energy: 

rate of increase of 
energy per unit 
volume 

- (V . pv) 
rate of work 
done on fluid per 
unit volume by 
pressure forces 

rate of energy addition rate of energy addition 
per unit volume by per unit volume by 
convective transport heat conduction 

- (V . [T . vl) + p(v g) 
rate of work done rate of work done 
on fluid per unit on fluid per unit 
volume by viscous volume by external 
forces forces 

This equation does not include nuclear, radiative, electromagnetic, or chemical forms of 
energy. For viscoelastic fluids, the next-to-last term has to be reinterpreted by replacing 
"viscous" by "viscoelastic." 

Equation 11.1-7 is the main result of this section, and it provides the basis for the re- 
mainder of the chapter. Th? equation can be written in another form to include the poten- 
tial energy per unit mass, @, which has been defined earlier by g = -V@ (see 33.3). For 
moderate elevation changes, this gives 6 = gh, where h is a coordinate in the direction 
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opposed to the gravitational field. For terrestrial problems, where the gravitational field is 
independent of time, we can write 

p(v g) = - (pv . v&) (1 1 .l-8) 
= -(V . pv6) + &V . pv) Use vector identity in Eq. A.4-19 

Use Eq. 3.1-4 

d "  
= -(V spv9) - &3@) Use 6 independent of t 

When this result is inserted into Eq. 11.1-7 we get 

d  
(&u2 + pii  + p6) = -(V . (ipv2 + pG + ,06)v) 

- (v . q) - (0 . pv) - (V [T - v]) (11.1-9) 

Sometimes it is convenient to have the energy equation in this form. 

511.2 SPECIAL FORMS OF THE ENERGY EQUATION 

The most useful form of the energy equation is one in which the temperature appears. 
The object of this section is to arrive at such an equation, which can be used for predic- 
tion of temperature profiles. 

First we subtract the mechanical energy equation in Eq. 3.3-1 from the energy equa- 
tion in 11.1-7. This leads to the following equation of change for internal energy: 

rate of net rate of rate of internal 
increase in addition of energy addition 
internal internal energy by heat conduction, 
energy by convective per unit 
per unit transport, volume 
volume per unit volume 

- p(V v) - (T:VV) 
reversible rate irreversible rate 
of internal of internal energy 
energy increase increase per unit 
per unit volume volume by 
by compression viscous dissipation 

It is now of interest to compare the mechanical energy equation of Eq. 3.3-1 and the in- 
ternal energy equation of Eq. 11.2-1. Note that the terms p(V . v) and (T:VV) appear in 
both equations-but with opposite signs. Therefore, these terms describe the intercon- 
version of mechanical and thermal energy. The term p(V . v) can be either positive or 
negative, depending on whether the fluid is expanding or contracting; therefore it repre- 
sents a reversible mode of interchange. On the other hand, for Newtonian fluids, the 
quantity - (T:VV) is always positive (see Eq. 3.3-3) and therefore represents an irreversible 
degradation of mechanical into internal energy. For viscoelastic fluids, discussed in 
Chapter 8, the quantity -(T:VV) does not have to be positive, since some energy may be 
stored as elastic energy. 

We pointed out in s3.5 that the equations of change can be written somewhat more 
compactly by using the substantial derivative (see Table 3.5-1). Equation 11.2-1 can be 
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put in the substantial derivative form by using Eq. 3.5-4. This gives, with no further 
assumptions 

Next it is convenient to switch from intynalnenergy to ythalpy, as we did at the very 
end of 59.8. That is, in Eq. 11.2-2 we set U = H - pV = H - (p/p), making the standard 
assumption that thermodynamic formulas derived from equilibrium thermodynamics 
may be applied locally for nonequilibrium systems. When we substitute this formula 
into Eq. 11.2-2 and use the equation of continuity (Eq. A of Table 3.5-I), we get 

Next we may use Eq. 9.8-7, which presumes that the enthalpy is a function of p and T 
(this restricts the subsequent development to Newtonian fluids). Then we may get an ex- 
pression for the change in the enthalpy in an element of fluid moving with the fluid ve- 
locity, which is 

Equating the right sides of Eqs. 11.2-3 and 11.2-4 gives 

This is the equation of change for temperature, in terms of the heat flux vector q and the 
viscous momentum flux tensor T. To use this equation we need expressions for these 
fluxes: 

(i) When Fourier's law of Eq. 9.1-4 is used, the term -(V q) becomes +(V . kVT), 
or, if the thermal conductivity is assumed constant, +kV2T. 

(ii) When Newton's law of Eq. 1.2-7 is used, the term -(T:VV) becomes pa, + KIP,, 
the quantity given explicitly in Eq. 3.3-3. 

We do not perform the substitutions here, because the equation of change for tempera- 
ture is almost never used in its complete generality. 

We now discuss several special restricted versions of the equation of change for tem- 
perature. In all of these we use Fourier's law with constant k, and we omit the viscous 
dissipation term, since it is important only in flows with enormous velocity gradients: 

(i) For an ideal gas, (d In p/d In T), = -1, and 

Or, if use is made of the relation ?, - rv = R, the equation of state in the form 
pM = pXT, and the equation of continuity as written in Eq. A of Table 3.5-1, we get 
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(ii) For a fluid flowing in a constant pressure system, Dp/Dt = 0, and 

(iii) For a fluid with constant density,' (d In p/d In Dp = 0, and 

(iv) For a stationa y solid, v is zero and 

- d l -  pC - = kV2T 
P dt 

(1 1.2-10) 

These last five equations are the ones most frequently encountered in textbooks and re- 
search publications. Of course, one can always go back to Eq. 11.2-5 and develop less re- 
strictive equations when needed. Also, one can add chemical, electrical, and nuclear 
source terms on an ad hoc basis, as was done in Chapter 10. 

Equation 11.2-10 is the heat conduction equation for solids, and much has been writ- 
ten about this famous equation developed first by ~ o u r i e r . ~  The famous reference work 
by Carslaw and Jaeger deserves special mention. It contains hundreds of solutions of this 
equation for a wide variety of boundary and initial conditions." 

g11.3 THE BOUSSINESQ EQUATION OF MOTION 
FOR FORCED AND FREE CONVECTION 

The equation of motion given in Eq. 3.2-9 (or Eq. B of Table 3.5-1) is valid for both 
isothermal and nonisothermal flow. In nonisothermal flow, the fluid density and viscos- 
ity depend in general on temperature as well as on pressure. The variation in the density 
is particularly important because it gives rise to buoyant forces, and thus to free convec- 
tion, as we have already seen in s10.9. 

The buoyant force appears automatically when an equation of state is inserted into 
the equation of motion. For example, we can use the simplified equation of state intro- 
duced in Eq. 10.9-6 (this is called the Boussinesq approximation)' 

in which p is -(l/p)(~p/dTIP evaluated at T = T. This equation is obtained by writing 
the Taylor series for p as a function of T,  considering the pressure p to be constant, and 
keeping only the first two terms of the series. When Eq. 11.3-1 is substituted into the pg 
term (but not into the p(Dv/Dt) term) of Eq. B of Table 3.5-1, we get the Boussinesq equation: 

' The assumption of constant density is made here, instead of the less stringent assumption that 
(d In p/d In T), = 0, since Eq. 11.2-9 is customarily used along with Eq. 3.1-5 (equation of continuity for 
constant density) and Eq. 3.5-6 (equation of motion for constant density and viscosity). Note that the 
hypothetical equation of state p = constant has to be supplemented by the statement that (dp/dT), = 

finite, in order to permit the evaluation of certain thermodynamic derivatives. For example, the relation 

leads to the result that k, = k, for the "incompressible fluid thus defined. 
J. B. Fourier, T'hkdie analytique de la chalhr, CEuvres de Fourier, Gauthier-Villars et Fils, Paris (1822). 
H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 2nd edition (1959). 

' J. Boussinesq, Thkorie Analytique de Chaleur, Vol. 2, Gauthier-Villars, Paris (1903). 
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This form of the equation of motion is very useful for heat transfer analyses. It describes 
the limiting cases of forced convection and free convection (see Fig. 10.8-I), and the re- 
gion between these extremes as well. In forced convection the buoyancy term -@&T - T )  
is neglected. In free convection (or natural convection) the term (-Vp + pg) is small, and 
omitting it is usually appropriate, particularly for vertical, rectilinear flow and for the 
flow near submerged objects in large bodies of fluid. Setting (-Vp + pg) equal to zero is 
equivalent to assuming that the pressure distribution is just that for a fluid at rest. 

It is also customary to replace p on the left side of Eq. 11.3-2 by p. This substitution has 
been successful for free convection at moderate temperature differences. Under these con- 
ditions the fluid motion is slow, and the acceleration term Dv/Dt is small compared to g. 

However, in systems where the acceleration term is large with respect to g, one must 
also use Eq. 11.3-1 for the density on the left side of the equation of motion. This is par- 
ticularly true, for example, in gas turbines and near hypersonic missiles, where the term 
(p - p)Dv/Dt may be at least as important as pg. 

$11.4 USE OF THE EQUATIONS OF CHANGE 
TO SOLVE STEADY-STATE PROBLEMS 

In 593.1 to 3.4 and in 591 1.1 to 11.3 we have derived various equations of change for a 
pure fluid or solid. It seems appropriate here to present a summary of these equations 
for future reference. Such a summary is given in Table 11.4-1, with most of the equations 
given in both the d / d t  form and the D/Dt form. Reference is also made to the first place 
where each equation has been presented. 

Although Table 11.4-1 is a useful summary, for problem solving we use the equa- 
tions written out explicitly in the several commonly used coordinate systems. This has 
been done in Appendix B, and readers should thoroughly familiarize themselves with 
the tables there. 

In general, to describe the nonisothermal flow of a Newtonian fluid one needs 

the equation of continuity 

the equation of motion (containing p and K) 

the equation of energy (containing p, K ,  and k) 
the thermal equation of state (p = p(p, TI) 

the caloric equation of state (4 = k&p, T)) 

as well as expressions for the density and temperature dependence of the viscosity, di- 
latational viscosity, and thermal conductivity. In addition one needs the boundary and 
initial conditions. The entire set of equations can then-in principle-be solved to get the 
pressure, density, velocity, and temperature as functions of position and time. If one 
wishes to solve such a detailed problem, numerical methods generally have to be used. 

Often one may be content with a restricted solution, for making an order-of-magni- 
tude analysis of a problem, or for investigating limiting cases prior to doing a complete 
numerical solution. This is done by making some standard assumptions: 

(i) Assumption of constant physical properties. If it can be assumed that all physical 
properties are constant, then the equations become considerably simpler, and 
in some cases analytical solutions can be found. 

(ii) Assumption of zero fluxes. Setting T and q equal to zero may be useful for (a) adi- 
abatic flow processes in systems designed to minimize frictional effects (such as 
Venturi meters and turbines), and (b) high-speed flows around streamlined ob- 
jects. The solutions obtained would be of no use for describing the situation 
near fluid-solid boundaries, but may be adequate for analysis of phenomena 
far from the solid boundaries. 



Table 11.4-1 Equations of Change for Pure Fluids in Terms of the Fluxes 

Special form In terms of D / D t  Comments 

Table 3.5-1 

(A) 

For p = constant, simplifies to 

(V.v) = 0 
Cont. 

-- 

For T = 0 this becomes Euler's 

equation 

Displays buoyancy term 

Motion General Table 3.5-1 

(B) 

Approximate 

Exact only for @ time independent Energy In terms of 
k+ i r+6  

In terms of 

K + U  

DIZ p --- = -(v . Vp) - (v . [V .TI) + p(v. g) 
Dt 

From equation of motion Table 3.5-1 

(F) 

In terms of 
I;: = fv2 

Term containing (V . v) is zero for 

constant p 

H = u + (PIP) 

In terms of 

ir 

In terms of 

H 

In terms of 

e,, and T 

For an ideal gas T(dp/dT), = p 

For an ideal gas (6' In pld In T ) ,  = - 1 In terms of 
?, and T 



Cont. 

Motion 

Energy 

Entropy 

General 

In terms of a p ( ~  + C +  6 )  = - v ~ +  H 6 - ( v - q )  - (V.[T.V]) 

I;l+u+$J 

In terms of d p ( k +  ir) = v v - v - (v - [T .v ) I  +p(vag) 

i + u  I 
In terms of 
1;: = i V 2  

In terms of 

u 
In terms of 

il Dt 

For p = constant, simplifies to 

(V - v) = 0 

For T = 0 this becomes Euler's 

equation 
-- 

Displays buoyancy term 

Exact only for @ time independent 

Exact only for time independent 

From equation of motion 

From equation of motion 

Term containing (V v) is zero for 

constant p 

Last two terms describe entropy 

production 
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EXAMPLE 11.4-1 

Steady-State Forced- 
Convection Heat 
Transfer in Laminar 
Flow in a Circular Tube 

EXAMPLE 11.4-2 

Tangential Flow in an 
Annulus with Viscous 
Heat Generation 

To illustrate the solution of problems in which the energy equation plays a signifi- 
cant role, we solve a series of (idealized) problems. We restrict ourselves here to steady- 
state flow problems and consider unsteady-state problems in Chapter 12. In each 
problem we start by listing the postulates that lead us  to simplified versions of the equa- 
tions of change. 

Show how to set up the equations for the problem considered in 510.8-namely, that of find- 
ing the fluid temperature profiles for the fully developed laminar flow in a tube. 

SOLUTION 

We assume constant physical properties, and we postulate a solution of the following form: 
v = 6,v,(r), 9 = Wz), and T = T(r, z). Then the equations of change, as given in Appendix B, 
may be simplified to 

Continuity: 0 = 0 (11.4-1) 

Motion: 

Energy: 

The equation of continuity is automatically satisfied as a result of the postulates. The equation 
of motion, when solved as in Example 3.6-1, gives the velocity distribution (the parabolic ve- 
locity profile). This expression is then substituted into the convective heat transport term on 
the left side of Eq. 11.4-3 and into the viscous dissipation heating term on the right side. 

Next, as in 510.8, we make two assumptions: (i) in the z direction, heat conduction is 
much smaller than heat convection, so that the term d2T/dz2 can be neglected, and (ii) the 
flow is not sufficiently fast that viscous heating is significant, and hence the term p(dv,/dr)2 
can be omitted. When these assumptions are made, Eq. 11.4-3 becomes the same as Eq. 10.8- 
12. From that point on, the asymptotic solution, valid for large z only, proceeds as in s10.8. 
Note that we have gone through three types of restrictive processes: (i) postulates, in which 
a tentative guess is made as to the form of the solution; (ii) assumptions, in which we elimi- 
nate some physical phenomena or effects by discarding terms or assuming physical proper- 
ties to be constant; and (iii) an asymptotic solution, in which we obtain only a portion of the 
entire mathematical solution. It is important to distinguish among these various kinds of 
restrictions. 

Determine the temperature distribution in an incompressible liquid confined between two 
coaxial cylinders, the outer one of which is rotating at a steady angular velocity Q, (see 510.4 
and Example 3.6-3). Use the nomenclature of Example 3.6-3, and consider the radius ratio K to 
be fairly small so that the curvature of the fluid streamlines must be taken into account. 

The temperatures of the inner and outer surfaces of the annular region are maintained at 
T, and TI, respectively, with T,  # T,. Assume steady laminar flow, and neglect the tempera- 
ture dependence of the physical properties. 

This is an example of a forced convection problem: The equations of continuity and mo- 
tion are solved to get the velocity distribution, and then the energy equation is solved to get 
the temperature distribution. This problem is of interest in connection with heat effects in 
coaxial cylinder viscometers' and in lubrication systems. 

' J. R. Van Wazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow Measurement, Wiley, 
New York (1963), pp. 82-85. 
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SOLUTION We begin by postulating that v = Zi,v,(r), that 9 = 9(r, z), and that T = T(r). Then the simplifi- 
cation of the equations of change leads to Eqs. 3.6-20,21, and 22 (the r-, 8-, and z-components 
of the equation of motion), and the energy equation 

When the solution to the 0-component of the equation of motion, given in Eq. 3.6-29, is substi- 
tuted into the energy equation, we get 

This is the differential equation for the temperature distribution. It may be rewritten in terms 
of dimensionless quantities by putting 

The parameter N is closely related to the Brinkman number of 910.4. Equation 11.4-5 now 
becomes 

This is of the form of Eq. C.l-11 and has the solution 

The integration constants are found from the boundary conditions 

B.C. 1: 

B.C. 2: 

Determination of the constants then leads to 

When N = 0, we obtain the temperature distribution for a motionless cylindrical shell of 
thickness R(1 - K) with inner and outer temperatures T,  and TI. If N is large enough, there 
will be a maximum in the temperature distribution, located at 

with the temperature at this point greater than either T, or TI. 
Although this example provides an illustration of the use of the tabulated equations of 

change in cylindrical coordinates, in most viscometric and lubrication applications the clear- 
ance between the cylinders is so small that numerical values computed from Eq. 11.4-13 will 
not differ substantially from those computed from Eq. 10.4-9. 

EXAMPLE 11.4-3 A liquid is flowing downward in steady laminar flow along an inclined plane surface, as 
shown in Figs. 2.2-1 to 3. The free liquid surface is maintained at temperature To, and the solid 

Steady Flow in a surface at x = 6 is maintained at T,. At these temperatures the liquid viscosity has values po 
Nonisothermal Film and pb, respectively, and the liquid density and thermal conductivity may be assumed con- 

stant. Find the velocity distribution in this nonisothermal flow system, neglecting end effects 
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and recognizing that viscous heating is unimportant in this flow. Assume that the tempera- 
ture dependence of viscosity may be expressed by an equation of the form p = AeBIT, with A 
and B being empirical constants; this is suggested by the Eyring theory given in 51.5. 

We first solve the energy equation to get the temperature profile, and then use the latter 
to find the dependence of viscosity on position. Then the equation of motion can be solved to 
get the velocity profile. 

SOLUTION We postulate that T = T(x) and that v = 6,vJx). Then the energy equation simplifies to 

This can be integrated between the known terminal temperatures to give 

The dependence of viscosity on temperature may be written as 

in which B is a constant, to be determined from experimental data for viscosity versus tem- 
perature. To get the dependence of viscosity on position, we combine the last two equations 
to get 

The second expression is a good approximation if the temperature does not change greatly 
through the film. When this equation is combined with Eq. 11.4-17, written for T = T,, we 
then get 

This is the same as the expression used in Example 2.2-2, if we set a equal to -ln(p,/p,). 
Therefore we may take over the result from Example 2.2-2 and write the velocity profile as 

This completes the analysis of the problem begun in Example 2.2-2, by providing the appro- 
priate value of the constant a. 

EXAMPLE 11.4-4 

Transpiration cooling2 

A system with two concentric porous spherical shells of radii KR and R is shown in Fig. 11.4- 
1. The inner surface of the outer shell is at temperature T,, and the outer surface of the inner 
shell is at a lower temperature TK. Dry air at TK is blown outward radially from the inner shell 
into the intervening space and then through the outer shell. Develop an expression for the re- 
quired rate of heat removal from the inner sphere as a function of the mass rate of flow of the 
gas. Assume steady laminar flow and low gas velocity. 

In this example the equations of continuity and energy are solved to get the temperature 
distribution. The equation of motion gives information about the pressure distribution in the 
system. 

M. Jakob, Heat Transfer, Vol. 2, Wiley, New York (1957), pp. 394-415. 
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SOLUTION 

Porous spherical shells 

h L-I 

Air in 
at TK 

Air flow out 

Fig. 11.4-1. Transpiration cooling. The 
inner sphere is being cooled by means 
of a refrigeration coil to maintain its 
temperature at TK. When air is blown 
outward, as shown, less refrigeration is 
required. 

We postulate that for this system v = 6pr(r), T = T(r), and 9 = Wr). The equation of continuity 
in spherical coordinates then becomes 

This equation can be integrated to give 

2 wr r pv, = const. = - 
4Tr 

Here w, is the radial mass flow rate of the gas. 
The r-component of the equation of mofion in spherical coordinates is, from Eq. B.6-7, 

The viscosity term drops out because of Eq. 11.4-21. Integration of Eq. 11.4-23 then gives 

Hence the modified pressure 8 increases with r, but only very slightly for the low gas veloc- 
ity assumed here. 

The energy equation in terms of the temperature, in spherical coordinates, is, according to 
Eq. B.9-3, 

Here we have used Eq. 11.2-8, for which we assume that the thermal conductivity is constant, 
the pressure is constant, and there is no viscous dissipation-all reasonable assumptions for 
the problem at hand. 

When Eq. 11.4-22 for the velocity distribution is used for v, in Eq. 11.4-25, we obtain the 
following differential equation for the temperature distribution T(r) in the gas between the 
two shells: 
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"3 1.0 Fig. 11.4-2. The effect of transpira- 
f tion cooling. 
> 0.8 
.r( L1 

$6 
z 0.6 
a'01 F: 
.2 b 0.4 
3% - 0.2 r 

0 
0 1 2 3 4 

Dimensionless transpiration rate, 4 

We make the change of variable u = r2(dT/dr) and obtain a first-order, separable differential 
equation for uW. This may be integrated, and when the boundary conditions are applied, we 

get 

in which Ro = w,Cp/4?~k is a constant with units of length. 
The rate of heat flow toward the inner sphere is 

and this is the required rate of heat removal by the refrigerant. Insertion of Fourier's law for 
the r-component of the heat flux gives 

Next we evaluate the temperature gradient at the surface with the aid of Eq. 11.4-27 to obtain 
the expression for the heat removal rate. 

In the limit that the mass flow rate of the gas is zero, so that R, = 0, the heat removal rate 
becomes 

The fractional reduction in heat removal as a result of the transpiration of the gas is then 

Here 4 = Ro(l - K)/KR = w,Cp(l - K ) / ~ T K R ~  is the "dimensionless transpiration rate." 
Equation 11.4-32 is shown graphically in Fig. 11.4-2. For small values of 6, the quantity 
(Qo - Q)/Qo approaches the asymptote $4. 

EXAMPLE 11.4-5 

Free-Convection Heat 

A flat plate of height Hand width W (with W >> H )  heated to a temperature To is suspended 
in a large body of fluid, which is at ambient temperature TI. In the neighborhood of the 
heated plate the fluid rises because of the buoyant force (see Fig. 11.4-3). From the equations 

Transfer from a of change, deduce the dependence of the heat loss on the system variables. The physical prop- 
Vertical Plate erties of the fluid are considered constant, except that the change in density with temperature 

will be accounted for by the Boussinesq approximation. 
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SOLUTION 

Fig. 11.4-3. The temperature and velocity profiles 
the neighborhood of a vertical heated plate. 

We postulate that v = 6,v,(y, z )  + 6,v,(y, z) and that T = T(y, 2). We assume that the heated 
fluid moves almost directly upward, so that v, << v,. Then the x- and y-components of Eq. 
11.3-2 give p = p(z), so that the pressure is given to a very good approximation by - d p / d z  - 
pg = 0, which is the hydrostatic pressure distribution. The remaining equations of change are 

Continuity 

Motion 

Energy 
----- 

in which p and p are evaluated at the ambient temperature TI. The dashed-underlined terms 
will be omitted on the ground that momentum and energy transport by molecular processes 
in the z direction is small compared with the corresponding convective terms on the left side 
of the equations. These omissions should give a satisfactory description of the system except 
for a small region around the bottom of the plate. With this simplification, the following 
boundary conditions suffice to analyze the system up to z = H: 

B.C. 1: 

B.C. 2: 

B.C. 3: 

aty=O, v,=v,=O and T = T ,  

asy+ ?m, v,+O and T+T1 

at z = 0, v, = 0 

Note that the temperature rise appears in the equation of motion and that the velocity distrib- 
ution appears in the energy equation. Thus these equations are "coupled." Analytic solutions 
of such coupled, nonlinear differential equations are very difficult, and we content ourselves 
here with a dimensional analysis approach. 

To do this we introduce the following dimensionless variables: 

T - TI 0 = --- = dimensionless temperature 
To - TI 

2 5 = - = dimensionless vertical coordinate 
H 

(1 1  .4-40) 
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1 /4 

,r, = (&) y = dimensionless horizontal coordinate 

9, = (--&)1'2uz = dimensionless vertical velocity (1 1.4-42) 

pH 
dy = (z) vy = dimensionless horizontal velocity (1 1.4-43) 

in which a = k/& and B = F ~ ~ ( T ~  - TI). 
When the equations of change, without the dashed-underlined terms, are written in 

terms of these dimensionless variables, we get 

Continuity 

Motion 

Energy 

The preceding boundary conditions then become 

B.C. 1: 

B.C. 2: 

B.C. 3: 

One can see immediately from these equations and boundary conditions that the dimension- 
less velocity components $ and 4, and the dimensionless temperature @ will depend on 7 
and l and also on the Prandtl number, Pr. Since the flow is usually very slow in free convec- 
tion, the terms in which Pr appears will generally be rather small; setting them equal to zero 
would correspond to the "creeping flow assumption." Hence we expect that the dependence 
of the solution on the Prandtl number will be weak. 

The average heat flux from one side of the plate may be written as 

The integral may now be written in terms of the dimensionless quantities 

in which the grouping Ra = GrPr is referred to as the Rayleigk number. Because O is a function 
of 77, l, and Pr, the derivative dO/dv is also a function of ,r,, l, and Pr. Then dO/dq, evaluated 
at ,r, = 0, depends only on l and Pr. The definite integral over 5 is thus a function of Pr. From 
the remarks made earlier, we can infer that this function, called C, will be only a weak func- 
tion of the Prandtl number-that is, nearly a constant. 

The preceding analysis shows that, even without solving the partial differential equa- 
tions, we can predict that the average heat flux is proportional to the $-power of the tempera- 
ture difference (To - TI) and inversely proportional to the +-power of H. Both predictions 
have been confirmed by experiment. The only thing we could not do was to find C as a func- 
tion of Pr. 
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Adiabatic Frictionless 
Processes in an 
Ideal Gas 

To determine that function, we have to make experimental measurements or solve Eqs. 
11.4-44 to 49. In 1881, Lorenz3 obtained an approximate solution to these equations and found 
C = 0.548. Later, more refined calculations4 gave the following dependence of C on Pr: 

Pr 0.73 (air) 1 10 100 1000 
C 0.518 0.535 0.620 0.653 0.665 0.670 

These values of C are nearly in exact agreement with the best experimental measurements in 
the laminar flow range (i.e., for GrPr < lo9h5 

Develop equations for the relationship of local pressure to density or temperature in a stream 
of ideal gas in which the momentum flux .r and the heat flux q are negligible. 

SOLUTION 

With 7 and q neglected, the equation of energy [Eq. (1) in Table 11.4-11 may be rewritten as 

For an ideal gas, = RT/M, where M is the molecular weight of the gas, and Eq. 11.4-52 
becomes 

Dividing this equation by p and assuming the molar heat capacity $ = MS to be constant, 
we can again use the ideal gas law to get 

Hence the quantity in parentheses is a constant along the path of a fluid element, as is its an- 
tilogarithm, so that we have 

TC,/R 1 = p constant (1 1.4-55) 

This relation applies to all thermodynamic states p, T that a fluid element encounters as it 
moves along with the fluid. 

Introducing the definition y = tp/Pv and the ideal gas relations $ - Sv = R and p = 

pRT/M, one obtains the related expressions 

p'y-l"y~-' = constant (1 1.4-56) 

and 

pp-Y = constant (1 1.4-57) 

These last three equations find frequent use in the study of frictionless adiabatic processes in 
ideal gas dynamics. Equation 11.4-57 is a famous relation well worth remembering. 

L. Lorenz, Wiedemann's Ann. der Physik u. Chemie, 13,42247,582406 (1881). See also U. Grigull, 
Die Grundgesetze der Warrneiibertragung, Springer-Verlag, Berlin, 3rd edition (1955), pp. 263-269. 

%ee S. Whitaker, Fundamental Principles of Heat Transfer, Krieger, Malabar Fla. (1977), g5.11. The 
limiting case of Pr + w has been worked out numerically by E. J. LeFevre [Heat Div. Paper 113, Dept. 
Sci. and Ind. Res., Mech. Engr. Lab. (Great Britain), Aug. 19561 and it was found that 

Equation 11.4-51a corresponds to the value C = 0.670 above. This result has been verified experimentally 
by C. R. Wilke, C. W. Tobias, and M. Eisenberg, J. Electrochem. Soc., 100,513-523 (1953), for the analogous 
mass transfer problem. 

For an analysis of free convection in three-dimensional creeping flow, see W. E. Stewart, Int. J. Heat 
and Mass Transfer, 14,1013-1031 (1971). 
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EXAMPLE 11.47 

One-Dimensional 
Compressible Flow: 
Velocity, Temperature, 
and Pressure Profiles 
in a Stationa y Shock 
Wave 

When the momentum flux T and the heat flux q are zero, there is no change in entropy 
following an element of fluid (see Eq. 11D.1-3). Hence the derivative d In p/d In T = y/(y - 1) 
following the fluid motion has to be understood to mean (d In p/d In T)s = y/(y - 1). This 
equation is a standard formula from equilibrium thermodynamics. 

We consider here the adiabatic expansion6-lo of an ideal gas through a convergent-divergent 
nozzle under such conditions that a stationary shock wave is formed. The gas enters the noz- 
zle from a reservoir, where the pressure is po, and discharges to the atmosphere, where the 
pressure is p,. In the absence of a shock wave, the flow through a well-designed nozzle is vir- 
tually frictionless (hence isentropic for the adiabatic situation being considered). If, in addi- 
tion, p,/po is sufficiently small, it is known that the flow is essentially sonic at the throat (the 
region of minimum cross section) and is supersonic in the divergent portion of the nozzle. 
Under these conditions the pressure will continually decrease, and the velocity will increase in 
the direction of the flow, as indicated by the curves in Fig. 11.4-4. 

However, for any nozzle design there is a range of p,/po for which such an isentropic 
flow produces a pressure less than p, at the exit. Then the isentropic flow becomes unstable. 
The simplest of many possibilities is a stationary normal shock wave, shown schematically in 
the Fig. 11.4-4 as a pair of closely spaced parallel lines. Here the velocity falls off very rapidly 

I gas I P = PO 
I t  
I 

Nozzle 

Mach 

Distance 

Fig. 11.4-4. Formation of a shock wave in a nozzle. 

. Isentropic path 

+ X  

' Isentropic path 

' H. W. Liepmann and A. Roshko, Elements of Gas Dynamics, Wiley, New York (1957), 995.4 and 13.13. 
J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 

2nd corrected printing (1964), pp. 791-797. 
M. Morduchow and P. A. Libby, J. Aeronautical Sci., 16,674-684 (1948). 
R. von Mises, J. Aeronautical Sci., 17,551-554 (1950). 

' O  G. S. S. Ludford, J. Aeronautical Sci., 18,830-834 (1951). 
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SOLUTION 

to a subsonic value, while 60th the pressure and the density rise. These changes take place in 
an extremely thin region, which may therefore be considered locally one-dimensional and 
laminar, and they are accompanied by a very substantial dissipation of mechanical energy. 
Viscous dissipation and heat conduction effects are thus concentrated in an extremely small 
region of the nozzle, and it is the purpose of the example to explore the fluid behavior there. 
For simplicity the shock wave will be considered normal to the fluid streamlines; in practice, 
much more complicated shapes are often observed. The velocity, pressure, and temperature 
just upstream of the shock can be calculated and will be considered as known for the pur- 
poses of this example. 

Use the three equations of change to determine the conditions under which a shock wave 
is possible and to find the velocity, temperature, and pressure distributions in such a shock 
wave. Assume steady, one-dimensjonal flow of an ideal gas, neglect the dilatational viscosity 
K ,  and ignore changes of p, k, and Cp with temperature and pressure. 

The equations of change in the neighborhood of the stationary shock wave may be simpli- 
fied to 

Continuity: d ;s; PV, = 0 (1 1.4-58) 

Motion: 

Energy: 

The energy equation is in the form of Eq. J of Table 11.4-1, written for an ideal gas in a steady- 
state situation. 

The equation of continuity may be integrated to give 

in which p1 and v1 are quantities evaluated a short distance upstream from the shock. 
In the energy equation we eliminate pv, by use of Eq. 11.4-61 and dp/dx by using the 

equation of motion to get (after some rearrangement) 

We next move the second term on the right side over to the left side and divide the entire 
equation by p,v,. Then each term is integrated with respect to x to give 

A 

in which C, is a constant of integration and Pr = C,p/k. For most gases Pr is between 0.65 and 
0.85, with an average value close to 0.75. Therefore, to simplify the problem we set Pr equal to 
3 z.  Then Eq. 11.4-63 becomes a first-order, linear ordinary differential equation, for which the 
solution is 

Since t ,T  + iv ;  cannot increase without limit in the positive x direction, the second integra- 
tion constant CI1 must be zero. The first integration constant is evaluated from the upstream 
conditions, so that 

Of course, if we had not chosen Pr to be 2, a numerical integration of Eq. 11.4-63 would have 
been required. 
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Next we substitute the integrated continuity equation into the equation of motion and in- 
tegrate once to obtain 

Evaluation of the constant CIIl from upstream conditions, where dv,/dx = 0, gives CIII = 

plv: + pl = plIv: + (RTl/M)I. We now multiply both sides by vx and divide by plvl. Then, 
with the help of the ideal gas law, p = pRT/M, and Eqs. 11.4-61 and 65, we may eliminate p 
from Eq. 11.4-60 to obtain a relation containing only v, and x as variables: 

This equation can, after considerable rearrangement, be rewritten in terms of dimensionless 
variables: 

The relevant dimensionless quantities are 

v x  4 = - = dimensionless velocity 
Vl  

(1 1.4-69) 

X 5 = - = dimensionless coordinate 
h 

(1 1.4-70) 

Ma - Vl 
= Mach number at the upstream condition 

I-- 
(1 1.4-71) 

The reference length h is the mean free path defined in Eq. 1.4-3 (with d2 eliminated by use of 
Eq. 1.4-9): 

We may integrate Eq. 11.4-68 to obtain 

- ' = explPMa1(l - a)(( - &)I (a < 4 < 1) (4 - a)" 

This equation describes the dimensionless velocity distribution 4(5) containing an integration 
constant to = x,/h, which specifies the position of the shock wave in the nozzle; here to is con- 
sidered to be known. It can be seen from the plot of Eq. 11.4-85 in Fig. 11.4-5 that shock waves 

Fig. 11.4-5. Velocity distri- 
bution in a stationary shock 

(X - xo), cm x lo5 wave. 
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o 0.00025 in. wire 
A 0.002 in. wire 

Theory, equations of 

Dimensionless position in flow direction 

Fig. 11.4-6. Semi-log plot of the temperature profile through a shock 
wave, for helium with Ma, = 1.82. The experimental values were 
measured with a resistance-wire thermometer. [Adapted from 
H. W. Liepmann and A. Roshko, Elements of Gas Dynamics, Wiley, 
New York (1957), p. 3331 

are indeed very thin. The temperature and pressure distributions may be determined from 
Eq. 11.4-75 and Eqs. 11.4-65 and 66. Since 4 must approach unity as 6 -+ -a, the constant a is 
less than 1. This can be true only if Ma, > 1-that is, if the upstream flow is supersonic. It can 
also be seen that for very large positive 6, the dimensionless velocity 4 approaches a. The 
Mach number Ma, is defined as the ratio of v, to the velocity of sound at TI (see Problem 
11C.1). 

In the above development we chose the Prandtl number Pr to be z, but the solution has 
been extended8 to include other values of Pr as well as the temperature variation of the vis- 
cosity. 

The tendency of a gas in supersonic flow to revert spontaneously to subsonic flow is im- 
portant in wind tunnels and in the design of high-velocity systems-for example, in turbines 
and rocket engines. Note that the changes taking place in shock waves are irreversible and 
that, since the velocity gradients are so very steep, a considerable amount of mechanical en- 
ergy is dissipated. 

In view of the thinness of the predicted shock wave, one may question the applicability 
of the analysis given here, based on the continuum equations of change. Therefore it is desir- 
able to compare the theory with experiment. In Fig. 11.4-6 experimental temperature mea- 
surements for a shock wave in helium are compared with the theory for y = z, Pr = z, and 
p - We can see that the agreement is excellent. Nevertheless we should recognize that 
this is a simple system, inasmuch as helium is monatomic, and therefore internal degrees of 
freedom are not involved. The corresponding analysis for a diatomic or polyatomic gas 
would need to consider the exchange of energy between translational and internal degrees of 
freedom, which typically requires hundreds of collisions, broadening the shock wave consid- 
erably. Further discussion of this matter can be found in Chapter 11 of Ref. 7. 

511.5 DIMENSIONAL ANALYSIS OF THE EQUATIONS 
OF CHANGE FOR NONISOTHERMAL SYSTEMS 

Now that we have shown how to use the equations of change for nonisothermal systems 
to solve some representative heat transport problems, we discuss the dimensional analy- 
sis of these equations. 
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Just as the dimensional analysis discussion in 53.7 provided an introduction for the 
discussion of friction factors in Chapter 6, the material in this section provides the back- 
ground needed for the discussion of heat transfer coefficient correlations in Chapter 14. 
As in Chapter 3, we write the equations of change and boundary conditions in dimen- 
sionless form. In this way we find some dimensionless parameters that can be used to 
characterize nonisothermal flow systems. 

We shall see, however, that the analysis of nonisothermal systems leads us to a 
larger number of dimensionless groups than we had in Chapter 3. As a result, greater re- 
liance has to be placed on judicious simplifications of the equations of change and on 
carefully chosen physical models. Examples of the latter are the Boussinesq equation of 
motion for free convection (511.3) and the laminar boundary layer equations (512.4). 

As in 53.7, for the sake of simplicity we restrict ourselves to a fluid with constant p, 
k, and tp. The density is taken to be p = p - ?F(T - n in the pg term in the equation of 
motion, and p = p everywhere else (the "Boussinesq approximation"). The equations of 
change then become with p + sgh expressed as 9, 

Continuity: (V v) = 0 (1 1.5-1) 

Motion: 

Energy: 

We now introduce quantities made dimensionless with the characteristic quantities (sub- 
script 0 or 1) as follows: 

Here lo, v,, and Po are the reference quantities introduced in s3.7, and T,  and TI are 
temperatures appearing in the boundary conditions. In Eq. 11.5-2 the value 7. is the 
temperature around which the density p was expanded. 

In terms of these dimensionless variables, the equations of change in Eqs. 11.5-1 to 3 
take the forms 

Energy: 

The characteristic velocity can be chosen in several ways, and the consequences of the 
choices are summarized in Table 11.5-1. The dimensionless groups appearing in Eqs. 
11.5-8 and 9, along with some combinations of these groups, are summarized in Table 
11.5-2. Further dimensionless groups may arise in the boundary conditions or in the 
equation of state. The Froude and Weber numbers have already been introduced in 93.7, 
and the Mach number in Ex. 11.4-7. 

We already saw in Chapter 10 how several dimensionless groups appeared in the 
solution of nonisothermal problems. Here we have seen that the same groupings appear 
naturally when the equations of change are made dimensionless. These dimensionless 
groups are used widely in correlations of heat transfer coefficients. 
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Table 11.5-1 Dimensionless Groups in Equations 11.5-7,8, and 9 

Special Forced Free Free 
cases + convection Intermediate convection convection 

(A) (B) 
Choice 
for vo -+ Vo Vo v/10 a /lo 

1 1 - - 
RePr RePr 

Neglect Neglect 

Notes: 

" For forced convection and forced-plus-free ("intermediate") convection, v, is generally 
taken to be the approach velocity (for flow around submerged objects) or an average 
velocity in the system (for flow in conduits). 
For free convection there are two standard choices for v,, labeled as A and B. In g10.9, 

Case A arises naturally. Case B proves convenient if the assumption of creeping flow is 
appropriate, so that D + / D ~  can be neglected (see Example 11.5-2). Then a new 
dimensionless pressure difference 9 = Pry, different from 9 in Eq. 3.7-4, can be 
introduced, so that when the equation of motion is divided by Pr, the only dimensionless 
group appearing in the equation is GrPr. Note that in Case B, no dimensionless groups 
appear in the equation of energy. 

It is sometimes useful to think of the dimensionless groups as ratios of various 
forces or effects in the system, as shown in Table 11.5-3. For example, the inertia1 term in 
the equation of motion is p[v . Vvl and the viscous term is To get "typical" values 
of these terms, replace the variables by the characteristic "yardsticks" used in construct- 
ing dimensionless variables. Hence replace p[v - Vv] by p@lo, and replace /AV% by 
, !~v~ / l i  to get rough orders of magnitude. The ratio of these two terms then gives the 
Reynolds number, as shown in the table. The other dimensionless groups are obtained in 
similar fashion. 

Table 11.5-2 Dimensionless Groups Used in 
Nonisothermal Systems 

Re = [lov,p/p]l = [lov,/v]l = Reynolds number 
Pr = [epp/k] = [v/a]  = Prandtl number 
Gr = bp(T, - T,)I;/S?] = Grashof number 
Br = [ [ p v ~ / k ( ~ l  - To)] = Brinkman number 
Pe = RePr = Pkclet number 
Ra = GrPr = Rayleigh number 
Ec = &-/R =Z&erf number 
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Table 11.5-3 Physical Interpretation of Dimensionless Groups 

~v?j/lo - inertial force Re=-- 
v 0 /  viscous force 

pv?j/Io - inertial force Fr=-- 
P8 gravity force 

Gr - pg/3(Tl - To) - buoyant force -- - 
Re2 PV?~ / 10 inertial force 

~ C , V & T ~  - TJ / 10 heat transport by convection 
Pk = RePr = - -- 

( - ) heat transport by conduction 

p(vo/lo)2 heat production by viscous dissipation 
Br = - - 

kU-1 - To)/G heat transport by conduction 

A low value for the Reynolds number means that viscous forces are large in compar- 
ison with inertial forces. A low value of the Brinkrnan number indicates that the heat 
produced by viscous dissipation can be transported away quickly by heat conduction. 
When ~ r / ~ e *  is large, the buoyant force is important in determining the flow pattern. 

Since dimensional analysis is an art requiring judgment and experience, we give 
three illustrative examples. In the first two we analyze forced and free convection in sim- 
ple geometries. In the third we discuss scale-up problems in a relatively complex piece 
of equipment. 

EXAMPLE 125-1 

Temperature 
Distribution about a 
Long Cylinder 

It is desired to predict the temperature distribution in a gas flowing about a long, internally 
cooled cylinder (system I) from experimental measurements on a one-quarter scale model 
(system 11). If possible the same fluid should be used in the model as in the full-scale system. 
The system, shown in Fig. 11.5-1, is the same as that in Example 3.7-1 except that it is now 
nonisothermal. The fluid approaching the cylinder has a speed v, and a temperature T,, and 
the cylinder surface is maintained at To, for example, by the boiling of a refrigerant contained 
within it. 

Show by means of dimensional analysis how suitable experimental conditions can be 
chosen for the model studies. Perform the dimensional analysis for the "intermediate case" in 
Table 11.5-1. 

SOLUTION The two systems, I and 11, are geometrically similar. To ensure dynamical similarity, as 
pointed out in 53.7, the dimensionless differential equations and boundary conditions must 
be the same, and the dimensionless groups appearing in them must have the same numerical 
values. 

Here we choose the characteristic length to be the diameter D of the cylinder, the charac- 
teristic velocity to be the approach velocity v, of the fluid, the characteristic pressure to be the 
pressure at x = - 03 and y = 0, and the characteristic temperatures to be the temperature T, of 
the approaching fluid and the temperature To of the cylinder wall. These characteristic quan- 
tities will carry a label I or I1 corresponding to the system being described. 

Both systems are described by the dimensionless differential equations given in Eqs. 
11.5-7 to 9, and by boundary conditions 

B.C. 1 

B.C. 2 

B.C. 3 
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(b) Small system (System 11): 
(~.JII 

Fig. 11.5-1. Temperature profiles about long heated cylin- 
ders. The contour lines in the two figures represent surfaces 
of constant temperature. 

in which ? = (T - To)/(T, - To). For this simple geometry, the boundary conditions contain 
no dimensionless groups. Therefore, the requirement that the differential equations and 
boundary conditions in dimensionless form be identical is _that the following dimensionless 
groups be equal in the two systems: Re = Dv,p/p, Pr = C,p/k,  Br = pv;/k(T, - To), and 
Gr = p2g/3(T, - T , ) D ~ / ~ ~ .  In the latter group we use the ideal gas expression /3 = 1/T. 

To obtain the necessary equality for the four governing dimensionless groups, we may 
use different values of the four disposable parameters in the two systems: the approach veloc- 
ity v,, the fluid temperature T,, the approach pressure P,, and the cylinder temperature To. 

The similarity requirements are then (for D1 = 4D11): 

Equality of Pr 

Equality of Re 

Equality of Gr 

Equality of Br 

2 T-11 (T, - To11 

(2) = " (T, - To),, 

* 

Here v = p/p is the kinematic viscosity and a = k/pC, is the thermal diffusivity. 
The simplest way to satisfy Eq. 11.5-13 is to use the same fluid at the same approach pres- 

sure 8, and temperature T, in the two systems. If that is done, Eq. 11.5-14 requires that the 
approach velocity in the small model (11) be four times that used in the full-scale system (I). If 
the fluid velocity is moderately large and the temperature differences small, the equality of Pr 
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and Re in the two systems provides a sufficient approximation to dynamic similarity. This is 
the limiting case of forced convection with negligible viscous dissipation. 

If, however, the temperature differences T ,  - To are large, free-convection effects may be 
appreciable. Under these conditions, according to Eq. 11.5-15, temperature differences in the 
model must be 64 times those in the large system to ensure similarity. 

From Eq. 11.5-16 it may be seen that such a ratio of temperature differences will not per- 
mit equality of the Brinkman number. For the latter a ratio of 16 would be needed. This con- 
flict will not normally arise, however, as free-convection and viscous heating effects are 
seldom important simultaneously. Free-convection effects arise in low-velocity systems, 
whereas viscous heating occurs to a significant degree only when velocity gradients are very 
large. 

EXAMPLE 11.5-2 

Free Convection in a 
Horizontal Fluid Layer; 

We wish to investigate the free-convection motion in the system shown in Fig. 11.5-2. It con- 
sists of a thin layer of fluid between two horizontal parallel plates, the lower one at tempera- 
ture T,, and the upper one at T,, with T ,  < To. In the absence of fluid motion, the conductive 
heat flux will be the same for all z, and a nearly uniform temperature gradient will be estab- 

Formation of &kard lished at steady state. This temperature gradient will in turn cause a density gradient. If the 
Ce l 1s density decreases with increasing z, the system will clearly be stable, but if it increases a po- 

tentially unstable situation occurs. It appears possible in this latter case that any chance dis- 
turbance may cause the more dense fluid to move downward and displace the lighter fluid 
beneath it. If the temperatures of the top and bottom surfaces are maintained constant, the re- 
sult may be a continuing free-convection motion. This motion will, however, be opposed by 
viscous forces and may, therefore, occur only if the temperature difference tending to cause it 
is greater than some critical minimum value. 

Determine by means of dimensional analysis the functional dependence of this fluid mo- 
tion and the conditions under which it may be expected to arise. 

SOLUTION The system is described by Eqs. 11.5-1 to 3 along with the following boundary conditions: 

B.C. 1: 

B.C. 2: 

B.C. 3: 

Top view 

Side view 

Fig. 11.5-2. Bknard cells 
formed in the region between 
two horizontal parallel plates, 
with the bottom plate at a 
higher temperature than the 
upper one. If the Rayleigh 
number exceeds a certain 
critical value, the system 
becomes unstable and 
hexagonal Bknard cells 
are produced. 
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We now restate the problem in dimensionless form, using lo = h. We use the dimensionless 
quantities listed under Case B in Table 11.5-1, and we select the reference temperature T to be 
1 ,(To + TI), so that 

Continuity: (9 . ir) = 0 (1 1.5-20) 

Motion: 

Energy: 

with dimensionless boundary conditions 

B.C. 1: 

B.C. 2: 

B.C. 3: 

If the above dimensionless equations could be solved along with the dimensionless boundary 
conditions, we would find that the velocity and temperature profiles would depend only on 
Gr, Pr, and R/h. Furthermore, the larger the ratio R/h is, the less prominent its effect will be, 
and in the limit of extremely large horizontal plates, the system behavior will depend solely 
on Gr and Pr. 

If we consider only steady creeping flows, then the term Dt/D; may be set equal to zero. 
Then we define a new dimensionless pressure difference as @ = ~ r 8 .  With the left side of Eq. 
11.5-21 equal to zero, we may now divide by Pr and the resulting equation contains oniy one 
dimensionless group, namely the Rayleigh number' Ra = GrPr = p2gp(~, - ~ , ) h ~ c ? / ~ k ,  
whose value will determine the behavior of the system. This illustrates how one may reduce 
the number of dimensionless groups that are needed to describe a nonisothermal flow system. 

The preceding analysis suggests that there may be a critical value of the Rayleigh num- 
ber, and when this critical value is exceeded, fluid motion will occur. This suggestion has 
been amply confirmed e~per imenta l l~~,~  and the critical Rayleigh number has been found to 
be 1700 2 51 for R/h>>l. For Rayleigh numbers below the critical value, the fluid is station- 
ary, as evidenced by the observation that the heat flux across the liquid layer is the same as 
that predicted for conduction through a static fluid: q, = k(To - TJ/h. As soon as the critical 
Rayleigh number is exceeded, however, the heat flux rises sharply, because of convective en- 
ergy transport. An increase of the thermal conductivity reduces the Rayleigh number, thus 
moving Ra toward its stable range. 

The assumption of creeping flow is a reasonable one for this system and is asymptoti- 
cally correct when Pr + c - ~ .  It is also very convenient, inasmuch as it allows analytic solutions 
of the relevant equations of ~ h a n g e . ~  One such solution, which agrees well with experiment, 
is sketched qualitatively in Fig. 11.5-2. This flow pattern is cellular and hexagonal, with up- 
flow at the center of each hexagon and downflow at the periphery. The units of this fascinat- 
ing pattern are called Bknard cells.5 The analytic solution also confirms the existence of a 
critical Rayleigh number. For the boundary conditions of this problem and very large R/h it 
has been calculated4 to be 1708, which is in excellent agreement with the experimental result 
cited above. 

The Rayleigh number is named after Lord Rayleigh 0. W. Strutt), Phil. Mag., (6) 32,529-546 (1916). 
' P. L. Silveston, Forsch. Ingenieur-Wesen, 24,2932,5949 (1958). 
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Instability, Oxford University Press (1961); 

T. E. Faber, Fluid Dynamics for Physicists, Cambridge University Press (1995), 58.7. 
A. Pellew and R. V. Southwell, Proc. Roy. Soc., A176,312-343 (1940). 
H.  Benard, Revue gt!nt!rale des sciences pures et appliquies, 11,1261-1271,1309-1328 (1900); Annales de 

Chimie et de Physique, 23,62-144 (1901). 
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Similar behavior is observed for other boundary conditions. If the upper plate of Fig. 
11.5-2 is replaced by a liquid-gas interface, so that the surface shear stress in the liquid is neg- 
ligible, cellular convection is predicted theoretically3 for Rayleigh numbers above about 1101. 
A spectacular example of this type of instability occurs in the occasional spring "turnover" of 
water in northern lakes. If the lake water is cooled to near freezing during the winter, an ad- 
verse density gradient will occur as the surface waters warm toward 4"C, the temperature of 
maximum density for water. 

In shallow liquid layers with free surfaces, instabilities can also arise from surface-ten- 
sion gradients. The resulting surface stresses produce cellular convection superficially similar 
to that resulting from temperature gradients, and the two effects may be easily confused. In- 
deed, it appears that the steady flows first seen by Bhard, and ascribed to buoyancy effects, 
may actually have been produced by surface-tension  gradient^.^ 

EXAMPLE 11.5-3 

Surface Temperature 

An electrical heating coil of diameter D is being designed to keep a large tank of liquid above 
its freezing point. It is desired to predict the temperature that will be reached at the coil sur- 

of face as a function of the heating rate Q and the tank surface temperature To. This prediction is 
an Electrical Heating to be made on the basis of experiments with a smaller, geometrically similar apparatus filled 
Coil with the same liquid. 

Outline a suitable experimental procedure for making the desired prediction. Tempera- 
ture dependence of the physical properties, other than the density, may be neglected. The en- 
tire heating coil surface may be assumed to be at a uniform temperature T,. 

SOLUTION This is a free-convection problem, and we use the column labeled A in Table 11.5-1 for the di- 
mensionless groups. From the equations of change and the boundary conditions, we know 
that the dimensionless temperature T = (T - To) / (T ,  - To) must be a function of the dimen- 
sionless coordinates and depend on the dimensionless groups Pr and Gr. 

The total energy input rate through the coil surface is 

Here r is the coordinate measured outward from and normal to the coil surface, S is the sur- 
face area of the coil, and the temperature gradient is that of the fluid immediately adjacent to 
the coil surface. In dimensionless form this relation is 

in which $ is a function of Pr = k P p / k  and Gr = p2gp(T, - ~ , ) ~ ~ / / l r  Since the large-scale and 
small-scale systems are geometrically similar, the dimensionless function S describing the 
surface of integration will be the same for both systems and hence does not need to be in- 
cluded in the function $. Similarly, if we write the boundary conditions for temperature, ve- 
locity, and pressure at the coil and tank surfaces, we will obtain only size ratios that will be 
identical in the two systems. 

We now note that the desired quantity (TI - To)  appears on both sides of Eq. 11.5-27. If 
we multiply both sides of the equation by the Grashof number, then (T,  - To)  appears only 
on the right side: 

' C. V. Sternling and L. E. Scriven, MChE journal, 5,514-523 (1959); L. E. Scriven and C. V. Sternling, 
j. Fluid Mech., 19,321-340 (1964). 
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In principle, we may solve Eq. 11.5-28 for Gr and obtain an expression for (TI - To). Since we 
are neglecting the temperature dependence of physical properties, we may consider the 
Prandtl number constant for the given fluid and write 

Here 4 is an experimentally determinable function of the group ~ p ' g p ~ ~ / k ~ ~ .  We may then 
construct a plot of Eq. 11.5-29 from the experimental measurements of TI, To, and D for the 
small-scale system, and the known physical properties of the fluid. This plot may then be 
used to predict the behavior of the large-scale system. 

Since we have neglected the temperature dependence of the fluid properties, we may go 
even further. If we maintain the ratio of the Q values in the two systems equal to the inverse 
square of the ratio of the diameters, then the corresponding ratio of the values of (TI - To) 
will be equal to the inverse cube of the ratio of the diameters. 

QUESTIONS FOR DISCUSSION 

1. Define energy, potential energy, kinetic energy, and internal energy. What common units are 
used for these? 

2. How does one assign the physical meaning to the individual terms in Eqs. 11.1-7 and 11.2-I? 
3. In getting Eq. 11.2-7 we used the relation $ - S, = R, which is valid for ideal gases. What is the 

corresponding equation for nonideal gases and liquids? 
4. Summarize all the steps required in obtaining the equation of change for the temperature. 
5. Compare and contrast forced convection and free convection, with regard to methods of 

problem solving, dimensional analysis, and occurrence in industrial and meteorological prob- 
lems. 

6. If a rocket nose cone were made of a porous material and a volatile liquid were forced slowly 
through the pores during reentry into the atmosphere, how would the cone surface tempera- 
ture be affected and why? 

7. What is Archimedes' principle, and how is it related to the term &$(T - T )  in Eq. 11.3-2? 
8. Would you expect to see Bknard cells while heating a shallow pan of water on a stove? 
9. When, if ever, can the equation of energy be completely and exactly solved without detailed 

knowledge of the velocity profiles of the system? 
10. When, if ever, can the equation of motion be completely solved for a nonisothermal system 

without detailed knowledge of the temperature profiles of the system? 

PROBLEMS 11A.1. Temperature in a friction bearing. Calculate the maximum temperature in the friction bear- 
ing of Problem 3A.1, assuming the thermal conductivity of the lubricant to be 4.0 X cal/s 
cm . C, the metal temperature 200°C, and the rate of rotation 4000 rpm. 

Answer: About 217°C (from both Eq. 11.4-13 and Eq. 10.4-9) 

llA.2. Viscosity variation and velocity gradients in a nonisothermal film. Water is falling down a 
vertical wall in a film 0.1 mm thick. The water temperature is 100°C at the free liquid surface 
and 80°C at the wall surface. 
(a) Show that the maximum fractional deviation between viscosities predicted by Eqs. 11.4-17 
and 18 occurs when T = a. 
(b) Calculate the maximum fractional deviation for the conditions given. 
Answer: (b) 0.5% 
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Transpiration cooling. 
(a) Calculate the temperature distribution between the two shells of Example 11.4-4 for radial 
mass flow rates of zero and g/s for the following conditions: 

R = 500 microns T ,  = 300°C 

KR = 100 microns T, = 100°C 

k = 6.13 X cal/cm s . C 

ep = 0.25 cal/g . C 

(b) Compare the rates of heat conduction to the surface at KR in the presence and absence of 
convection. 

Free-convection heat loss from a vertical surface. A small heating panel consists essentially 
of a flat, vertical, rectangular surface 30 cm high and 50 cm wide. Estimate the total rate of 
heat loss from one side of this panel by free convection, if the panel surface is at 150°F, and 
the surrounding air is at 70°F and 1 atm. Use the value C = 0.548 of Lorenz in Eq. 11.4-51 and 
the value of C recommended by Whitaker, and compare the results of the two calculations. 
Answer: 8.1 cal/sec by Lorenz expression 

Velocity, temperature, and pressure changes in a shock wave. Air at 1 atm and 70°F is flow- 
ing at an upstream Mach number of 2 across a s ta t iong  shock wave. Calculate the following 
quantities, assuming that y is constant at 1.4 and that C, = 0.24 Btu/lb, . F: 
(a) The initial velocity of the air. 
(b) The velocity, temperature, and pressure downstream from the shock wave. 
(c) The changes of internal and kinetic energy across the shock wave. 
Answer: (a) 2250 ft/s 

(b) 844 ft/s; 888 R; 4.48 atm 
(c) AO = f61.4 Btu/lb,; ~k - 86.9 Btu/lb, 

Adiabatic frictionless compression of an ideal gas. Calculate the temperature attained by 
compressing air, initially at 100°F and 1 atm, to 0.1 of its initial volume. It is assumed that y = 
1.40 and that the compression is frictionless and adiabatic. Discuss the result in relation to the 
operation of an internal combustion engine. 
Answer: 950°F 

Effect of free convection on the insulating value of a horizontal air space. Two large parallel 
horizontal metal plates are separated by a 2.5 cm air gap, with the air at an average temperature 
of 100°C. How much hotter may the lower plate be (than the upper plate) without causing the 
onset of the cellular free convection discussed in Example 11.5-2? How much may this tempera- 
ture difference be increased if a very thin metal sheet is placed midway between the two plates? 
Answers: Approximately 3 and 48"C, respectively. 

Adiabatic frictionless processes in an ideal gas. 
\ 

(a) Note that a gas that obeys the ideal gas law may deviate appreciably from C, = constant. 
Hence, rework Example 11.4-6 using a molar heat capacity expression of the form 

(b) Determine the final pressure, p,, required if methane (CH,) is to be heated from 300K and 
1 atm to 800K by adiabatic frictionless compression. The recommended empirical constants' 

0. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part I ,  2nd edition, Wiley, 
New York (1958), p. 255. See also Part 11, pp. 646-653, for a fuller discussion of isentropic process calculations. 
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for methane are: a = 2.322 cal/g-mole . K, b = 38.04 X cal/g-mole K2, and c = -10.97 X 

lop6 cal/g-mole K3. 
Answers: (a) exp[-(b/R)T - ( c /2R)~~l  = constant; 

(b) 270 atm 

llB.2. Viscous heating in laminar tube flow (asymptotic solutions). 
(a) Show that for fully developed laminar Newtonian flow in a circular tube of radius R, the 
energy equation becomes 

if the viscous dissipation terms are not neglected. Here v,,,, is the maximum velocity in the 
tube. What restrictions have to be placed on any solutions of Eq. 118.2-I? 
(b) For the isothermal wall problem (T = To at r = R for z > 0 and at z = 0 for all r), find the as- 
ymptotic expression for T(r) at large z. Do this by recognizing that dT/dz will be zero at large 
z. Solve Eq. 118.2-1 and obtain 

(c) For the adiabatic wall problem (9, = 0 at r = R for all z)  an asymptotic expression for large z 
may be found as follows: Multiply by rdr and then integrate from r = 0 to r = R. Then inte- 
grate the resulting equation over z to get 

in which T, is the inlet temperature at z = 0. Postulate now that an asymptotic temperature 
profile at large z is of the form 

Substitute this into Eq. llB.2-1 and integrate the resulting equation for f(r) to obtain 

after determining the integration constant by an energy balance over the tube from 0 to z. 
Keep in mind that Eqs. llB.2-2 and 5 are valid solutions only for large z. The complete solu- 
tions for small z are discussed in Problem llD.2. 

11B.3. Velocity distribution in a nonisothermal film. Show that Eq. 11.4-20 meets the following 
requirements: 
(a) At x = 6, v, = 0. 
(b) ~t x = 0, av,/ax = 0. 

llB.4. Heat conduction in a spherical shell (Fig. llB.4). A spherical shell has inner and outer radii 
R, and R,. A hole is made in the shell at the north pole by cutting out the conical segment in 
the region 0 5 8 5 81. A similar hole is made at the south pole by removing the portion (.rr - 
8,) 5 8 5 T. The surface 6 = is kept at temperature T = T I ,  and the surface at 8 = T - 81 is 
held at T = T2. Find the steady-state temperature distribution, using the heat conduction 
equation. 
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01 01 
Solid 

Hole at top 

/ (at "north pole") 

Fig. llB.4. Heat conduction in a spherical shell: (a) cross section 
containing the z-axis; (b) view of the sphere from above. 

118.5. Axial heat conduction in a wire2 (Fig. llB.5). A wire of constant density p moves downward 
with uniform speed v into a liquid metal bath at temperature T,. It is desired to find the tem- 
perature profile T(z). Assume that T = T ,  at z = 03, and that resistance to radial heat conduc- 
tion is negligible. Assume further that the wire temperature is T = To at z = 0. 
(a) First solve the problem for constant physical properties e, and k. Obtain 

(b) Next solve the problqn when C p  and k are known functions of the dimensionless temper- 
ature @: k = k,K(@) and C, = C,,L(@). Obtain the temperature profile, 

(c) Verify that the solution in (b) satisfies the differential equation from which it was derived. 

\ ~ e m ~ e r a t u r e  of wire far 
from liquid metal 

surface is T, 

Wire moves downward 
with constant speed v 

Liauid metal surface 
/ at temperature Tn 

Fig. llB.5. Wire moving into a liquid metal bath. 

- 

Suggested by Prof. G. L. Borman, Mechanical Engineering Department, University of Wisconsin. 
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118.6. Transpiration cooling in a planar system. Two large flat porous horizontal plates are sepa- 
rated by a relatively small distance L. The upper plate at y = L is at temperature TL, and the 
lower one at y = 0 is to be maintained at a lower temperature To. To reduce the amount of 
heat that must be removed from the lower plate, an ideal gas at To is blown upward through 
both plates at a steady rate. Develop an expression for the temperature distribution and the 
amount of heat qo that must be removed from the cold plate p_er unit area as a function of the 
fluid properties and gas flow rate. Use the abbreviation 4 = pC,v,L/k. 

T - TL e 4 ~ l L  - e4 
- Answer: ----- - 

TO - TL 1 - e6 ; q o =  L 

l lB.7.  Reduction of evaporation losses by transpiration (Fig. llB.7). It is proposed to reduce the 
rate of evaporation of liquefied oxygen in small containers by taking advantage of transpira- 
tion. To do this, the liquid is to be stored in a spherical container surrounded by a spherical 
shell of a porous insulating material as shown in the figure. A thin space is to be left between 
the container and insulation, and the opening in the insulation is to be stoppered. In opera- 
tion, the evaporating oxygen is to leave the container proper, move through the gas space, 
and then flow uniformly out through the porous insulation. 

Calculate the rate of heat gain and evaporation loss from a tank 1 ft in diameter cov- 
ered with a shell of insulation 6 in. thick under the following conditions with and without 
transpiration. 

Temperature of liquid oxygen -297°F 
Temperature of outer surface of insulation 30°F 
Effective thermal conductivity of insulation 0.02 Btu/hr. ft F 
Heat of eyaporation of oxygen 91.7 Btu/lb 
Average C, of 0, flowing through insulation 0.22 Btu/lb. F 

Neglect the thermal resistance of the liquid oxygen, container wall, and gas space, and ne- 
glect heat losses through the stopper. Assume the particles of insulation to be in local thermal 
equilibrium with the gas. 
Answers: 82 Btu/hr without transpiration; 61 Btu/hr with transpiration 

l lB.8. Temperature distribution in an embedded sphere. A sphere of radius R and thermal conduc- 
tivity k, is embedded in an infinite solid of thermal conductivity ko. The center of the sphere is 
located at the origin of coordinates, and there is a constant temperature gradient A in the posi- 
tive z direction far from the sphere. The temperature at the center of the sphere is To. 

The steady-state temperature distributions in the sphere T, and in the surrounding 
medium To have been shown to be:3 

,Tank wall 

Fig. l lB.7.  Use of transpiration to reduce the 
evaporation rate. 

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon Press, Oxford (1987), p. 199. 
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Conical 
surfaces I---, 

Fig. 11B.9. Body formed from the intersection of two 
cones and a sphere. 

(a) What are the partial differential equations that must be satisfied by Eqs. 11B.8-1 and 2? 
(b) Write down the boundary conditions that apply at r = R. 
(c) Show that T,  and To satisfy their respective partial differential equations in (a). 
(d) Show that Eqs. llB.8-1 and 2 satisfy the boundary conditions in (b). 

l lB.9 .  Heat flow in a solid bounded by two conical surfaces (Fig. 11B.9). A solid object has the 
shape depicted in the figure. The conical surfaces O1 = constant and 0, = constant are held at 
temperatures TI and T,, respectively. The spherical surface at r = R is insulated. For steady- 
state heat conduction, find 
(a) The partial differential equation that T(0) must satisfy. 
(b) The solution to the differential equation in (a) containing two constants of integration. 
(c) Expressions for the constants of integration. 
(dl The expression for the 0-component of the heat flux vector. 
(e) The total heat flow (cal/sec) across the conical surface at 0 = 0,. 

2.rrXk(T1 - T2) 
Answer: (e) Q = 

11B.10. Freezing of a spherical drop (Fig. 118.10). To evaluate the performance of an atomizing noz- 
zle, it is proposed to atomize a nonvolatile liquid wax into a stream of cool air. The atomized 
wax particles are expected to solidify in the air, from which they may later be collected and 

Fig. l lB.lO. Temperature profile in the freez- 
ing of a spherical drop. 
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examined. The wax droplets leave the atomizer only slightly above their melting point. Esti- 
mate the time tf required for a drop of radius R to freeze completely, if the drop is initially at 
its melting point To and the surrounding air is at T,. Heat is lost from the drop to the sur- 
rounding air according to Newton's law of cooling, with a constant heat-transfer coefficient h. 
Assume that there is no volume change in the solidification process. Solve the problem by 
using a quasi-steady-state method. 
(a) First solve the steady-state heat conduction problem in the solid phase in the region be- 
tween r = R f  (the liquid-solid interface) and r = R (the solid-air interface). Let k be the ther- 
mal conductivity of the solid phase. Then find the radial heat flow Q across the spherical 
surface at r = R. 
(b) Then write an unsteady-state energy balance, by equating the heat liberation at r = Rf(t) 
resulting from the freezing of the liquid to the heat flow Q across the spherical surface at r = 
R. Integrate the resulting separable, first-order differential equ9tion between the limits 0 and 
R, to obtain the time that it takes for the drop to solidify. Let AHf be the latent heat of freezing 
(per unit mass). 

h . 4nR2(T0 - T,) 
Answers: (a) Q = 

[I - (hR/k)] + ( h ~ ~ / k ~ $ ) ;  (b) 

l l B . l l .  Temperature rise in a spherical catalyst pellet (Fig. 11B.11). A catalyst pellet has a radius R 
and a thermal conductivity k (which may be assumed constant). Because of the chemical reac- 
tion occurring within the porous pellet, heat is generated at a rate of S, cal/cm3. s. Heat is lost 
at the outer surface of the pellet to a gas stream at constant temperature T, by convective heat 
transfer with heat transfer coefficient h. Find the steady-state temperature profile, assuming 
that S, is constant throughout. 
(a) Set up the differential equation by making a shell energy balance. 
(b) Set up the differential equation by simplifying the appropriate form of the energy equation. 
(c) Integrate the differential equation to get the temperature profile. Sketch the function T(r). 
(dl What is the limiting form of T(r) when h + a? 

(e) What is the maximum temperature in the system? 
(f) Where in the derivation would one modify the procedure to account for variable k and 
variable S,? 

llB.12. Stability of an exothermic reaction ~ystern.~ Consider a porous slab of thickness 2B, width 
W, and length L, with B << W and B << L. Within the slab an exothermic reaction occurs, 
with a temperature-dependent rate of heat production S,(T) = Sco exp A(T - To). 
(a) Use the energy equation to obtain a differential equation for the temperature in the slab. 
Assume constant physical properties, and postulate a steady-state solution T(x). 
(b) Write the differential equation and boundary conditions in terms of these dimensionless 
quantities: 8 = x/B, O = A(T - To), and A = Sc,,AB2/k; here A is a constant. 
(c) Integrate the differential equation (hint: first multiply by 2dO/d() to obtain 

in which On is an auxiliary constant representing the value of O at ( = 0. 

-7 -  
R 

-1- 

Fig. l l B . l l .  Sphere with internal heat generation. 
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(d) Integrate the result of (c) and make use of the boundary conditions to obtain the relation 
between the slab thickness and midplane temperature 

(el Calculate A at Oo = 0.5, 1.0, 1.2, 1.4, and 2.0; graph these results to find the maximum 
value of A for steady-state conditions. If this value of h is exceeded, the system will explode. 

Laminar annular flow with constant wall heat flux. Repeat the development of s10.8 for 
flow in an annulus of inner and outer radii KR and R, respectively, starting with the equations 
of change. Heat is added to the fluid through the inner cylinder wall at a rate qo (heat per unit 
per unit time), and the outer cylinder wall is thermally insulated. 

Unsteady-state heating of a sphere. A sphere of radius R and thermal diffusivity a is initially 
at a uniform temperature To. For t > 0 the sphere is immersed in a well-stirred water bath main- 
tained at a temperature TI > To. The temperature within the sphere is then a function of the ra- 
dial coordinate r and the time t. The solution to the heat conduction equation is given by? 

T - To m 

-- - 1 + 2 2 (-1)" exp ( - c ~ n ~ ~ ~ t / ~ ~ )  (llB.14-1) 
TI - TO n = l  

It is desired to verlfy that this equation satisfies the differential equation, the boundary condi- 
tions, and the initial condition. 
(a) Write down the differential equation describing the problem. 
(b) Show that Eq. llB.14-1 for T(r, t )  satisfies the differential equation in (a). 
(c) Show that the boundary condition at r = R is satisfied. 
(dl Show that T is finite at r = 0. 
(el To show that Eq. 118.14-1 satisfies the initial condition, set t = 0 and T = To and obtain the 
following: 

To show that this is true, multiply both sides by (r/R)sin(rnm/R), where rn is any integer 
from 1 to m, and integrate from r = 0 to r = R. In the integration all terms with rn # n vanish 
on the right side. The term with m = n, when integrated, equals the integral on the left side. 

Dimensionless variables for free con~ection.~ The dimensionless variables in Eqs. 11.4-39 to 
43 can be obtained by simple arguments. The form of O is dictated by the boundary condi- 
tions and that of 5 is suggested by the geometry. The remaining dimensionless variables may 
be found as follows: 

(a) Set 77 = y/yo, 4z = vz/vzo, and 4, = vY/v@, the subscript-zero quantities being constants. 
Then the differential equations in Eqs. 11.4-33 to 35 become 

with the boundary conditions given in Eqs. 11.4-47 to 49. 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959), p. 233, Eq. (4). 

The procedure used here is similar to that suggested by J. D. Hellums and S. W. Churchill, AIChE 
Journal, 10,110-114 (1964). 
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(b) Choose appropriate values of v, v,,, and yo to convert the equations in (a) into Eqs. 11.4-44 
to 46, and show that the definitions in Eqs. 11.441 to 43 follow directly. 
(c) Why is the choice of variables developed in (b) preferable to that obtained by setting the 
dimensionless groups in Eqs. llB.15-1 and 2 equal to unity? 

llC.l. The speed of propagation of sound waves. Sound waves are harmonic compression waves 
of very small amplitude traveling through a compressible fluid. The velocity of propagation 
of such waves may be estimated by assuming that the momentum flux tensor 7 and the heat 
flux vector q are zero and that the velocity v of the fluid is small.6 The neglect of T and q is 
equivalent to assuming that the entropy is constant following the motion of a given fluid ele- 
ment (see Problem 11D.1). 
(a) Use equilibrium thermodynamics to show that 

in which y = CJC,. 
(b) When sound is being propagated through a fluid, there are slight perturbations in the 
pressure, density, and velocity from the rest state: p = po + p', p = po + p', and v = vo + v', 
the subscript-zero quantities being constants associated with the rest state (with vo being 
zero), and the primed quantities being very small. Show that when these quantities are substi- 
tuted into the equation of continuity and the equation of motion (with the I and g terms omit- 
ted) and products of the small primed quantities are omitted, we get 

Equation of continuity dp 
- = -p0(V . v) 
dt 

(11C.l-2) 

Equation of motion dv p,, - = -Vp 
dt 

(11C.l-3) 

(c) Next use the result in (a) to rewrite the equation of motion as 

in which v: = y(dp/dp),. 
(d) Show how Eqs. llC.1-2 and 4 can be combined to give 

(el Show that a solution of Eq. llC.1-5 is 

p = po[l + A sin (F o - v,t))] 

This solution represents a harmonic wave of wavelength h and amplitude p d  traveling in the 
z direction at a speed v,. More general solutions may be constructed by a superposition of 
waves of different wavelengths and directions. 

11C.2. Free convection in a slot. A fluid of constant viscosity, with density given by Eq. 11.3-1, is 
confined in a rectangular slot. The slot has vertical walls at x = + B, y = + W, and a top and 
bottom at z = _tH, with H >> W >> B. The walls are nonisothermal, with temperature dis- 
tribution T, = T + Ay, so that the fluid circulates by free convection. The velocity profiles 
are to be predicted, for steady laminar flow conditions and small deviations from the mean 
density p. 

See L. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon, Oxford (1987), Chapter 
VIII; R. J. Silbey and R. A. Alberty, Physical Chernisfy, 3rd edition, Wiley, New York (2001),§17.4. 
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(a) Simplify the equations of continuity, motion, and energy according to the postulates: 
v = 6,v,(x, y), d2v,/d$ << d2vZ/dx2, and T = T(y). These postulates are reasonable for slow 
flow, except near the edges y = -C Wand z = ?H. 
(b) List the boundary conditions to be used with the problem as simplified in (a). 
(c) Solve for the temperature, pressure, and velocity profiles. 
(d) When making diffusion measurements in closed chambers, free convection can be a seri- 
ous source of error, and temperature gradients must be avoided. By way of illustration, com- 
pute the maximum tolerable temperature gradient, A, for an experiment with water at 20°C in 
a chamber with B = 0.1 mm, W = 2.0 mm, and H = 2 cm, if the maximum permissible convec- 
tive movement is 0.1% of H in a one-hour experiment. 

- PSPA 
Answers: (c) v,(x, y) = - (B2 - x2)y; (dl 2.7 X K/cm 

2~ 
Tangential annular flow of a highly viscous liquid. Show that Eq. 11.4-13 for flow in an an- 
nular region reduces to Eq. 10.4-9 for plane slit flow in the limit as K approaches unity. Com- 
parisons of this kind are often useful for checking results. 

The right side of Eq. 11.4-13 is indeterminate at K = 1, but its limit as K + 1 can be ob- 
tained by expanding in powers of E = 1 - K. To do this, set K = 1 - s and 5 = 1 - s[l - 
(x/b)l; then the range K 5 8 % 1 in Problem 11.4-2 corresponds to the range 0 % x 5 b in 310.4. 
After making the substitutions, expand the right side of Eq. 11.4-13 in powers of s (neglecting 
terms beyond 8') and show that Eq. 10.4-9 is obtained. 

Heat conduction with variable thermal conductivity. 
(a) For steady-state heat conduction in solids, Eq. 11.2-5 becomes (O - q) = 0, and insertion of 
Fourier's law gives (V . kVT) = 0. Show that the function F = JkdT -+ const, satisfies the 
Laplace equation V2F = 0, provided that k depends only on T. 
(b) Use the result in (a) to solve Problem 108.12 (part a), using an arbitrary function k(7'). 

Effective thermal conductivity of a solid with spherical inclusions (Fig. 11C.5). Derive Eq. 
9.6-1 for the effective thermal conductivity of a two-phase system by starting with Eqs. 
llB.8-1 and 2. We construct two systems both contained within a spherical region of radius 
R': (a) the "true" system, a medium with thermal conductivity ko, in which there are embed- 
ded n tiny spheres of thermal conductivity k, and radius R; and (b) an "equivalent" system, 
which is a continuum, with an effective thermal conductivity k,,,. Both of these systems are 
placed in a temperature gradient A, and both are surrounded by a medium with thermal 
conductivity ko. 

Medium 0 with 
thermal conductivity ko 

Medium 0 
n spheres of 
material 1 
of radius R 
and thermal 
conductivity k, 

Sphere of radius R '  

Medium 0 with 
thermal conductivity ko 

Sphere of radius 
R'  of a hypothetical 
"smoothed out" 
material equivalent 
to the granular 
material in (a) 

Thermal conductivity is keff 

Fig. llC.5. Thought experiment used by Maxwell to get the thermal conductiv- 
ity of a composite solid: (a) the "true" discrete system, and (b) the "equivalent" 
continuum system. 
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(a) For the "true" system we know that at a large distance L from the system (i.e., L >> R'), 
the temperature field will be given by a slight modification of Eq. llB.8-2, provided that the 
tiny occluded spheres are very "dilute" in the true system: 

Explain carefully how this result is obtained. 
(b) Next, for the "equivalent system," we can write from Eq. llB.8-2 

(c) Next derive the relation n~~ = 4Rf3, in which 4 is the volume fraction of the occlusions in 
the "true system." 
(d) Equate the right sides of Eqs. 11C.5-1 and 2 to get Maxwell's equation7 in Eq. 9.6-1. 

11C.6. Interfacial boundary conditions. Consider a nonisothermal interfacial surface S(t) be- 
tween pure phases I and I1 in a nonisothermal system. The phases may consist of two im- 
miscible fluids (so that no material crosses S(t)), or two different pure phases of a single 
substance (between which mass may be interchanged by condensation, evaporation, freez- 
ing, or melting). Let n1 be the local unit normal to S(t) directed into phase I. A superscript I 
or I1 will be used for values along S in each phase, and a superscript s for values in the in- 
terface itself. The usual interfacial boundary conditions on tangential velocity v, and tem- 
perature T on S are 

v~ - - v II (no slip) (11C.6-1) 

T' = TI1 (continuity of temperature) (llC.6-2) 

In addition, the following simplified conservation equations are suggesteds for surfactant-free 
interfaces: 

Interfacial mass balance 

(nl. {p'(vl - J )  - p'l(v'l - J)}) = 0 (1 lC.6-3) 

Interfacial momentum balance 

Interfacial internal energy balance 

(n' . pl{v' - $})[(I? - 9) + i(v" - vU2)] + (d . {cf - qll}) = o(VS . vS) (1 1C.6-5) 

The momentum balance of Eq. 3C.5-1 has been extended here to include the surface gradient 
VSu of the interfacial tension; the resulting tangential force gives rise to a variety of interfacial 
flow phenomena, known as Marangoni  effect^.^,'^ Equation llC.6-5 is obtained in the manner 
of 511.2, from total and mechanical energy balances on S, neglecting interfacial excess energy 
Ij", heat flux qS, and viscous dissipation (.rS:VV); fuller results are given elsewhere.' 

J. C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1, Oxford University Press (1891, 
reprinted 1998), 5314. 

J. C. Slattery, Advanced Transport Phenomena, Cambridge University Press (1999), pp. 58,435; more 
complete conditions are given in Ref. 10. 

C. G. M. Marangoni, Ann. Phys. (Poggendorf), 3,337-354 (1871); C. V. Sternling and L. E. Scriven, 
AIChE J o u ~ ~ l ,  5,514-523 (1959). 

lo D. A. Edwards, H. Brenner, and D. T. Wasan, interfacial Transport Processes and Rheology, 
Butterworth-Heinemann, Stoneham, Mass. (1991). 
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(a) Verify the dimensional consistency of each interfacial balance equation. 
(b) Under what conditions are v1 and v" equal? 
(c) Show how the balance equations simplify when phases I and I1 are two pure immiscible 
liquids. 

(d) Show how the balance equations simplify when one phase is a solid. 

Effect of surface-tension gradients on a falling film. 
(a) Repeat the determination of the shear-stress and velocity distributions of Example 2.1-1 in 
the presence of a small temperature gradient dT/dz in the direction of flow. Assume that this 
temperature gradient produces a constant surface-tension gradient du/dz = A but has no 
other effect on system physical properties. Note that this surface-tension gradient will pro- 
duce a shear stress at the free surface of the film (see Problem llC.6) and, hence, will require a 
nonzero velocity gradient there. Once again, postulate a stable, nonrippling, laminar film. 
(b) Calculate the film thickness as a function of the net downward flow rate and discuss the 
physical significance of the result. 

Answer: (a) T,, = pgx cos p + A; v, = 

Equation of change for entropy. This problem is an introduction to the thermodynamics of 
irreversible processes. A treatment of multicomponent mixtures is given in 5524.1 and 2. 

(a) Write an entropy balance for the fixed volume element Ax Ay Az. Let s be the entropy flux 
vector, measured with respect to the fluid velocity vector v. Further, let the rafe of entropy pro- 
duction per unit volume be designated by gs. Show that when the volume element Ax Ay Az is 
allowed to become vanishingly small, one finally obtains an equation of change for entropy in ei- 
ther of the following two forms:" 

in which 2 is the entropy per unit mass. 
(b) If one assumes th$ the thermodynamic qua;tities can be defined locally in a nonequilib- 
riym sityation,;hen U can be related to S and V according to the thermodynamic relation 
d LI = TdS - pdV. Combine this relation with Eq. 11.2-2 to get 

(c) The local entropy flux is equal to the local energy flux divided by the local 
that is, s = q / T .  Once this relation between s and q is recognized, we can compare Eqs. llD.l-2 
and 3 to get the following expression for the rate of entropy production per unit volume: 

" G. A. J. Jaurnann, Sitzungsbeu. der Math.-Natuvwiss. Klasse der Kaiserlichen A h d .  der Wissenschaften 
(Wien), 102, Abt. IIa, 385-530 (1911). 

l2 Carl Henry Eckart (1902-1973), vice-chancellor of the University of California at San Diego 
(1965-1969), made fundamental contributions to quantum mechanics, geophysical hydrodynamics, 
and the thermodynamics of irreversible processes; his key contributions to transport phenomena are 
in C. H. Eckart, Phys. Rev., 58,267-268,269-275 (1940). 

l3 C. F. Curtiss and J. 0. Hirschfelder, I .  Chem. Phys., 18,171-173 (1950). 
l4 J. G. Kirkwood and B. L. Crawford, Jr., I. Phys. Chem. 56,1048-1051 (1952). 
l5 S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962). 



Problems 373 

The first term on the right side is the rate of entropy production associated with heat trans- 
port, and the second is the rate of entropy production resulting from momentum transport. 
Equation llD.l-4 is the starting point for the thermodynamic study of the irreversible 
processes in a pure fluid. 
(d) What conclusions can be drawn when Newton's law of viscosity and Fourier's law of 
heat conduction are inserted into Eq. 11D.1-4? 

11D.2. Viscous heating in laminar tube flow. 
(a) Continue the analysis begun in Problem IlB.2-namely, that of finding the temperature 
profiles in a Newtonian fluid flowing in a circular tube at a speed sufficiently high that vis- 
cous heating effects are important. Assume that the velocity profile at the inlet (z = 0) is fully 
developed, and that the inlet temperature is uniform over the cross section. Assume all physi- 
cal properties to be constant. 
(b) Repeat the analysis for a power law non-Newtonian viscosity.16 

llD.3. Derivation of the energy equation using integral theorems. In s11.1 the energy equation is 
derived by accounting for the energy changes occurring in a small rectangular volume ele- 
ment Ax Ay Az. 
(a) Repeat the derivation using an arbitrary volume element V with a fixed boundary S by 
following the procedure outlined in Problem 3D.1. Begin by writing the law of conservation 
of energy as 

Then use the Gauss divergence theorem to convert the surface integral into a volume integral, 
and obtain Eq. 11.1-6. 
(b) Do the analogous derivation for a moving "blob" of fluid. 

l6 R. B. Bird, Soc. Plastics Engrs. Journal, 11,3540 (1955). 
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Temperature Distributions with 
More Than One Independent 
Variable 
512.1 Unsteady heat conduction in solids 

512.2' Steady heat conduction in laminar, incompressible flow 

512.3' Steady potential flow of heat in solids 

512.4O Boundary layer theory for nonisothermal flow 

In Chapter 10 we saw how simple heat flow problems can be solved by means of shell 
energy balances. In Chapter 11 we developed the energy equation for flow systems, 
which describes the heat transport processes in more complex situations. To illustrate 
the usefulness of the energy equation, we gave in 511.4 a series of examples, most of 
which required no knowledge of solving partial differential equations. 

In this chapter we turn to several classes of heat transport problems that involve 
more than one dependent variable, either two spatial variables, or one space variable 
and the time variable. The types of problems and the mathematical methods parallel 
those given in Chapter 4. 

512.1 UNSTEADY HEAT CONDUCTION IN SOLIDS 

For solids, the energy equation of Eq. 11.2-5, when combined with Fourier's law of heat 
conduction, becomes 

If the thermal conductivity can be assumed to be independent of the temperature and 
position, then Eq. 12.1-1 becomes 

in which a = k/& is the thermal diffusivity of the solid. Many solutions to this equa- 
tion have been worked out. The treatise of Carslaw and Jaeger' contains a thorough dis- 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959). 
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cussion of solution methods as well as a very comprehensive tabulation of solutions for 
a wide variety of boundary and initial conditions. Many frequently encountered heat 
conduction problems may be solved just by looking u p  the solution in this impressive 
reference work. 

In this section we illustrate four important methods for solving unsteady heat con- 
duction problems: the method of combination of variables, the method of separation of 
variables, the method of sinusoidal response, and the method of Laplace transform. The 
first three of these were also used in 54.1. 

A solid material occupying the space from y = 0 to y = is initially at temperature To. At 
time t = 0, the surface at y = 0 is suddenly raised to temperature TI and maintained at that 

Heating a Semi-Infinite temperature for t > 0. Find the time-dependent temperature profiles T(y, t). 
Slab 

SOLUTION 

For this problem, Eq. 12.1-2 becomes 

Here a dimensionless temperature difference O = (T - To)/(T, - To) has been introduced. 
The initial and boundary conditions are then 

LC.: 

B.C. 1: 

B.C. 2: 

a t t sO,  0 = 0  forally 

at y = 0, O = 1 for all t > 0 

a t y =  m, 0 = 0  forallt>O 

This problem is mathematically analogous to that formulated in Eqs. 4.1-1 to 4. Hence the so- 
lution in Eq. 4.1-15 can be taken over directly by appropriate changes in notation: 

T - To 
-- Y - 1 - erf- 
Tl - To a 

The solution shown in Fig. 4.1-2 describes the temperature profiles when the ordinate is la- 
beled (T - To)/(Tl - To) and the abscissa y/*. 

Since the error function reaches a value of 0.99 when the argument is about 2, the thermal 
penetration thickness 6T is 

That is, for distances y > 6 ,  the temperature has changed by less than 1% of the difference 
T, - To. If it is necessary to calculate the temperature in a slab of finite thickness, the solution 
in Eq. 12.1-8 will be a good approximation when 6 ,  is small with respect to the slab thickness. 
However, when 8, is of the order of magnitude of the slab thickness or greater, then the series 
solution of Example 12.1-2 has to be used. 

The wall heat flux can be calculated from Eq. 12.1-8 as follows: 

Hence, the wall heat flux varies as t-"2, whereas the penetration thickness varies as t1I2 
b 
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EXAMPLE 12.1-2 

Heating of a Finite Slab 

A solid slab occupying the space between y = -b and y = + b is initially at temperature To. At 
time t = 0 the surfaces at y = ?b are suddenly raised to T, and maintained there. Find T(y, t ) .  

SOLUTION 

For this problem we define the following dimensionless variables: 

TI - T 
Dimensionless temperature 0 =- 

T, - To 

Dimensionless coordinate Y 
'7 =i  (12.1-12) 

Dimensionless time 

With these dimensionless variables, the differential equation and boundary conditions are 

I.C.: at 7 = 0, 0 = 1 

B.C. 1 and 2: at q = +I, O = 0  for^> 0 

Note that no parameters appear when the problem is restated thus. 
We can solve this problem by the method of separation of variables. We start by postulat- 

ing that a solution of the following product form can be obtained: 

Substitution of this trial function into Eq. 12.1-14 and subsequent division by the product 
f (q)g(d gives 

The left side is a function of 7 alone, and the right side is a function of '7 alone. This can be 
true only if both sides equal a constant, which we call -c2. If the constant is called +c2, +c, or 
-c, the same final result is obtained, but the solution is a bit messier. Equation 12.1-18 can 
then be separated into two ordinary differential equations 

These equations are of the form of Eq. C.l-1 and 3 and may be integrated to give 

g = A exp (-c27) 

f = Bsincq + Ccoscv 

in which A, El, and C are constants of integration. 
Because of the symmetry about the xz-plane, we must have @(q, T )  = @(-'7, r), and thus 

f (7) = f (-7). Since the sine function does not have this kind of behavior, we have to require 
that B be zero. Use of either of the two boundary conditions gives 

Ccos c = 0 (12.1-23) 

Clearly C cannot be zero, because that choice leads to a physically inadmissible solution. 
However, the equality can be satisfied by many different choices of c, which we call c,: 
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Hence Eq. 12.1-14 can be satisfied by 

1 2  2 @,, = A,,C, exp[-(n + ,) .rr TI cos (n + f).rrrl (12.1-25) 

The subscripts n remind us that A and C may be different for each value of n. Because of the 
linearity of the differential equation, we may now superpose all the solutions of the form of 
Eq. 12.1-25. In doing this we note that the exponentials and cosines for n have the same values 
as those for -(n + I), so that the terms with negative indices combine with those with posi- 
tive indices. The superposition then gives 

in which D,  = A,&, + A-(n+l,C-~,+l,. 
The D,, are now determined by using the initial condition, which gives 

Multiplication by cos(m + $).rrrl and integration from 77 = -1 to 7 = +1 gives 

When the integrations are performed, all integrals on the right side are identically zero, ex- 
cept for the term in which n = m. Hence we get 

After inserting the limits, we may solve for Dm to get 

sin (m + i).rrrl T +l  $(m + ;).rrrl + $ sin 2(m + $).rrr) / = ~ m  

Substitution of this expression into Eq. 12.1-26 gives the temperature profiles, which we now 
rewrite in terms of the original variables2 

? = + I  

(12.1-29) 

The solutions to many unsteady-state heat conduction problems come out as infinite series, 
such as that just obtained here. These series converge rapidly for large values2 of the dimen- 
sionless time, at/b2. For very short times the convergence is very slow, and in the limit as 
cut/b2 approaches zero, the solution in Eq. 12.1-31 may be shown to approach that given in Eq. 
12.1-8 (see Problem 12D.1). Although Eq. 12.1-31 is unwieldy for some practical calculations, 
a graphical presentation, such as that in Fig. 12.1-1, is easy to use (see Problem 12A.3). From 
the figure it is clear that when the dimensionless time r = at/b2 is 0.1, the heat has "pene- 
trated" measurably to the center plane of the slab, and that at r = 1.0 the heating is 90% com- 
plete at the center plane. 

Results analogous to Fig. 12.1-1 are given for infinite cylinders and for spheres in Figs. 
12.1-2 and 3. These charts can also be used to build up the solutions for the analogous heat 
conduction problems in rectangular parallelepipeds and cylinders of finite length (see Prob. 
12C.1). 

(m + +)T ~ = - 1  (m + ;)a q=-1 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959), p. 97, Eq. (8); the alternate solution in Eq. (9) converges rapidly for small times. 
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Fenter Of 

Surface of slab 
\ 

Fig. 12.1-1. Temperature profiles for unsteady-state 
heat conduction in a slab of finite thickness 2b. The 
initial temperature of the slab is To, and T, is the tempera- 
ture imposed at the slab surfaces for time t > 0. 
[H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 
Solids, 2nd edition, Oxford University Press (1959), 
p. 101.1 

Axis of cylinder Surface of cylinder 
/ \ 

Fig. 12.1-2. Temperature profiles for unsteady-state 
heat conduction in a cylinder of radius R. The initial 
temperature of the cylinder is To, and TI is the tempera- 
ture imposed at the cylinder surface for time t > 0. 
[H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 
Solids, 2nd edition, Oxford University Press (1959), 
p. 200.1 

Center of sphere Surface of sphere 
/ \ 

Fig. 12.1-3. Temperature profiles for unsteady-state 
heat conduction in a sphere of radius R. The initial 
temperature of the sphere is To, and T1 is the tempera- 
ture imposed at the sphere surface for time t > 0. 
[H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 
Solids, 2nd edition, Oxford University Press (1959), 
p. 234.1 
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A solid body occupying the space from y = 0 to y = oo is initially at temperature To. Beginning 
at time t = 0, a periodic heat flux given by 

Unsteady Heat 
Conduction near a q, = qo cos ot = qo%{eiwfl (12.1-32) 

with Sinusoidal is imposed at y = 0. Here q,, is the amplitude of the heat flux oscillations, and o is the (circu- 
Heat Flux lar) frequency. It is desired to find the temperature in this system, T(y, t), in the "periodic 

steady state" (see Problem 4.1-3). 

SOLUTION For one-dimensional heat conduction, Eq. 12.1-2 is 

Multiplying by -k and operating on the entire equation with d/dy gives 

or, by making use of 9, = -k(dT/dy), 

Hence q, satisfies the same differential equation as T.  The boundary conditions are 

B.C. 1: 

B.C. 2: 

This problem is formally exactly the same as that given in Eqs. 4.1-44,46, and 47. Hence the 
solution in Eq. 4.1-57 may be taken over with appropriate notational changes: 

- 

Then by integrating Fourier's law 

Substitution of the heat flux distribution into the right side of this equation gives after inte- 
gration 

Thus, at the surface y = 0, the temperature oscillations lag behind the heat flux oscillations by 
~ / 4 .  

This problem illustrates a standard procedure for obtaining the "periodic steady state" in 
heat conduction systems. It also shows how one can use the heat conduction equation in 
terms of the heat flux, when boundary conditions on the heat flux are known. 

A homogeneous solid sphere of radius R, initially at a uniform temperature TI, is suddenly 
immersed at time t = 0 in a volume Vf  of well-stirred fluid qf temperature To in an insulated 

of a tank. It is desired to find the thermal diffusivity a, - ks/psC,, of the solid by observing the 
in Contact w i th  a change of the fluid temperature Tf with time. We use the following dimensionless variables: 
Well-Stirred Fluid 

7'1 - Ts 
- dimensionless solid temperature @,(5,7) = - - (12.1-41) 

TI - To 



380 Chapter 12 Temperature Distributions with More Than One Independent Variable 

SOLUTION 

Tl - Tf 
Of(d = - = dimensionless fluid temperature 

TI - To 

Y 
,$ = - = dimensionless radial coordinate 

R 

f f s t  
T = - = dimensionless time x2 

The reader may verify that the problem stated in dimensionless variables is 

Solid 

in which B = pf~plli , /p,~ps~S, the V's representing the volume of the fluid and of the solid. 
Linear problems with complicated boundary conditions and/or coupling between equa- 

tions are often solved readily by the Laplace transform method. We now take the Laplace 
transform of the preceding equations and their boundary conditions to get: 

Fluid 

At r=O,@,  = 0 (12.1-46) 

Atc$= I,@, = af (12.1-47) 

At 6 = 0,@, = finite (12.1-48) 

I Solid I Fluid I 

A t 7 = 0 , 0 f = 1  (12.1-50) 

~ t t =  l , % = o r  (12.1-52) 
At 5 = 0,@ = finite (12.1-53) 

Here p is the transform ~ar iab le .~  The solution to Eq. 12.1-51 is 

Because of the boundary condition at ,$ = 0, we must set C, equal to zero. Substitution of this 
result into Eq. 12.1-54 then gives 

Next, we insert these last two results into the boundary condition at 5 = 1, in order to deter- 
mine C,. This gives us for 6 

We now divide the numerator and denominator within the parentheses by p, and take the in- 
verse Laplace transform to get 
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Fig. 12.1-4. Variation of the fluid tem- 
perature with time after a sphere of ra- 
dius R at temperature T,  is placed in a 
well-stirred fluid initially at a tempera- 
ture To. The dimensionless parameter B 
is defined in the text following Eq. 
12.1-50. [H. S. Carslaw and J. C .  Jaeger, 
Conduction of Heat in Solids, 2nd edi- 
tion, Oxford University Press (1959), 
p. 241.1 

It can be shown that D(p) has a single root at p = 0, and roots at V'& = ib, (with k = 1, 2, 
3, .  . . , m), where the bk are the nonzero roots of tan bk = 3bk/(3 + Bb:). The Heaviside partial 
fractions expansion theorem4 may now be used with 

to get 

0 -- + 6 ~ 5  exp (- bk2d 
- 1 + B ,=I 9(1 + B) + B2b: 

Equation 12.1-61 is shown graphically in Fig. 12.1-4. In this result the only place where the 
thermal diffusivity of the solid a, appears is in the dimensionless time T = a,t/R2, SO that the 
temperature rise of the fluid can be used to determine experimentally the thermal diffusivity 
of the solid. Note that the Laplace transform technique allows us to get the temperature his- 
tory of the fluid without obtaining the temperature profiles in the solid. 

512.2 STEADY HEAT CONDUCTION IN LAMINAR, 
INCOMPRESSIBLE FLOW 

In the preceding discussion of heat conduction in solids, we needed to use only the en- 
ergy equation. For problems involving flowing fluids, however, all three equations of 
change are needed. Here we restrict the discussion to steady flow of incompressible, 
Newtonian fluids with constant fluid properties, for which the relevant equations of 
change are: 

Continuity 

Motion 

Energy 

(V v) = 0 

p[v . VV] = - VP 
p@v. VT) = k V 2 ~  + pa, 

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, Vol. 1, 
McGraw-Hill, New York (1954), p. 232, Eq. 20; see also C. R. Wylie and L. C. Barrett, Advanced Engineering 
Mathematics, McGraw-Hill, New York, 6th Edition (1995), s10.9. 
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In Eq. 12.2-3, a, is the dissipation function given in Eq. 3.3-3. To get the temperature 
profiles for forced convection, a two-step procedure is used: first Eqs. 12.2-1 and 2 are 
solved to obtain the velocity distribution v(r, t); then the expression for v is substi- 
tuted into Eq. 12.2-3, which may in turn be solved to get the temperature distribution 
T(r, t). 

Many analytical solutions of Eqs. 12.2-1 to 3 are available for commonly encoun- 
tered  situation^.'-^. One of the oldest forced-convection problems is the Graetz-Nusselt 
problem,' describing the temperature profiles in tube flow where the wall temperature 
undergoes a sudden step change at some position along the tube (see Problems 
12D.2, 3, and 4). Analogous solutions have been obtained for arbitrary variations of 
wall temperature and wall flux.9 The Graetz-Nusselt problem has also been extended 
to non-Newtonian fluids.'' Solutions have also been developed for a large class of 
laminar heat exchanger problems,ll in which the wall boundary condition is provided 
by the continuity of heat flux across the surfaces separating the two streams. A fur- 
ther problem of interest is duct flow with significant viscous heating effects (the 
Brinkman problem12). 

In this section we extend the discussion of the problem treated in §10.8-namely, the 
determination of temperature profiles for laminar flow of an incompressible fluid in a 
circular tube. In that section we set up the problem and found the asymptotic solution 
for distances far downstream from the beginning of the heated zone. Here, we give the 
complete solution to the partial differential equation as well as the asymptotic solution 
for short distances. That is, the system shown in Fig. 10.8-2 is discussed from three view- 
points in this book: 

a. Complete solution of the partial differential equation by the method of separa- 
tion of variables (Example 12.2-1). 

b. Asymptotic solution for short distances down the tube by the method of combi- 
nation of variables (Example 12.2-2). 

c. Asymptotic solution for large distances down the tube (s10.8). 

' M. Jakob, Heat Transfer, Vol. I ,  Wiley, New York (1949), pp. 451464. 
H. Grober, S. Erk, and U. Grigull, Die Grundgesetze der Wiivmeiiberfragung, Springer, Berlin (1961), 

Part 11. 
' R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts, Academic Press, New York 

(1978). 
L. C. Burmeister, Convective Xeat Transfer, Wiley-Interscience, New York (1983). 
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, Oxford (1987), Chapter 5. 
L. G. Leal, Laminar Flow and Convective Transport Processes, Butterworth-Heinemann (1992), 

Chapters 8 and 9. 
W. M. Deen, Analysis of Transport Phenomena, Oxford University Press (1998), Chapters 9 

and 10. 
L. Graetz, Ann. Pkys. (N.F.), 18, 79-94 (1883), 25,337-357 (1885); W. Nusselt, Zeits. Ver. deutch. Ing., 

54,11541158 (1910). For the "extended Graetz problem," which includes axial conduction, see E. 
Papoutsakis, D. Ramkrishna, and H. C. Lim, Appl. Sci. Res., 36,13-34 (1980). 

E. N. Lightfoot, C. Massot, and F. Irani, Chem. Eng. Progress Symp. Series, Vol. 61, No. 58 (1965), 
pp. 28-60. 

B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Wiley-Interscience 
(1987), 2nd edition, Vol. 1, g4.4. 

" R. J. Nunge and W. N. Gill, AIChE Journal, 12,279-289 (1966). 
l2 H. C. Brinkman, Appl. Sci. Research, A2,120-124 (1951); R. B. Bird, SPE Journal, 11,3540 (1955); 

H. L. Toor, Ind. Eng. Chem., 48,922-926 (1956). 
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Solve Eq. 10.8-19 with the boundary conditions given in Eqs. 10.8-20,21, and 22. 

Laminar Tube Flow 
with Constant Heat SOLUTION 
Flux a t  the Wal l  The complete solution for the temperature is postulated to be of the following form: 

in which Om((, l) is the asymptotic solution given in Eq. 10.8-31, and Od((, 5) is a function that 
will be damped out exponentially with 5. By substituting the expression for @(& 5) in Eq. 12.2- 
4 into Eq. 10.8-19, it may be shown that the function Od(& 5) must satisfy Eq. 10.8-19 and also 
the following boundary conditions: 

B.C. 1: 

B.C. 2: 

B.C. 3: at l =  0, Od = Om(& 0) (12.2-7) 

We anticipate that a solution to the equation for O&, will be factorable, 

Then Eq. 10.8-19 can be separated into two ordinary differential equations 

in which -c2 is the separation constant. Since the boundary conditions on X are dX/dt = 0 at 
6 = 0, 1, we have a Sturm-Liouville problem.13 Therefore we know there will be an infinite 
number of eigenvalues ck and eigenfunctions Xk, and that the final solution must be of the 
form: 

where 

The problem is thus reduced to finding the eigenfunctions Xk(O by solving Eq. 12.2-10, and 
then getting the eigenvalues ck by applying the boundary condition at 6 = 1. This has been 
done for k up to 7 for this problem.14 

l3  M. D. Greenberg, Advanced Engineering Mathematics, Prentice-Hall, Upper Saddle River, N.J., 
Second Edition (1998), s17.7. 

I%. Siegel, E. M. Sparrow, and T. M. Hallman, Appl. Sci. Research, A7,386-392 (1958). 
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Note that the sum in Eq. 12.2-11 converges rapidly for large z but slowly for small z. Develop 
an expression for T(r, z )  that is useful for small values. 

Laminar Tube Flow 
with Constant Heat 
Flux at the Wall: 
~~~~~~i~ solution For small z  the heat addition affects only a very thin region near the wall, so that the follow- 

for the Region ing three approximations lead to results that are accurate in the limit as z  + 0: 

a. Curvature effects may be neglected and the problem treated as though the wall were 
flat; call the'distance from the wall y = R - r. 

b. The fluid may be regarded as extending from the (flat) heat transfer surface (y = 0) to 
y = m. 

c. The velocity profile may be regarded as linear, with a slope given by the slope of the 
parabolic velocity profile at the wall: v,(y) = voy/R, in which v, = (Po - P,)R2/2p~. 

This is the way the system would appear to a tiny "observer" who is located within the very 
thin shell of heated fluid. To this observer, the wall would seem flat, the fluid would appear 
to be of infinite extent, and the velocity profile would seem to be linear. 

The energy equation then becomes, in the region just slightly beyond z = 0, 

Actually it is easier to work with the corresponding equation for the heat flux in the y direc- 
tion (q, = -k dT/dy). This equation is obtained by dividing Eq. 12.2-13 by y and differentiat- 
ing with respect to y: 

It is more convenient to work with dimensionless variables defined as 

Then Eq. 12.2-14 becomes 

with these boundary conditions: 

B.C. 1: 

B.C. 2: 

B.C. 3: 

ath =0 ,  Q = O  

a tq=O,  $ = I  

a sv+m,  Q + O  

This problem can be solved by the method of combination of variables (see Examples 4.1-1 
and 12.1-1) by using the new independent variable x = v/$"%. Then Eq. 12.2-16 becomes 

The boundary conditions are: at x = 0, IC, = 1, and as x + m, Q + 0. The solution of Eq. 12.2-20 
is found by first letting d+/dx = p, and getting a first-order equation for p. The equation for p 
can be solved and then I) is obtained as 
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The temperature profile may then be obtained by integrating the heat flux: 

or, in dimensionless form, 

Then the expression for cC, is inserted into the integral, and the order of integration in the dou- 
ble integral can be reversed (see Problem 12D.7). The result is 

Here r($) is the (complete) gamma function, and r($, X3) is an incomplete gamma function.15 
To compare this result with that in Example 12.2-1, we note that 17 = 1 - 8 and A = if. The di- 
mensionless temperature is defined identically in 510.8, in Example 12.2-1, and here. 

812.3 STEADY POTENTIAL FLOW OF HEAT IN SOLIDS 

The steady flow of heat in solids of constant thermal conductivity is described by 

Fourier's law q = -kVT 
Heat conduction equation V2T = 0 

These equations are exactly analogous to the expression for the velocity in terms of the 
velocity potential (v = -V+), and the Laplace equation for the velocity potential (V24 = 
0), which we encountered in 54.3. Steady heat conduction problems can therefore be 
solved by application of potential theory. 

For two-dimensional heat conduction in solids with constant thermal conductivity, 
the temperature satisfies the two-dimensional Laplace equation: 

We now use the fact that any analytic function w(z) = fix, y) + ig(x, y) provides two scalar 
functions f and g, which are solutions of Eq. 12.3-3. Curves off = constant may be interpreted 
as lines of heat flow, and curves of g = constant are the corresponding isothermals for some 
heat flow problems. These two sets of curves are orthogonal-that is, they intersect at right 
angles. Furthermore, the components of the heat flux vector at any point are given by 

Given an analytic function, it is easy to find heat flow problems that are described by it. 
But the inverse process of finding an analytic function suitable for a given heat flow 
problem is generally very difficult. Some methods for this are available, but they are out- 
side the scope of this textbook.',* 

l5 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, Dover, New York, 9th 
Printing (1973), pp. 255 et seq. 

' H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959), Chapter XVI. 

M. D. Greenberg, Advanced Engineering Mathematics, Prentice-Hall, Upper Saddle River, N.J., 2nd 
Edition (19981, Chapter 22. 
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For every complex function w(z), two heat flow nets are obtained by interchanging 
the lines of constant f and the lines of constant g. Furthermore, two additional nets are 
obtained by working with the inverse function z(w) as illustrated in Chapter 4 for ideal 
fluid flow. 

Note that potential fluid flow and potential heat flow are mathematically similar, the 
two-dimensional flow nets in both cases being described by analytic functions. Physi- 
cally, however, there are certain important differences. The fluid flow nets described in 
54.3 are for a fluid with no viscosity (a fictitious fluid!), and therefore one cannot use 
them to calculate the drag forces at surfaces. On the other hand, the heat flow nets de- 
scribed here are for solids that have a finite thermal conductivity, and therefore the r e  
sults can be used to calculate the heat flow at all surfaces. Moreover, both the velocity 
components (in Cartesian coordinates!) of 54.3 and the temperature profiles of this sec- 
tion satisfy the Laplace equation. Further information about analogous physical pro- 
cesses described by the Laplace equation is available in books on partial differential 
eq~at ions .~  

Here we give just one example to provide a glimpse of the use of analytic functions; 
further examples may be found in the references cited. 

Consider a wall of thickness b extending from 0 to w in they direction, and from - co to + w  in 
the direction perpendicular to the x and y directions (see Fig. 12.3-1). The surfaces at x = + i b  

Temperature are held at temperature To, whereas the bottom of the wall at the surface y = 0 is maintained 
Distribution at temperature T,. Show that the imaginary part of the function4 
in a Wall 

SOLUTION 

(sin m/b) - 1 
(sin m/b) + 1 

gives the steady temperature distribution Wx, y) = (T - To)/(Tl - To). 

The imaginary part of w(z) in Eq. 12.3-5 is 

~ ( x ,  y) = , arctan (E;;!) 
in which the arctangent is in the range from 0 to :. When x = +fb, Eq. 12.3-6 gives O = 0, and 
when y = 0, it gives O = ( 2 / d  arctan = 1. 

Fig. 12.3-1. Steady two-dimensional temper- 
T = T 1 o r O = l  ature distribution in a wall. 

I. N. Sneddon, Elements of Partial Differential Equations, Dover, New York (1996), Chapter 4. 
R. V. Churchill, Introduction to Complex Variables and Applications, McGraw-Hill, New York (1948), 

Chapter IX. See also C. R. Wylie and L. C. Barrett, Advanced Engineering Mathematics, McGraw-Hill, New 
York, 6th Edition (1995), Chapter 20. 
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From Eq. 12.3-6 the heat flux through the base of the wall may be obtained: 

812.4 BOUNDARY LAYER THEORY FOR 
NONISOTHERMAL FLOW112f3 

In 54.4 the use of boundary layer approximations for steady, laminar flow of incom- 
pressible fluids at constant temperature was discussed. We saw that, in the neighbor- 
hood of a solid surface, the equations of continuity and motion could be simplified, and 
that these equations may be solved to get "exact boundary layer solutions" and that an 
integrated form of these equations (the von KBrmdn momentum balance) enables one to 
get "approximate boundary layer solutions." In this section we extend the previous de- 
velopment by including the boundary layer equation for energy transport, so that the 
temperature profiles near solid surfaces can be obtained. 

As in 54.4 we consider the steady two-dimensional flow around a submerged object 
such as that shown in Fig. 4.4-1. In the vicinity of the solid surface the equations of 
change may be written (omitting the bars over p and P )  as: 

Continuity 

Motion 

Energy 

dv, avy --+--TO 
dx dy 

Here p, p, k, and 4 are regarded as constants, and p(dv,/dy)' is the viscous heating ef- 
fect, which is henceforth disregarded. Solutions of these equations are asymptotically ac- 
curate for small mpmentum diffusivity v = p/p in Eq. 12.4-2, and for small thermal 
diffusivity a = k/pCp in Eq. 12.4-3. 

Equation 12.4-1 is the same as Eq. 4.4-1. Equation 12.4-2 differs from Eq. 4.4-2 be- 
cause of the inclusion of the buoyant force term (see 511.3), which can be significant even 
when fractional changes in density are small. Equation 12.4-3 is obtained from Eq. 11.2-9 
by neglecting the heat conduction in the x direction. More complete forms of the bound- 
ary layer equations may be found elsewhere.*," 

The usual boundary conditions for Eqs. 12.4-1 and 2 are that v, = v, = 0 at the solid 
surface, and that the velocity merges into the potential flow at the outer edge of the veloc- 
ity boundary layer, so that v, + v,(x). For Eq. 12.4-3 the temperature T is specified to be To 
at the solid surface and T ,  at the outer edge of the thermal bounda y layer. That is, the ve- 
locity and temperature are different from v,(x) and T ,  only in thin layers near the solid 
surface. However, the velocity and temperature boundary layers will be of different 
thicknesses corresponding to the relative ease of the diffusion of momentum and heat. 
Since Pr = v /a ,  for Pr > 1 the temperature boundary layer usually lies inside the veloc- 

H.  Schlichting, Boundary-Layer Theory, 7th edition, McGraw-Hill, New York (1979), Chapter 12. 
IS. Stewartson, The Theory of Laminar Boundary Layers in Compressible Fluids, Oxford University 

Press (1964). 
E. R. G. Eckert and R. M. Drake, Jr., Analysis of Heat and Mass Transfer, McGraw-Hill, New York, 

(1972), Chapters 6 and 7. 
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EXAMPLE 12.4-1 

Heat Transfer in 
Laminar Forced 
Convection along a 
Heated Flat Plate 
(von Karmhn Integral 
Method) 

ity boundary layer, whereas for Pr < 1 the relative thicknesses are just reversed (keep in 
mind that for gases Pr is about $, whereas for ordinary liquids Pr > 1 and for liquid met- 
als Pr << 1). 

In 94.4 we showed that the boundary layer equation of motion could be integrated 
formally from y = 0 to y = m, if use is made of the equation of continuity. In a similar 
fashion the integration of Eqs. 12.4-1 to 3 can be performed to give 

Energy 

Equations 12.4-4 and 5 are the uon U r m h  momentum and energy balances, valid for 
forced-convection and free-convection systems. The no-slip condition vy = 0 at y = 0 has 
been used here, as in Eq. 4.4-4; nonzero velocities at y = 0 occur in mass transfer systems 
and will be considered in Chapter 20. 

As mentioned in 94.4, there are two approaches for solving boundary layer prob- 
lems: analytical or numerical solutions of Equations 12.4-1 to 3 are called "exact bound- 
ary layer solutions," whereas solutions obtained from Eqs. 12.4-4 and 5, with reasonable 
guesses for the velocity and temperature profiles, are called "approximate boundary 
layer solutions." Often considerable physical insight can be obtained by the second 
method, and with relatively little effort. Example 12.4-1 illustrates this method. 

Extensive use has been made of the boundary layer equations to establish correla- 
tions of momentum- and heat-transfer rates, as we shall see in Chapter 14. Although in 
this section we do not treat free convection, in Chapter 14 many useful results are given 
along with the appropriate literature citations. 

Obtain the temperature profiles near a flat plate, along which a Newtonian fluid is flowing, as 
shown in Fig. 12.4-1. The wetted surface of the plate is maintained at temperature To and the 
temperature of the approaching fluid is T,. 

SOLUTION 

In order to use the von KhrmAn balances we first postulate reasonable forms for the velocity 
and temperature profiles. The following polynomial form gives 0 at the wall and 1 at the 
outer limit of the boundary layer, with a slope of zero at the outer limit: 

That is, we assume that the dimensionless velocity and temperature profiles have the same 
form within their respective boundary layers. We further assume that the boundary layer 
thicknesses 6(x) and 6,(x) have a constant ratio, so that A = 6,(x)/6(x) is independent of x. 
Two possibilities have to be considered: A 5 1 and A 2 1. We consider here A 5 1 and rele- 
gate the other case to Problem 12D.8. 
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Fluid approaches 
with velocity v, - 

Fig. 12.4-1. Boundary layer development for the flow 
along a heated flat plate, showing the thermal boundary 
layer for A = 6 T ( ~ ) / 6 ( ~ )  < 1. The surface of the plate is 
at temperature To, and the approaching fluid is at T,. 

The use of Eqs. 12.4-4 and 5 is now straightforward but tedious. Substitution of Eqs. 
12.4-6 through 9 into the integrals gives (with v, set equal to v, here) 

In these integrals r] = y/6(x) and vT = y/aT(x) = y/AS(x). Next, substitution of these integrals 
into Eqs. 12.4-4 and 5 gives differential equations for the boundary layer thicknesses. These 
first-order separable differential equations are easily integrated, and we get 

6 ~ ( x )  = J,, 
The boundary layer thicknesses are now determined, except for the evaluation of A in Eq. 
12.4-13. The ratio of Eq. 12.4-12 to Eq. 12.4-13 gives an equation for A as a function of the 
Prandtl number: 

When this sixth-order algebraic equation is solved for A as a function of Pr, it is found that the 
solution may be curve-fitted by the simple relation4 

within about 5%. 

H. Schlichting, Boundary-Layer Theory, 7th edition, McGraw-Hill, New York (19791, pp. 292-308. 
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Table 12.4-1 Comparison of Boundary Layer Heat Transfer Calculations for Flow along a 
Flat Plate 

Value of numerical coefficient in 
expression for heat transfer rate 

Method in Eq. 12.4-17 

Von Kiirmiin method with profiles of Eqs. 12.4-9 to 12 = 0.685 
Exact solution of Eqs. 12.4-1 to 3 by Pohlhausen 0.657 at Pr = 0.6 

0.664 at Pr = 1.0 
0.670 at Pr = 2.0 

Curve fit of exact calculations (Pohlhausen) 0.664 
Asymptotic solution of Eqs. 12.4-1 to 3 for Pr >> 1 0.677 

The temperature profile is then finally given (for A 5 1) by 

in which A = ~ r - " ' ~  and S(x) = d(1260/37)(vx/v,). The assumption of laminar flow made 
here is valid for x < xCyitr where x,,,,v,p/p is usually greater than lo5. 

Finally, the rate of heat loss from both sides of a heated plate of width Wand length L 
can be obtained from Eqs. 12.4-5,11,12,15, and 16: 

= 2~p$v,(T~ - T,)(%A - &A' + &~A~)&(L) 

= m(2 NL)(T0 - T,) (12.4-17) 

in which ReL = L v , p / p  Thus the boundary layer approach allows one to obtain the depen- 
dence of the rate of heat loss Q on the dimensions of the plate, the flow conditions, and the 
thermal properties of the fluid. 

Eq. 12.4-17 is in good agreement with more detailed solutions based on Eqs. 12.4-1 to 3. The 
asymptotic solution for Q at large Prandtl numbers, given in the next example? has the same 
form except that the numerical coefficient = 0.685 is replaced by 0.677. The exact so- 
lution for Q at finite Prandtl numbers, obtained numerically? has the same form except that 
the coefficient is replaced by a slowly varying function C(Pr), shown in Table 12.4-1. The 
value C = 0.664 is exact at Pr = 1 and good within 52% for Pr > 0.6. 

The proportionality of Q to ~ r " ~ ,  found here, is asymptotically correct in the limit as 
Pr + w, not only for the flat plate but also for all geometries that permit a laminar, nonsepa- 
rating boundary layer, as illustrated in the next example. Deviations from Q - Pr'I3 occur at 
finite Prandtl numbers for flow along a flat plate and even more so for flows near other- 
shaped objects and near rotating surfaces. These deviations arise from nonlinearity of the ve- 
locity profiles within the thermal boundary layer. Asymptotic expansions for the Pr 
dependence of Q have been presented by Merk and  other^.^ 

M. J. Lighthill, Proc. Roy. Soc., A202,359-377 (1950). 
E. Pohlhausen, Zeits. f. angew. Math. u. Mech., 1,115-121 (1921). 
H. J. Merk, J. Fluid Mech., 5,460480 (1959). 
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EXAMPLE 12.4-2 

Heat Transfer in 
Laminar Forced 
Convection along a 
Heated Flat Plate 
(Asymptotic Solution 
for Large Prandtl 
Nu~nbers)~ 

In the preceding example we used the von KArmAn boundary layer integral expressions. Now 
we repeat the same problem but obtain an exact solution of the boundary layer equations in 
the limit that the Prandtl number is large-that is, for liquids (see 59.1). In this limit, the outer 
edge of the thermal boundary layer is well inside the velocity boundary layer. Therefore it can 
safely be assumed that v, varies linearly with y throughout the entire thermal boundary layer. 

SOLUTION 

By combining the boundary layer equations of continuity and energy (Eqs. 12.4-1 and 3) we get 

,. 
in which a = k / p C p .  The leading term of a Taylor expansion for the velocity distribution near 
the wall is 

in which the constant c = 0 . 4 6 9 6 / ~  = 0.332 can be inferred from Eq. 4.4-30. 
Substitution of this velocity expression into Eq. 12.4-18 gives 

This has to be solved with the boundary conditions that T = To at y = 0, and T = T ,  at x = 0. 
This equation can be solved by the method of combination of variables. The choice of the 

dimensionless variables 

makes it possible to rewrite Eq. 12.4-20 (see Eq. C.l-9) as 

Integration of this equation with the boundary conditions that Il = 0 at 7 = 0 and II + 1 as 

for the dimensionless temperature distribution. See 5C.4 for a discussion of the gamma func- 
tion Un) .  

For the rate of heat loss from both sides of a heated plate of width Wand length L, we get 

= (2 WL)(To - T,) - --- - pr'13 ~ e ; "  (t I;:, (;r31 
which is the same result as that in Eq. 12.4-17 aside from a numerical constant. The quantity 
within brackets equals 0.677, the asymptotic value that appears in Table 12.4-1. 
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Fluid approaching with temperature T, and velocity v, + + + + + + + + + + + + + + + + + +  
Stagnation locus 

Approximate limit of 
thermal boundary layer x 

/ 
/ 

/ 
/ 

/ 

. Separated flow ;egion 

Fig. 12.4-2. Heat transfer from a three-dimensional surface. 
The asymptotic analysis applies upstream of the separated and 
turbulent flow regions. These regions are illustrated for cylin- 
ders in Fig. 3.7-2. 

The technique introduced in the preceding example has been extended to flow around objects 
of arbitrary shape. Consider the steady flow of a fluid over a stationary object as shown in 

Forced Convection Fig. 12.4-2. The fluid approaches at a uniform temperature T,, and the solid surface is main- 
in Steady Three- tained at a uniform temperature To. The temperature distribution and heat transfer rate are to 
Dimensional Flow be found for the region of laminar flow, which extends downstream from the stagnation locus 
at  High Prandtl to the place where turbulence or flow separation begins. The velocity profiles are considered 
~ u m b e r s " ~  to be known. 

The thermal boundary layer is considered to be very thin. This implies that the isotherms 
nearly coincide with the solid surface, so that the heat flux q is nearly normal to the surface. 
It also implies that the complete velocity profiles are not needed here. We need to know the 
state of the motion only near the solid surface. 

To capitalize on these simplifications, we choose the coordinates in a special way (see 
Fig. 12.4-2). We define y as the distance from the surface into the fluid just as in Fig. 12.4-1. 
We further define x and z as the coordinates of the nearest point on the surface, measured 
parallel and perpendicular to the tangential motion next to the surface. We express elements 
of arc in the x and z directions as h$x and hdz, where h, and h, are position-dependent "scale 
factors" discussed in 5A.7. Since we are interested here in the region of small y, the scale fac- 
tors are treated as functions only of x and z evaluated at y = 0, with h, = 1. 

With this choice of coordinates, the velocity components for small y become 

Here P(x, z) is the local value of dv,/dy on the surface; it is positive in the nonseparated re- 
gion, but may vanish at points of stagnation or separation. These equations are obtained by 
writing Taylor series for v, and v,, retaining terms through the first degree in y, and then inte- 

W. E. Stewart, AlChE Journal, 9,528-535 (1963). 
For related two-dimensional analyses, see M. J. Lighthill, Proc. Roy. Soc., A202,359-377 (1950); 

V.  G. Levich, Physico-Chemical Hydrodynamics, Chapter 2, Prentice-Hall, Englewood Cliffs, N.J. (1962); 
A. Acrivos, Physics of Fluids, 3,657-658 (1960). 
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SOLUTION 

grating the continuity equation with the boundary condition vy = 0 at the surface to obtain v,. 
These results are valid for Newtonian or non-Newtonian flow with temperature-independent 
density and visc~sity. '~ 

By a procedure analogous to that used in Example 12.4-2, one obtains a result similar to 
that given in Eq. 12.4-24. The only difference is that 7 is defined more generally as 77 = y/ST, 
where ST is the thermal boundary layer thickness given by 

and xl(z) is the upstream limit of the heat transfer region. From Eqs. 12.4-24 and 25 the local 
surface heat flux qo and the total heat flow for a heated region of the form x,(z) < x < x2(z), 
z, < z < 2, are 

This last result shows how Q depends on the fluid properties, the velocity profiles, and the 
geometry of the system. We see that Q is proportional to the temperature difference, to 

= ~ / ~ ~ ~ ' ~ e i / ~ ,  and to the of a mean velocity gradient over the surface. 
Show how the above results can be used to obtain the heat transfer rate from a heated 

sphere of radius R with a viscous fluid streaming past it in creeping flow" (see Example 
4.2-1 and Fig. 2.6-1). 

The boundary-layer coordinates x, y, and z may be identified here with .rr - 8, r - R, and 4 of 
Fig. 2.6-1. Then stagnation occurs at 8 = n-, and separation occurs at 8 = 0. The scale factors 
are h, = R, and h, = R sin 0. The interfacial velocity gradient p is 

Insertion of the above into Eqs. 12.4-29 and 31 gives the following results for forced convec- 
tion heat transfer from an isothermal sphere of diameter D: 

(T - 8 + sin 28)1/3 
= ( z ) 1 / 3 ~ ( ~ e  sin 8 

31'3k(~o - T,) /02T (- j: 
Q = zff1/3r(;) 

zv, sin 0 R2 sin 0 d8 1213 d6 

The constant in brackets is 0.991. 
The behavior predicted by Eq. 12.4-33 is sketched in Fig. 12.4-3. The boundary layer 

thickness increases steadily from a small value at the stagnation point to an infinite value at 
separation, where the boundary layer becomes a wake extending downstream. The analysis 
here is most accurate for the forward part of the sphere, where 6, is small; fortunately, that is 

Temperature-dependent properties have been included by Acrivos, loc. cit. 
The solution to this problem was first obtained by V. G. Levich, loc. cit. It has been extended to 

somewhat higher Reynolds numbers by A. Acrivos and T. D. Taylor, Phys. Fluids, 5,387-394 (1962). 
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Fig. 12.4-3. Forced-convection heat transfer from a 
sphere in creeping flow. The shaded region shows 
the thermal boundary layer (defined by II, 5 0.99 
or y 5 1.56,) for P6 = RePr .= 200. 

t t t t t t t t t  
Fluid approaching with velocity v, 

and temperature T,  

also the region where most of the heat transfer occurs. The result for Q is good within about 
5% for RePr > 100; this limits its use primarily to fluids with Pr > 100, since creeping flow is 
obtained only at Re of the order of 1 or less.12 

Results of the same form as Eq. 12.4-34 are obtained for creeping flow in other geome- 
tries, including packed beds."13 

It should be emphasized that the asymptotic solutions are particularly important: they 
are relatively easy to obtain, and for many applications they are sufficiently accurate. We will 
see in Chapter 14 that some of the standard heat transfer correlations are based on asymptotic 
solutions of the type discussed here. 

QUESTIONS FOR DISCUSSION 

How does Eq. 12.1-2 have to be modified if there is a heat source within the solid? 
Show how Eq. 12.1-10 is obtained from Eq. 12.1-8. What is the viscous flow analog of this 
equation? 
What kinds of heat conduction problems can be solved by Laplace transform and which can- 
not? 
In Example 12.1-3 the heat flux and the temperature both satisfy the "heat conduction equa- 
tion." Is this always true? 
Draw a carefully labeled sketch of the results in Eqs. 12.1-38 and 40 showing what is meant by 
the statement that the "temperature oscillations lag behind the heat flux oscillations by .rr/4." 
Verify that Eq. 12.1-40 satisfies the boundary conditions. Does it have to satisfy an initial con- 
dition? If so, what is it? 
In Ex. 12.2-1, would the method of separation of variables work if applied directly to the func- 
tion 0 (5 ,0  rather than to ad(& c)? 
In Example 12.2-2, how does the wall temperature depend on the downstream coordinate z? 
By means of a carefully labeled diagram, show what is meant by the two cases A 5 1 and A 2 

1 in 512.4. Which case applies to dilute polyatomic gases? Organic liquids? Molten metals? 
Summarize the situations in which the four mathematical methods in 512.1 are applicable. 

'' A review of analyses for a wide range of P6 = RePr is given by S. K. Friedlander, AlChE Journal, 7, 
347-348 (1961). 

l3 J. P. Smensen and W. E. Stewart, Chem. Eng. Sci., 29,833-837 (1974). 
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PROBLEMS 12A.1. Unsteady-state heat conduction in an iron sphere. An iron sphere of 1-in. diameter has the 
following physical properties: k = 30 Btu/hr ft F, cp = 0.12 Btu/lb, F. and p = 436 lb,/ft3. 
Initially the sphere is at a temperature of 70°F. 
(a) What is the thermal diffusivity of the sphere? 
(b) If the sphere is suddenly plunged into a large body of fluid of temperature 270°F, how 
much time is needed for the center of the sphere to attain a temperature of 128"F? 
(c) A sphere of the same size and same initial temperature, but made of another material, re- 
quires twice as long for its center to reach 128°F. What is its thermal diffusivity? 
(d) The chart used in the solution of (b) and (c) was prepared from the solution to a partial 
differential equation. What is that differential equation? 
Answers: (a) 0.574 ft2/hr; (b) 1.1 sec; (c) 0.287 fP/hr 

12A.2 Comparison of the two slab solutions for short times. What error is made by using Eq. 12.1-8 
(based on the semi-infinite slab) instead of Eq. 12.1-31 (based on the slab of finite thickness), 
when at/b2 = 0.01 and for a position 0.9 of the way from the midplane to the slab surface? 
Use the graphically presented solutions for making the comparison. 
Answer: 4% 

12A.3 Bonding with a thermosetting adhesive1 (Fig. 12A.3). It is desired to bond together two 
sheets of a solid material, each of thickness 0.77 cm. This is done by using a thin layer of thermo- 
setting material, which fuses and forms a good bond at 160°C. The two plates are inserted in a 
press, with both platens of the press maintained at a constant temperature of 220°C. How 
long will the sheets have to be held in the press, if they are initially at 20"C? The solid sheets 
have a thermal diffusivity of 4.2 X 10-%m2/s. 
Answer: 85 s 

124.4. Quenching of a steel billet. A cylindrical steel billet 1 ft in diameter and 3 ft long, initially at 
1000°F, is quenched in oil. Assume that the surface of the billet is at 200°F during the quench- 
ing process. The steel has the following properties, which may be assumed to be independent 
of the temperature: k = 25 Btu/hr . ft . F, p = 7.7 g/cm3, and C, = 0.12 cal/g. C. 

Estimate the temperature of the hottest point in the billet after five minutes of quenching. 
Neglect end effects; that is, make the calculation for a cylinder of the given diameter but of in- 
finite length. See Problem 12C.1 for the method for taking end effects into account. 
Answer: 750°F 

12A.5. Measurement of thermal diffusivity from amplitude of temperature oscillations. 
(a) zt is desired to use the results of Example 12.1-3 to measure the thermal diffusivity a = 

k/pC,  of a solid material. This may be done by measuring the amplitudes A, and A, at two 

Thermosetting adhesive 

I / Upper platen (heated) I 

I Lower platen (heated) Fig. 12A.3. Two sheets of solid material with a thin I layer of adhesive in between. 

' This problem is based on Example 10 of J. M. McKelvey, Chapter 2 of Processing of Thermoplasfic 
Materials (E.  C. Bernhardt, ed.), Reinhold, New York (1959), p. 93. 
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points at distances y, and y2 from the periodically heated surface. Show that the thermal dif- 
fusivity may then be estimated from the formula 

(b) Calculate the thermal diffusivity a when the sinusoidal surface heat flux has a frequency 
0.0030 cycles/s, if y2 - y, = 6.19 cm and the amplitude ratio A,/A2 is 6.05. 
Answer: a = 0.111 cm2/s 

12A.6. Forced convection from a sphere in creeping flow. A sphere of diameter D, whose surface is 
maintained at a temperature To, is located in a fluid stream approaching with a velocity v, and 
temperature T,. The flow around the sphere is in the "creeping flow" regimethat is, with the 
Reynolds number less than about 0.1. The heat loss from the sphere is described by Eq. 12.4-34. 
(a) Verify that the equation is dimensionally correct. 
(b) Estimate the rate of heat transfer, Q, for the flow around a sphere of diameter 1 mm. The 
fluid is an oil at T ,  = 50°C moving at a velocity 1.0 cm/sec with respect to the sphere, the sur- 
face of which is at a temperature of 100°C. The oil has the following properties: p = 0.9 g/cm3, e, = 0.45 cal/g. K, k = 3.0 X lop4 cal/s - cm K, and p = 150 cp. 

12B.1. Measurement of thermal diffusivity in an unsteady-state experiment. A solid slab, 1.90 cm 
thick, is brought to thermal equilibrium in a constant-temperature bath at 20.O"C. At a given 
instant (t = 0) the slab is clamped tightly between two thermostatted copper plates, the sur- 
faces of which are carefully maintained at 40.0°C, The midplane temperature of the slab is 
sensed as a function of time by means of a thermocouple. The experimental data are: 

t (sec) 0 120 240 360 480 600 
T (C) 20.0 24.4 30.5 34.2 36.5 37.8 

Determine the perma1 diffusivity and thermal conductivity of the slab, given that p = 

1.50 g/cm3 and Cp = 0.365 cal/g. C. 
Answer: a = 1.50 x cm2/s; k = 8.2 X cal/s. cm C or 0.20 Btu/hr ft F 

Two-dimensional forced convection with a line heat source. A fluid at temperature T, 
flows in the x direction across a long, infinitesimally thin wire, which is heated electrically at 
a rate Q/L (energy per unit time per unit length). The wire thus acts as a line heat source. It is 
assumed that the wire does not disturb the flow appreciably. The fluid properties (density, 
thermal conductivity, and heat capacity) are assumed constant and the flow is assumed uni- 
form. Furthermore, radiant heat transfer from the wire is neglected. 
(a) Simplify the energy equation to the appropriate form, by neglecting the heat conduction 
in the x direction with respect to the heat transport by convection. Verify that the following 
conditions on the temperature are reasonable: 

T +  T ,  as y + co for all x 

T = T, at x < 0 for ally 

(b) Postulate a solution of the form (for x > 0) 

Show by means of Eq. 12B.2-3 that f (x) = C1/6(x). Then insert Eq. 12B.2-4 into the energy 
equation and obtain 

(c) Set the quantity in brackets in Eq. 12B.2-5 equal to 2 (why?), and then solve to get S(x). 
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(d) Then solve the equation for g(77). 

(e) Finally, evaluate the constant C,, and thereby complete the derivation of the temperature 
distribution. 

12B.3. Heating of a wall (constant wall heat flux). A very thick solid wall is initially at the tempera- 
ture To. At time t = 0, a constant heat flux qo is applied to one surface of the wall (at y = O), 
and this heat flux is maintained. Find the time-dependent temperature profiles T(y, I) for 
small times. Since the wall is very thick it can be safely assumed that the two wall surfaces are 
an infinite distance apart in obtaining the temperature profiles. 
(a) Follow the procedure used in going from Eq. 12.1-33 to Eq. 12.1-35, and then write the ap- 
propriate boundary and initial conditions. Show that the analytical solution of the problem is 

(b) Verify that the solution is correct by substituting it into the one-dimensional heat conduc- 
tion equation for the temperature (see Eq. 12.1-33). Also show that the boundary and initial 
conditions are satisfied. 

12B.4. Heat transfer from a wall to a falling film (short contact time limitI2 (Fig. 12B.4). A cold liq- 
uid film flowing down a vertical solid wall, as shown in the figure, has a considerable cooling 
effect on the solid surface. Estimate the rate of heat transfer from the wall to the fluid for such 
short contact times that the fluid temperature changes appreciably only in the immediate 
vicinity of the wall. 
(a) Show that the velocity distribution in the falling film, given in 52.2, may be written as 
v, = vZ,,,,[2(y/6) - (y/6)2], in which v,,,, = pg13~/2~. Then show that in the vicinity of the 
wall the velocity is a linear function of y given by 

Downflowing 
liquid film 

enters at uniform 
temperature, To 

Outer edge of 
film is at y = 6 

Note that the fluid 
temperature is different 
from To only in the 
neighborhood of the 
wall, where v, is 
almost linear. 

Fig. 12B.4. Heat transfer to a film 
falling down a vertical wall. 

R. L. Pigford, Chemical Engineering Progress Symposium Series, 51, No. 17,79-92 (1955). Robert 
Lamar Pigford (1917-1988), who taught at both the University of Delaware and the University of 
California in Berkeley, researched many aspects of diffusion and mass transfer; he was the founding 
editor of Industrial and Engineering Chemisty Fundamentals. 
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(b) Show that the energy equation for this situation reduces to 

List all the simplifying assumptions needed to get this result. Combine the preceding two 
equations to obtain 

in which fi  = pk/p2?pgt3. 
(c) Show that for short contact times we may write as boundary conditions 

B.C. 1: 

B.C. 2: 

B.C. 3: 

T = T o  forz=O and y>O 

T = To for y = w and z finite 

T = T ,  fory=O and z > 0  

Note that the true boundary condition at y = S is replaced by a fictitious boundary condition 
at y = w .  This is possible because the heat is penetrating just a very short distance into the 
fluid. 

(d) Use the dimensionless variables W77) = (T - To)/(Tl - To) and 7 = y/m to rewrite 
the differential equation as (see Eq. C.l-9): 

Show that the boundary conditions are O = 0 for 77 = co and O = 1 at 7 = 0. 
(el In Eq. 12B.4-7, set dO/dq = p and obtain an equation for p(rl). Solve that equation to get 
d@/dq = p(7) = C1 exp (FT3). Show that a second integration and application of the bound- 
ary conditions give 

(f) Show that the average heat flux to the fluid is 

where use is made of the Leibniz formula in sC.3. 

Temperature in a slab with heat production. The slab of thermal conductivity k in Example 
12.1-2 is initially at a temperature To. For time t > 0 there is a uniform volume production of 
heat So within the slab. 
(a) Obtain an expression for the dimensionless temperature k(T - To)/Sob2 as a function of 
the dimensionless coordinate 77 = y/b and the dimensionless time by looking up the solution 
in the book by Carslaw and Jaeger. 
(b) What is the maximum temperature reached at the center of the slab? 
(c) How much time elapses before 90% of the temperature rise occurs? 
Answer: (c) t = b2/a 

Forced convection in slow flow across a cylinder (Fig. 12B.6). A long cylinder of radius R is 
suspended in an infinite fluid of constant properties p, p, 5, and k. The fluid approaches with 
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Fluid approaches 
with velocity v, 
and temperature T ,  

urface of cylinder at 
uniform temperature To Fig. 12B.6. Heat transfer from a long 

cylinder of radius R. 

temperature T ,  and velocity v,. The cylindrical surface is maintained at temperature To. For 
this system the velocity distribution has been determined by Lamb3 in the limit of Re << 1. 
His result for the region close to the cylinder is 

in which 1(1 is the first polar-coordinate stream function in Table 4.2-1. The dimensionless 
quantity S is given by S = $ - y + ln(8/Re), where y = 0.5772. is "Euler's constant," and 
Re = Dv,p/p. 
(a) For this system, determine the interfacial velocity gradient P defined in Example 12.4-3. 
(b) Determine the rate of heat loss Q from a length L of the cylinder using the method of Ex- 
ample 12.4-3. Note that 

where B(m, n) = r(m)r(n)/r(m + n)  is the "beta function." 
(c) Determine S,/R at 0 = 0, in-, and n-. 

2v, sin 0 
Answers: (a) /3 = 

RS 

T J ( $ ) ( Y ) " ~  (Evaluate the constant C) 

1 /3  
(,-)!T= (s) f(8);f = ($)1/3,1.1981,m 

R RePr 

12B.7. Timetable for roasting turkey 
(a) A homogeneous solid body of arbitrary shape is initially at temperature To throughout. At 
t = 0 it is immersed in a fluid medium of temperature T,. Let L be a characteristic length in 
the solid. Show that dimensional analysis predicts that 

O = O(5' q, 5, T, and geometrical ratios) (12B.7-1) 

where O = (T - T,)/(T, - To), 6 = x/L, 7 = y/L, 5 = z / L ,  and T =  at/^'. Relate this result to 
the graphs given in 512.1. 

' H.  Lamb, Phil. Mag., (6) 21,112-110 (1911). For a survey of more detailed analyses, see 
L. Rosenhead (ed.), Laminar Boundary Layers, Oxford University Press, London (19631, Chapter 4. 
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(b) A typical timetable for roasting turkey at 350°F is4 

Mass of turkey Time required per unit mass 
(lb,) (min/lb,) 

Compare this empirically determined cooking schedule with the results of part (a), for geo- 
metrically similar turkeys at an initial temperature To, cooked with a given surface tempera- 
ture T, to the same dimensionless temperature distribution @ = @(<, q, [). 

Use of asymptotic boundary layer solution. Use the results of Ex. 12.4-2 to obtain 6, and q, 
for the system in Problem 12D.4. By comparing ST with D, estimate the range of applicability 
of the solution obtained in Problem 12D.4. 

Non-Newtonian heat transfer with constant wall heat flux (asymptotic solution for small axial 
distances). Rework Example 12.2-2 for a fluid whose non-Newtonian behavior is described ade 
quately by the power law model. Show that the solution given in Eq. 12.2-2 may be taken over 
for the power law model simply by an appropriate modification in the definition of v,. 

Product solutions for unsteady heat conduction in solids. 
(a) In Example 12.1-2 the unsteady state heat conduction equation is solved for a slab of 
thickness 2b. Show that the solution to Eq. 12.1-2 for the analogous problem for a rectangular 
block of finite dimensions 2a, 2b, and 2c may be written as the product of the solutions for 
three slabs of corresponding dimensions: 

in which @(y/b, at/b2) is the right side of Eq. 12.1-31. 
(b) Prove a similar result for cylinders of finite length; then rework Problem 12A.4 without 
the assumption that the cylinder is infinitely long. 

Heating of a semi-infinite slab with variable thermal conductivity. Rework Example 12.1-1 
for a solid whose thermal conductivity varies with temperature as follows: 

in which ko is the thermal conductivity at temperature To, and P is a constant. Use the follow- 
ing approximate procedure: 
(a) Let @ = (T - T,)/(T, - To) and r ]  = y/S(t), where S(t) is a boundary layer thickness that 
changes with time. Then assume that 

in which the function @(q) gives the shapes of the "similar" profiles. This is tantamount to as- 
suming that the temperature profiles have the same shape for all values of P, which, of 
course, is not really true. 
(b) Substitute the above approximate profiles into the heat conduction equation and obtain 
the following differential equation for the boundary layer thickness: 

Woman's Home Companion Cook Book, Garden City Publishing Co., (19461, courtesy of Jean Stewart. 
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in which a, = ko/pC, and 

Then solve for the function S( t ) .  
(c) Now let @(v) = 1 - z7) + iq3. Why is this a felicitous choice? Then find the time-depen- 
dent temperature distribution T(y, t) as well as the heat flux at y = 0. 

12C.3. Heat conduction with phase change (the Neumann-Stefan problem) (Fig. 12C.3)5. A liquid, 
contained in a long cylinder, is initially at temperature T,. For time t 2 0, the bottom of the 
container is maintained at a temperature To, which is below the melting point T,. We want to 
estimate the movement of the solid-liquid interface, Z(t), during the freezing process. 

A 

For the sake of simplicity, we assume here that the physicalgroperties p, k, and C, are 
constants and the same in both the soljd zpd liquid phases. Let AHf be the heat of fusion per 
gram, and use the abbreviation A = AHf/C,(T, - To). 
(a) Write the equation for heat conduction for the liquid ( L )  and solid (S )  regions; state the 
boundary and initial conditions. 
(b) Assume solutions of the form: 

(c) Use the boundary condition at z = 0 to show that C, = 0, and the condition at z = to 
show that C3 = 1 - C4. Then use the fact that Ts = TL = T, at z = Z(t) to conclude that Z(t) = 
A-, where h is some (as yet undetermined) constant. Then get Cg and C4 in terms of A. Use 
the remaining boundary condition to get A in terms of A and 0, = (T, - To)/(T, - To): 

Liquid 

(Initially at 
temperature 

Tl 
throughout) 

0, 1 - 0, 
6 h h  exph2 = - - 

erf A 1 - erf A 

Liquid 

t=O V t>O 
Temperature 

To at z = 0 

Liquid 
T L k ,  t) 

Temperature 
=?,I 

..- interfa& 
located at 

Z(t) 

Moving 

Fig. 12C.3. Heat conduction 
with solidification. 

For literature references and related problems, see H. S. Carslaw and J. C. Jaeger, Conduction of 
Heat in Solids, 2nd edition, Oxford University Press (1959), Chapter XI; on pp. 283-286 the problem 
considered here is worked out for the situation that the physical properties of the liquid and solid phases 
are different. See also S. G. Bankoff, Advances in Chemical Engineering, Vol. 5, Academic Press, New York 
(1964), pp. 75-150; J. Crank, Free and Moving Bounda y Problems, Oxford University Press (1984); J. M. Hill, 
One-Dimensional Stefan Problems, Longmans (1987). 
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What is the final expression for Z(t)? (Note: In this problem it has been assumed that a phase 
change occurs instantaneously and that no supercooling of the liquid phase occurs. It turns 
out that in the freezing of many liquids, this assumption is untenable. That is, to describe the 
solidification process correctly, one has to take into account the kinetics of the crystallization 
pro~ess.~) 

12C.4. Viscous heating in oscillatory flow.7 Viscous heating can be a disturbing factor in viscosity 
measurements. Here we see how viscous heating can affect the measurement of viscosity in 
an oscillating-plate system. 

A Newtonian fluid is located in the region between two parallel plates separated by a 
distance b. Both plates are maintained at a temperature To. The lower plate (at z = 0) is made 
to oscillate sinusoidally in the z direction with a velocity amplitude vo and a circular fre- 
quency o. Estimate the temperature rise resulting from viscous heating. Consider only the 
high-frequency limit. 
(a) Show that the velocity distribution is given by 

sinh a(l - 6) cos a(l - 6) sinh a cos a 
cos ot  + sin a(l - 6) cosh a(l - 6) sin a cosh a 

- sin a(l - 6) cosh a(l - 6) sinh a cos a 
sin ot  

v,(x, t )  - +sinh a(1 - 6) cos a(1 - 0 sin a cosh a 
-- (12C.4-1) 

Vo sinh2 a cos a + cosh2 a sin a 

where a = dPwb2/2p and 6 = x /  b. 
(b) Next calculate the dissipation function a, for the velocity profile in Eq. 12C.4-1. Then ob- 
tain a time-averaged dissipation function &,, by averaging over one cycle. Use the formulas 

-- 

cos2 wt = sin2 wt = $ and sin of cos wt = 0 (12C.4-2) 

which may be verified. Then simplify the result for high frequencies (i.e., for large values of a) 
to obtain 

(c) Next take a time average of the heat conduction equation to obtain 

in which is the temperature averaged over one cycle. Solve this to get 

This shows how the temperature in the slit depends on position. From this function, the max- 
imum temperature rise can be calculated. For reasonably high frequencies, T - & = pv;/4k. 

12C.5. Solar heat penetration. Many desert animals protect themselves from excessive diurnal tem- 
perature fluctuations by burrowing sufficiently far underground that they can maintain 

H. Janeschitz-Kriegl, Plastics and Rubber Processing and Applications, 4,145-158 (1984); 
H. Janeschitz-Kriegl, in One-Hundred Years of Chemical Engineering (N. A. Peppas, ed.), Kluwer Academic 
Publishers, Dordrecht (Netherlands) (1989), pp. 111-124; H. Janeschitz-Kriegl, E. Ratajski, and G. Eder, 
Ind. Eng. Chem. Res., 34,3481-3487 (1995); G. Astarita and J. M. Kenny, Chem. Eng. Comm., 53,6944 
(1 987). 

R. B. Bird, Chem. Eng. Prog. Symposium Series, Vol. 61, No. 58 (1965), pp. 13-14; see also F. Ding, 
A. J. Giacomin, R. B. Bird, and C-B Kweon, J. Non-Newtonian Fluid Mech., 86,359-374 (1999). 
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themselves at a reasonably steady temperature. Let the temperature in the ground be T(y, t), 
where y is the depth below the surface of the earth and t is the time, measured from the time 
of maximum temperature To. Further, let the temperature far beneath the surface be T,, and 
let the surface temperature be given by 

T(0, t) - T, = 0 for t < 0 

T(0, t) - T, = (To - T,) cos o t  for t 2 0 (12C.5-1) 

Here o = 2n-/t,,,, in which tp,, is the time for one full cycle of the oscillating tempera ture  
namely, 24 hours. Then it can be shown that the temperature at any depth is given by 

This equation is the heat conduction analog of Eq. 4D.1-1, which describes the response of the 
velocity profiles near an oscillating plate. The first term describes the "periodic steady state" 
and the second the "transient" behayior. Assume the following properties for the soil:' p = 

1515 kg/m" k = 0.027 W/m K, and C, = 800 J/kg. K. 
(a) Assume that the heating of the earth's surface is exactly sinusoidal, and find the ampli- 
tude of the temperature variation beneath the surface at a distance y. To do this, use only the 
periodic steady state term in Eq. 12C.5-2. Show that at a depth of 10 cm, this amplitude has 
the value of 0.0172. 
(b) Discuss the importance of the transient term in Eq. 12C.5-2. Estimate the size of this con- 
tribution. 
(c) Next consider an arbitrary formal expression for the daily surface temperature, given as a 
Fourier series of the form 

T(0, t) - T, " 
= (an cos not + b, sin not) 

To - Tm n = O  

How many terms in this series are used to solve part (a)? 

12C.6. Heat transfer in a falling non-Newtonian film. Repeat Problem 12B.4 for a polymeric fluid 
that is reasonably well described by the power law model of Eq. 8.3-3. 

12D.1. Unsteady-state heating of a slab (Laplace transform method). 
(a) Re-solve the problem in Example 12.1-2 by using the Laplace transform, and obtain the 
result in Eq. 12.1-31. 
(b) Note that the series in Eq. 12.1-31 does not converge rapidly at short times. By inverting 
the Laplace transform in a way different from that in (a), obtain a different series that is 
rapidly convergent for small times9 
(c) Show how the first term in the series in (b) is related to the "short contact time" solution 
of Example 12.1-1. 

12D.2. The Graetz-Nusselt problem (Table 12D.2). 
(a) A fluid (Newtonian or generalized Newtonian) is in laminar flow in a circular tube of ra- 
dius R. In the inlet region z < 0, the fluid temperature is uniform at T,. In the region z > 0, the 
wall temperature is maintained at To. Assume that all physical properties are constant and 

W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds., Handbook of Heat Transfer, 3rd edition, 
McGraw-Hill (1998), p. 2.68. 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959), pp. 308-310. 
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that viscous dissipation and axial heat conduction effects are negligible. Use the following di- 
mensionless variables: 

Show that the temperature profiles in this system are 

in which Xi and Pi are the eigenfunctions and eigenvalues obtained from the solution to the 
following equation: 

with boundary conditions X = finite at 5 = 0 and X = 0 at 5 = 1. Show further that 

(b) Solve Eq. 12D.2-3 for the Newtonian fluid by obtaining a power series solution for Xi. Cal- 
culate the lowest eigenvalue by solving an algebraic equation. Check your result against that 
given in Table 12D.2. 
(c) From the work involved in (b) in computing P: it can be inferred that the computation of 
the higher eigenvalues is quite tedious. For eigenvalues higher than the second or third the 
Wenzel-Kramers-Brillouin (WKB) method" can be used; the higher the eigenvalue, the more 
accurate the WKB method is. Read about this method, and verify that for the Newtonian fluid 

A similar formula has been derived for the power law model.'' 

Table 12D.2 Eigenvalues @; for the Graetz-Nusselt Problem for Newtonian Fluidsa 

By Stodola and 
i By direct calculationb By WKB m e t h o d V i a n e l l o  methodd 

1 3.67 3.56 3.661" 
2 22.30 22.22 - 

3 56.95 56.88 - 
4 107.6 107.55 - 

" The P? here correspond to in W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of 
Heat Transfer, McGraw-Hill (New York), Table 5.3 on p. 510. 

Values taken from K. Yamagata, Memoirs of the Faculty of Engineering, Kyfishfi University, 
Volume VIII, No. 6, Fukuoka, Japan (1940). 
' Computed from Eq. 12D.2-5. 

For the particular trial function in part (d) of the problem. 

lo J. Heading, An Introduction to Phase-Integral Methods, Wiley, New York (1962); J. R. Sellars, 
M. Tribus, and J. S. Klein, Trans. ASME, 78,44148 (1956). 

"I. R. Whiteman and W. B. Drake, Trans. ASME, 80,728-732 (1958). 
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(d) Obtain the lowest eigenvalue by the method of Stodola and Vianello. Use Eqs. 71a and 
72b on p. 203 of Hildebrand's book,'2 with 4 = 2(1 - E2) for Newtonian flow and XI = 1 - P 
as a simple, but suitable, trial function. Show that this leads quickly to the value P: = 3.661. 

12D.3. The Graetz-Nusselt problem (asymptotic solution for large 2). Note that, in the limit of very 
large z, only one term (i = 1) is needed in Eq. 12D.2-2. It is desired to use this result to com- 
pute the heat flux at the wall, qO, at large z and to express the result as 

qo = (a function of system and fluid properties) X (Tb - To) (12D.3-1) 

where Tb is the "bulk fluid temperature" defined in Eq. 10.8-33. 
(a) First verify that 

Here O is the same as in Problem 12D.2, and Ob = (T!, - To)/(Tl - To). 
(b) Show that for large z, Eq. 12D.3-2 and Eq. 12D.2-2 both give 

Hence for large z, all one needs to know is the first eigenvalue; the eigenfunctions need not be 
calculated. This shows how useful the method of Stodola and Vianello12 is for computing the 
limiting value of a heat flux. 

12D.4. The Graetz-Nusselt problem (asymptotic solution for small 2) .  

(a) Apply the method of Example 12.2-2 to the solution of the problem discussed in Problem 
12D.2. Consider a Newtonian fluid and use the following dimensionless quantities: 

Show that the method of combination of variables gives 

in which q = ( A J c T ~ / ~ ~ ) ' / ~ .  
(b) Show that the wall flux is 

The quantity (Re Pr D/z) = (4/m-)(wtp/kz) appears frequently; the grouping Gz = (wi',/kz) is 
called the Graetz number. Compare this result with that in Eq. 12D.3-3, with regard to the de- 
pendence on the dimensionless groups. 
(c) How may the results be written so that they are valid for any generalized Newtonian 
model? 

12D.5. The Graetz problem for flow between parallel plates. Work through Problems 12D.2,3, and 
4 for flow between parallel plates (or flow in a thin rectangular duct). 

12D.6. The constant wall heat flux problem for parallel plates. Apply the methods used in §10.8, 
Example 12.2-1, and Ex. 12.2-2 to the flow between parallel plates. 

- - 

I2 F. B. Hildebrand, Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, N.J. (19631, 
55.5. 



406 Chapter 12 Temperature Distributions with More Than One Independent Variable 

12D.7. Asymptotic solution for small z for laminar tube flow with constant heat flux. Fill in the 
missing steps between Eq. 12.2-23 and Eq. 12.2-24. Insertion of the expression for I) into Eq. 
12.2-23 gives 

Why do we introduce the symbols X and F? Next, exchange the order of integration to get 

Then perform the integration over and obtain 

Then use the definitions T(a) = J," t"-'ecfdt and r(a, x )  = J," t"-'ectdt for the complete and in- 
complete gamma functions. 

12D.8. Forced conduction heat transfer from a flat plate (thermal boundary layer extends beyond 
the momentum boundary layer). Show that the result analogous to Eq. 12.4-14 for A > 1 isI3 

l3 H. Schlichting, Boundary-Layer Theory, 7th edition, McGraw-Hill, New York (19791, p. 306. 



Chapter 13 

Temperature Distributions 
in Turbulent Flow 

913.1 Time-smoothed equations of change for incompressible nonisothermal flow 

913.2 The time-smoothed temperature profile near a wall 

513.3 Empirical expressions for the turbulent heat Aux 

913.4~ Temperature distribution for turbulent flow in tubes 

913.5~ Temperature distribution for turbulent flow in jets 

g13.6' Fourier analysis of energy transport in tube flow at large Prandtl numbers 

In Chapters 10 to 12 we have shown how to obtain temperature distributions in solids 
and in fluids in laminar motion. The procedure has involved solving the equations of 
change with appropriate boundary and initial conditions. 

We now turn to the problem of finding temperature profiles in turbulent flow. This 
discussion is quite similar to that given in Chapter 5. We begin by time-smoothing the 
equations of change. In the time-smoothed energy equation there appears a turbulent 
heat flux q(t), which is expressed in terms of the correlation of velocity and temperature 
fluctuations. There are several rather useful empiricisms for ij't', which enable one to pre- 
dict time-smoothed temperature distributions in wall turbulence and in free turbulence. 
We use heat transfer in tube flow to illustrate the method. 

The most apparent influence of turbulence on heat transport is the enhanced trans- 
port perpendicular to the main flow. If heat is injected into a fluid flowing in laminar 
flow in the z direction, then the movement of heat in the x and y directions is solely by 
conduction and proceeds very slowly. On the other hand, if the flow is turbulent, the heat 
"spreads out" in the x and y directions extremely rapidly. This rapid dispersion of heat is 
a characteristic feature of turbulent flow. This mixing process is worked out in some de- 
tail here for flow in tubes and in circular jets. 

Although it has been conventional to study turbulent heat transport via the time- 
smoothed energy equation, it is also possible to analyze the heat flux at a wall by use of a 
Fourier transform technique without time-smoothing. This is set forth in the last section. 

513.1 TIME-SMOOTHED EQUATIONS OF CHANGE FOR 
INCOMPRESSIBLE NONISOTHERMAL FLOW 

In s5.2 we introduced the notions of time-smoothed quantities and turbulent fluctua- 
tions. In this chapter we shall be primarily concerned with the temperature profiles. We 
introduce the time-smoothed temperature T and temperature fluctuation T', and write 
analogously to Eq. 5.2-1 

T = T + T '  (13.1-1) 
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-- 

Clearly T' averages to zero so that = Of but quantities like v:T', viT', and will not 
be zero because of the "correlation" between the velocity and temperature fluctuations 
at any point. 

For a nonisothermal pure fluid we need three equations of change, and we want to 
discuss here their time-smoothed forms. The time-smoothed equations of continuity and 
motion for a fluid with constant density and viscosity were given in Eqs. 5.2-10 and 12, 
and need not be repeated here. For a fluid with constant p, p, $ and k, Eq. 11.2-5, when 
put in the d/dt  form by using Eq. 3.5-4, and with Newton's and Fourier's law included, 
becomes 

in which only a few sample terms in the viscous dissipation term -(T:VV) = p@, have 
been written (see Eq. B.7-1 for the complete expression). 

In Eq. 13.1-2 we replace T by T = T + T', v, by Ex + v:, and so on. Then the equation 
is time-smoothed to give 

Comparison of this equation with the preceding one shows that the time-smoothed 
equation has the same form as the original equation, except for the appearance of the 
terms indicated by dashed underlines, which are concerned with the turbulent fluctua- 
tions. We are thus led to the definition of the turbulent heat flux q"' with components 

- A -  A -  A -  

(t) - C v ' ~ f  ( t )  - C v ' ~ f  (t) - C v ' ~ '  qx - P  p I %J - P  P Y q z  - P  p z  (13.1-4) 

and the turbulent energy dissipation function 8:): 

The similarity between the components of q") in Eq. 13.1-4 and those of ?"' in Eq. 5.2-8 
should be noted. In Eq. 13.1-5, v,', vi, and vi are synonymous with v:, v;, and vi, and x,, 
x2, and x, have the same meaning as x, y, and z. 

To summarize, we list all three time-smoothed equations of change for turbulent 
flows of pure fluids with constant p, p, 5 and k in their D/Dt form (the first two were 
given in Eqs. 5.2-10 and 12): 

Continuity (V V) = 0 (13.1-6) 

Motion DV p - = -vp - [V (5'"' + ?"')I + pg 
Dt 

(13.1-7) 

Energy 
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in which it is understood that D/Dt = d / d t  + ?. V. Here q'"' = - k ~ ? ,  and @" is the vis- 
cous dissipation function of Eq. B.7-1, but with all the vi replaced by 6. 

In discussing turbulent heat flow problems, it has been customary to drop the vis- 
cous dissipation terms. Then, one sets up a turbulent heat transfer problem as for lami- 
nar flow, except that .r and q are replaced by ?'") + l@' and q'"' + q(", respectively, and 
time-smoothed p, 7, and T are used in the remaining terms. 

913.2 THE TIME-SMOOTHED TEMPERATURE 
PROFILE NEAR A WALL' 

Before giving empiricisms for q(" in the next section, we present a short discussion of 
some results that do not depend on any empiricism. 

We consider the turbulent flow along a flat wall as shown in Fig. 13.2-1, and we in- 
quire as to the temperature in the inertial sublayer. We pattern the development after 
that for Eq. 5.3-1. We let the heat flux into the fluid at y = 0 be qo = G(y=O and we postulate 
that the heat flux in the inertial sublayer will not be very different from that at the wall. 

We seek to relate q, to the time-smoothed temperature gradient in the inertial sub- 
layer. Because transport in this region is dominated by turbulent convection, the viscos- 
ity p and the thermal conductivity k will not play an im orta$ role. Therefore the only 
parameters on which dT/dy can depend are qo, v, = * %/p ,  p, C,, and y. We must further 
use the fact that the linearity of the energy equation implies that dT/dy must be propor- 
tional to qo. The only combination that satisfies these requirements is 

in which K is the dimensionless constant in Eq. 5.3-1, and P is an additional constant 
(which turns out1 to be the turbulent Prandtl number ~ r " '  = ~ ' ~ ) / c u ( ' ) ) .  

When Eq. 13.2-1 is integrated we get 

- Pqo To-T=,-lny+C 
KPC~.U, 

where To is the wall temperature and C is a constant of integration. The constant is to be 
determined by matching the logarithmic expression with the expression for T(y) that 

i 
i 
I 

Fig. 13.2-1. Temperature profile in a 
tube with turbulent flow. The regions are +-k (1) viscous sublayer, (2) buffer layer, 

y = R (3) inertial sublayer, and (4) main turbu- 
Y r = 0 lent stream. 

L. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon Press, New York (1987), 554. 
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holds at the junction with the viscous sublayer. The latter expression will involve both p 
and k; hence C will n~cessarily contain p and k, and will therefore include the dimen- 
sionless group Pr = C,p/k. If, in addition, we introduce the dimensionless coordinate 
yv,/u, then Eq. 13.2-2 can be rewritten as 

YV* for, > 1 

in which f(Pr) is a function representing the thermal resistance between the wall and the 
inertial sublayer. Landau and Lifshitz (see Ref. 1 on page 409) estimate, from a mixing- 
length argument (see Eq. 13.3-3), that, for large Prandtl numbers, f(Pr) = constant . ~3~''; 
however, Example 13.3-1 implies that the function f(Pr) = constant ~r'/"s better. Keep 
in mind that Eq. 13.2-3 can be expected to be valid only in the inertial sublayer and that it 
should not be used in the immediate neighborhood of the wall. 

s13.3 EMPIRICAL EXPRESSIONS FOR THE TURBULENT HEAT FLUX 

In g13.1 we saw that the time-smoothing of the energy equation gives rise to a turbulent 
heat flux q't'. In order to solve the energy equation for the time-smoothed temperature 
profiles, it is customary to postulate a relation between q'" and the time-smoothed tem- 
perature gradient. We summarize here two of the most popular empirical expressions; 
more of these can be found in the heat transfer literature. 

Eddy Thermal Conductivity 

By analogy with the Fourier law of heat conduction we may write 

in which the quantity k't' is called the turbulent therrnal conductivity or the eddy thennal 
conductivity. This quantity is not a physical property of the fluid, but depends on posi- 
tion, direction, and the nature of the turbulent flow. 

The eddy kinematic viscosity df' = p't'/p and the eddy thermal diffusivity a"' = 

k'"/pCP have the same dimensions. Their ratio is a dimensionless group 

called the turbulent Pvandtl number. This dimensionless quantity is of the order of unity, 
values in the literature varying from 0.5 to 1 .O. For gas flow in conduits, ranges from 
0.7 to 0.9 (for circular tubes the value 0.85 has been recommended1), whereas for flow in 
jets and wakes the value is more nearly 0.5. The assumption that ~ r " '  = 1 is called the 
Reynolds analogy. 

The Mixing-Length Expression of Prandtl and Taylor 

According to Prandtl's mixing-length theory, momentum and energy are transferred in 
turbulent flow by the same mechanism. Hence, by analogy with Eq. 5.4-4, one obtains 

W. M. Kays and M. E. Crawford, Convective Heat arid Mass Tvunsfer, 3rd edition, McGraw-Hill, 
New York (1993), pp. 259-266. 
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where 1 is the Prandtl mixing length introduced in Eq. 5.4-4. Note that this expression 
predicts that ~ r ' "  = 1. The Taylor vorticity transport theory2 gives ~ r " '  = $. 

Use the Reynolds analogy (df' = a"'), along with Eq. 5.4-2 for the eddy viscosity, to estimate 
the wall heat flux qo for the turbulent flow in a tube of diameter - D = 2R. Express the result in 

An Approximate terms of the temperature-difference driving force To - TR, where To is the temperature at 
Relation for the Wall the wall (y = 0) and TR is the time-smoothed temperature at the tube axis (y = R). 
Heat Flux for Turbulent 
Flow in a Tube SOLUTION 

The time-smoothed radial heat flux in a tube is given by the sum of IfZ") and 4;': 

Here we have used Eq. 13.3-1 and the Reynolds analogy, and we have switched to the coordi- 
nate y, which is the distance from the wall. We now use the empirical expression of Eq. 5.4-2, 
which applies across the viscous sublayer next to the wall: 

where i jr  = -i$ has been used. 
If now we approximate the heat flux in Eq. 13.3-5 by its wall value qo, then integration 

from y = 0 to y = R gives 

For very large Prandtl numbers, the upper limit R in the integral can be replaced by m, since 
the integrand is decreasing rapidly with increasing y. Then when the integration on the left 
side is performed and the result is put into dimensionless form, we get 

in which Eq. 6.1-4a has been used to eliminate v, in favor of the friction factor. 
The above development is only approximate. We have not taken into account the change 

of the bulk temperature as the fluid moves axially through the tube, nor have we taken into 
account the change in the heat flux throughout the tube. Furthermore, the result is restricted 
to very high Pr, because of the extension of the integration to y = m. Another derivation is 
given in the next section, which is free from these assumptions. However, we will see that at 
large Prandtl numbers the result in Eq. 13.4-20 simplifies to that in Eq. 13.3-7 but with a differ- 
ent numerical constant. 

513.4 TEMPERATURE DISTRIBUTION FOR 
TURBULENT FLOW IN TUBES 

In 510.8 we showed how to get the asymptotic behavior of the temperature profiles for 
large z in a fluid in laminar flow in a circular tube. We repeat that problem here, but for a 
fluid in fully developed turbulent flow. The fluid enters the tube of radius R at an inlet 
temperature T,. For z > 0 the fluid is heated because of a uniform radial heat flux q, at 
the wall (see Fig. 13.4-1). 

G. I .  Taylor, Proc. Roy. Soc. (London), A135,685-702 (1932); Phil. Trans., A215,l-26 (1915). 
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Fluid at temperature TI in fully 
developed turbulent flow 

I Electrical heating coil to provide 
z = O  constant wall flux qo 

Fig. 13.4-1. System used for heating a liquid in fully developed 
turbulent flow with constant heat flux for z > 0. 

We start from the energy equation, Eq. 13.1-8, written in cylindrical coordinates 

Then insertion of the expression for the radial heat flux from Eq. 13.3-4 gives 

This is to be solved with the boundary conditions 

B.C. 1: at r = 0, T = finite 

B.C. 2: 
- 

dT at r = R, +k - = q, (a constant) dr 
- 

B.C. 3: atz=O, T = T l  (13.4-5) 

We now use the same dimensionless variables as already given in Eqs. 10.8-16 to 18 
(with T in place of T in the definition of the dimensionless temperature). Then Eq. 13.4-2 
in dimensionless form is 

in which +(,$I = EZ/v,,, is the dimensionless turbulent velocity profile. This equation is 
to be solved with the dimensionless boundary conditions 

B.C. 1: at 6 = 0, O = finite (13.4-7) 

B.C. 2: a@ a t [ = l ,  + -=I  
d5 

(13.4-8) 

B S .  3: atC=O, 0 = 0  (13.4-9) 

The complete solution to this problem has been given,' but we content ourselves here 
with the solution for large z. 

We begin by assuming an asymptotic solution of the form of Eq. 10.8-23 

which must satisfy the differential equation, together with B.C. 1 and 2 and Condition 4 
in Eq. 10.8-24 (with T and v, = vmax(l - f )  replaced by T and v, = urn,,+(()). The result- 
ing equation for !!! is 

R. H. Notter and C. A. Sleicher, Chem. Eng. Sci., 27,2073-2093 (1972). 
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Integrating this equation twice and then constructing the function O using Eq. 13.4-10, 
we get 

o = c ~ + c ~ /  ' dz + C, 1' 1 d$ + C2 (13.4-12) 
0 Z[I + ( L ~ ( ~ ) / ~ ) I  0 4[1 + (a't)/a)~ 

in which it is understood that a"' is a function of $, and @) is shorthand for the integral 

The constant of integration C1 is set equal to zero in order to satisfy B.C. 1. The constant 
C, is found by applying B.C. 2, which gives 

The remaining constant, C2, can, if desired, be obtained from Condition 4, but we shall 
not need it here (see Problem 13D.1). 

We next get an expression for the dimensionless temperature difference Oo - Ob, the 
"driving force" for the heat transfer at the tube wall: 

In the second line, the order of integration of the double integral has been reversed. 
The inner integral in the second term on the right is just 10) - I@, and the portion 
containing I(1) exactly cancels the first term in Eq. 13.4-15. Hence when Eq. 13.4-14 is 
used, we get 

But the quantity I(1) appearing in Eq. 13.4-16 has a simple interpretation: 

Finally, we want to get the dimensionless wall heat flux, 

the reciprocal of which is2 

To use this result, it is necessary to have an expression for the time-smoothed velocity 
distribution (which appears in I([)), the turbulent kinematic viscosity v"' as a function 
of position, and a postulate for the turbulent Prandtl number Pr"'. 

Equation 13.4-19 was first developed by R. N. Lyon, Chem. Eng. Prog., 47, 75-79 (1950) in a 
paper on liquid-metal heat transfer. The left side of Eq. 13.4-19 is the reciprocal of the Nusselt 
number, Nu = h D / k ,  which is a dimensionless heat transfer coefficient. This nomenclature is 
discussed in the next chapter. 
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A Deissler & Eian (1952) 

Allen & Eckert (1964) 
o Malina & Sparrow (1964) 
A Friend & Metzner (1958) 
o Harriott & Hamilton (1965) 

Fig. 13.4-2. Comparison of the expression in Eq. 13.4-20 for the wall heat flux in fully developed turbulent 
flow with the experimental data of R. G. Deissler and C. S. Eian, NACA Tech. Note #2629 (1952); R. W. Allen 
and E. R. G. Eckert, J. Heat Transfer, Trans. ASME, Ser. C., 86,301-310 (1964); J. A. Malina and E. M. Sparrow, 
Chem. Eng. Sci, 19,953-962 (1964); W. L. Friend and A. B. Metzner, AlChE Journal, 4,393402 (1958); P. Har- 
riott and R. M. Hamilton, Chem. Eng. Sci., 20,1073-1078 (1965). The data of Harriott and Hamilton are for the 
analogous mass transfer experiment, for which Eq. 13.4-20 also applies. 

Extensive calculations based on Eq. 13.4-19 were performed by Sandall, Hanna, and 
~ a z e t . ~  These authors took the turbulent Prandtl number to be unity. They divided the 
region of integration into two parts, one near the wall and the other for the turbulent 
core. In the "wall region" they used the modified van Driest equation of Eq. 5.4-7 for the 
mixing length, and in the "core region" they used a logarithmic velocity distribution. 
Their final result3 is given as 

In obtaining this result, Eq. 6.1-4a has been used. 
Equation 13.4-20 agrees with the available data on heat transfer (and mass transfer) 

within 3.6 and 8.1% over the range 0.73 < Pr < 590, depending on the sets of data stud- 
ied. The analogous mass transfer expression, containing Sc = p/p%,, instead of Pr, was 
reported3 to agree with the mass transfer data within 8% over the range 452 < Sc < 
97600. The agreement of the theory with the heat transfer and mass transfer data, shown 
in Fig. 13.4-2, is quite convincing. 

0. C. Sandall, 0. T. Hanna, and P. R. Mazet, Canad. J. Chem. Eng., 58,443-447 (1980). See also 0. T. 
Hanna and 0. C. Sandall, AIChE Jouvnal, 18,527-533 (1972). 
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513.5 TEMPERATURE DISTRIBUTION FOR 
TURBULENT FLOW IN JETS' 

In 55.6 we derived an expression for the velocity distribution in a circular fluid jet dis- 
charging into an infinite expanse of the same fluid (see Fig. 5.6-1). Here we wish to ex- 
tend this problem by considering an incoming jet with temperature To higher than that 
of the surrounding fluid TI. The problem then is to find the time-smoothed temperature 
distribution T(r, z) in a steadily driven jet. We expect that this distribution will be monot- 
one decreasing in both the r and z directions. 

We start by assuming that viscous dissipation is negligible, and we neglect the con- 
tribution $"' to the heat flux as well as the axial contribution to q"'. Then Eq. 13.1-8 takes 
the time-averaged form 

Then we express the turbulent heat flux in terms of the turbulent thermal conductivity 
introduced in Eq. 13.3-1: 

When Eq. 13.5-1 is written in terms of a dimensionless temperature function 

it becomes 

Here it has been assumed that the turbulent Prandtl number and the turbulent kinematic 
viscosity are constants (see the discussion after Eq. 5.6-3). This equation is to be solved 
with the boundary conditions: 

B.C. 1: 
B.C. 2: 

B.C. 3: 

atz=O, @ = 1  
at r = 0, @ is finite 
a t r = m ,  O = O  

Next we introduce the expressions for the time-smoothed velocity components 5, and Ez 
in terms of a stream function F([), as given in Eqs. 5.6-12 and 13, and a trial expression 
for the dimensionless time-smoothed temperature function: 

Here 5 = r/z and 5 = (pv't'/w)z, where w is the total mass flow rate in the jet. The pro- 
posal in Eq. 13.5-8 is motivated by the expression for 5, that was found in Eq. 5.6-21. 

When these expressions for the velocity components and the dimensionless temper- 
ature are substituted into Eq. 13.5-1, some terms cancel and others can be combined, and 
as a result, the following rather simple equation is obtained: 

' J. 0. Hinze, Turbulence, 2nd edition, McGraw-Hill, New York (1975), pp. 531-546. 
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This equation can be integrated once to give 

The constant of integration may be set equal to zero, since, 
at 8 = 0. A second integration from 0 to 5 then gives 

according to E, 

Finally, comparison of Eqs. 13.5-12 and 13.5-8 with Eq. 5.6-21 shows that the shapes of 
the time-smoothed temperature and axial velocity profiles are closely related, 

an equation attributed to Reichardt.' This theory provides a moderately satisfactory ex- 
planation for the shapes of the temperature profiles.' The turbulent Prandtl (or Schmidt) 
number deduced from temperature (or concentration) measurements in circular jets is 
about 0.7. 

The quantity C3 appearing in Eq. 13.5-12 was given explicitly in Eq. 5.6-23 as C3 = 

w m ( 1  /dt)), where J is the rate of momentum flow in the jet, defined in Eq. 5.6- 
2. Similarly, an expression for the quantity f(0) in Eq. 13.5-12 can be found by equating 
the energy in the incoming jet to the energy crossing any plane downstream: 

Insertion of the expressions for the velocity and temperature profiles and integrating 
then gives 

Combining Eqs. 13.5-3, 13.5-8,5.6-23, 13.5-12, and 13.5-15 then gives the complete expres- 
sion for the temperature profiles T(r, z) in the circular turbulent jet, in terms of the total 
momentum of the jet, the turbulent viscosity, the turbulent Prandtl number, and the 
fluid density. 

13.6 FOURIER ANALYSIS OF ENERGY TRANSPORT IN 
TUBE FLOW AT LARGE PRANDTL NUMBERS 

In the preceding two sections we analyzed energy transport in turbulent systems by use 
of time-smoothed equations of change. Empirical expressions were then required to de- 
scribe the turbulent fluxes in terms of time-smoothed profiles, using eddy transport coef- 

- - - - - -- 

H. Reichardt, Zeits. f. angew. Math. u. Mech., 24,268-272 (1944). 
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ficients estimated from experiments. In this section we analyze a turbulent energy trans- 
port problem without time-smoothing-that is, by direct use of the energy equation with 
fluctuating velocity and temperature fields. The Fourier transform1 is well suited for 
such problems, and the "method of dominant balanceu2 gives useful information with- 
out detailed computations. 

The specific question considered here is the influence of the thermal diffusivity, a = 

k/&, on the expected distribution and fluctuations of the fluid temperature in turbulent 
forced convection near a wall.3 This topic was discussed in Example 13.3-1 by an approx- 
imate procedure. 

Let us consider a fluid with constant p, $ and k in turbulent flow through a tube of 
inner radius R = ;D. The flow enters at z = - 03 with uniform temperature TI and exits at 
z = L. The tube wall is adiabatic for z < 0, and isothermal at To for 0 5 z 5 L. Heat con- 
duction in the z direction is neglected. The temperature distribution T(r, 8, z, t )  is to be 
analyzed in the long-time limit, in the thin thermal boundary layer that forms for z > 0 
when the molecular thermal diffusivity a is small (as in a Newtonian fluid when the 
Prandtl number, Pr = Spp/k = p/pa, is large). A stretching function ~ ( a )  will be derived 
for the average thickness of the thermal boundary layer without introducing an eddy 
thermal diffusivity df'. 

In the limit as cu + 0, the thermal boundary layer lies entirely within the viscous sub- 
layer, where the velocity components are given by truncated Taylor expansions in the 
distance y = R - r from the wall (compare these expansions with those in Eqs. 5.4-8 to 10) 

Here the coefficients p, and p, are treated as given functions of 8, z, and t. These velocity 
expressions satisfy the no-slip conditions and the wall-impermeability condition at y = 0 
and the continuity equation at small y, and are consistent with the equation of motion to 
the indicated orders in y. The energy equation can then be written as 

with the usual boundary layer approximation for VZT, and with the following boundary 
conditions on T(y, 6, z, t ) :  

Inlet condition: at z = 0, T(y, 8,0, t )  = T, for 0 < y r R (1 3.6-5) 
Wall condition: at y = 0, T(0, 0, z, t )  = To for 0 I z 5 L (13.6-6) 

The initial temperature distribution T(y, 6, z, 0) is not needed, since its effect disappears 
in the long-time limit. 

To obtain results asymptotically valid for a + 0, we introduce a stretched coordi- 
nate Y = y/~(cu), which is the distance from the wall relative to the average boundary 
layer thickness ~ ( a ) .  The range of Y is from 0 at y = 0 to w at y = R in the limit as a + 0. 

' R. N. Bracewell, The Fourier Transform and its Applications, 2nd edition, McGraw-Hill, New York 
(1978). 

This method is well presented in C. M. Bender and S. A. Orzag, Advanced Mathematical Methods for 
Scientists and Engineers, McGraw-Hill, New York (1978), pp. 435437. 

W. E. Stewart, AIChE Journal, 33,2008-2016 (1987); errata, ibid., 34, 1030 (1988); W. E. Stewart and 
D. G. O'Sullivan, AKhE Journal (to be submitted). 
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Use of KY in place of y, and introduction of the dimensionless temperature function O(Y, 
0, z, t) = (T - T,)/(To - TI), enable us to rewrite Eq. 13.6-4 as 

with boundary conditions as follows: 

Inlet condition: at z = 0, O(Y, 0,0, t) = 0 for Y > 0 (13.6-8) 
Wall condition: at Y = 0, W0, 8, z, t) = 1 for 0 5 z 5 L (13.6-9) 

Equation 13.6-7 contains an unbounded derivative d@/dt with a coefficient 1 indepen- 
dent of a. Thus a change of variables is needed to analyze the influence of the parameter 
a in this problem. For this purpose we turn to the Fourier transform, a standard tool for 
analyzing noisy processes. 

We choose the following definition1 for the Fourier transform of a function g(t) into 
the domain of frequency v at a particular position Y, 8, z: 

The corresponding transforms for the t-derivative and for products of functions of t are 

and the latter integral is known as the convolution of the transforms and h. 
Before taking the Fourier transforms of Eqs. 13.6-7 to 9, we express each included 

function g(t) as a time average g plus a fluctuating function gf(t) and expand each prod- 
uct of such functions. The resulting expressions have the following Fourier transforms: 

Here 6(v) is the Dirac delta function, obtained as the Fourier transform of the function 
g(t) = 1 in the long-duration limit. The leading term in the last line is a real-valued im- 
pulse at v = 0, coming from the time-independent product 8. The next two terms are 
complex-valued functions of the frequency v. The convolution term j' * h' may contain 
complex-valued functions of v, along with a real-valued impulse ~ ( v ) g ' h '  coming from 
time-independent products of simple harmonic oscillations present in g' and h'. 

Taking the Fourier transform of Eq. 13.6-7 by the method just given and noting that 
dG/dt is identically zero, we obtain the differential equation 
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for the Fourier-transformed temperature 6 ( ~ ,  0, z, v). The transformed boundary condi- 
tions are 

Inlet condition: at z = 0, O(Y, 0, z, v) = 0 for Y > 0 (13.6-16) 

Wall condition: at Y = 0, O(Y, 6,  z, v) = S(v) for 0 5 z I L (13.6-17) 

Here again, the unit impulse function 6(v) appears as the Fourier transform of the func- 
tion g(t) = 1 in the long-duration limit. 

Two types of contributions appear in Eq. 13.6-15: real-valued zero-frequency im- 
pulses S(v) from functions and products independent of t, and complex-valued functions 
of v from time-dependent product terms. We consider these two types of contributions 
separately here, thus decoupling Eq. 13.6-15 into two equations. 

We begin with the zero-frequency impulse terms. In addition to the explicit 6(v) 
terms of Eq. 13.6-15, implicit impulses arise in the convolution terms from synchronous 
oscillations A -  of velocity and temperature, giving rise to the turbulent energy flux $" = 

pC,v'T1 discussed in s13.2. The coefficients of all the impulse terms must be proportional 
functions of a, in order that the dominant terms at each point remain balanced (i.e., of 
comparable size) as a + 0. Therefore, the coefficient K of the convective impulse terms, 
including those from synchronous fluctuations, must be proportional to the coefficient 
a / K 2  of the conductive impulse term, giving K cc or 

for the dependence of the average thermal boundary layer thickness on the Prandtl number. 
The remaining terms in Eq. 13.6-15 describe the turbulent temperature fluctuations. 

They include the accumulation term 2n-iv6' and the remaining convection and conduc- 
tion terms. The coefficients of all these terms (including 271-i~ in the leading term) must 
be proportional functions of a in order that these terms likewise remain balanced as a + 

0. This reasoning confirms Eq. 13.6-18 and gives the further relation v cc K ,  or 

for the frequency bandwidth Av of the temperature fluctuations. Consequently, the 
stretched frequency Pr1'3v and stretched time ~ r - " ~ t  are natural variables for reporting 
Fourier analyses of turbulent forced convection. Shaw and Hanratty4 reported turbu- 
lence spectra for their mass transfer experiments analogously, in terms of a stretched fre- 
quency variable proportional to sc1I3 v (here Sc = p/p9AB is the Schmidt number, the 
mass transfer analog of the Prandtl number, which contains the binary diffusivity 9AR, to 
be introduced in Chapter 16). 

Thus far we have considered only the leading term of a Taylor expansion in K for 
each term in the energy equations. More accurate results are obtainable by continuing 
the Taylor expansions to higher powers of K, and thus of Pr-'13D. The resulting formal 
solution is a perturbation expansion 

for the distribution of the fluctuating temperature over position and frequency in a given 
velocity field. 

The expansion for T (the long-time average of the temperature) corresponding to Eq. 
13.6-20 is obtained from the zero-frequency part of 6, 

- - 
0 = @,(Y, 8 , ~ )  + K ~ , ( Y ,  8,Z) + ' . (13.6-21) 

D. A. Shaw and T. J. Hanratty, AIChE Journal, 23,160-169 (1977); D. A. Shaw and T. J. Hanratty, 
NChE Journal, 23,28--37 (1977). 
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From this we can calculate the local time-averaged heat flux at the wall: 

and the local Nusselt number is then 

Then the mean Nusselt number over the wall surface for heat transfer, and the analo- 
gous quantity for mass transfer, are 

- 

In this last equation Sh,, O,, and Sc are the mass transfer analogs of Nu,, 0, and Pr. We 
give the mass transfer expression here (rather than wait until Part 111) because electrochem- 
ical mass transfer experiments give better precision than heat transfer experiments and the 
available range of Schmidt numbers is much greater than that of Prandtl numbers. 

If the expansions in Eq. 13.6-24 and 25 are truncated to one term, we are led to 
Nu, cc and Sh, S C ~ ' ~ .  These expressions are essential ingredients in the famous 
Chilton-Colburn relations5 (see Eqs. 14.3-18 and 19, and Eqs. 22.3-22 to 24). The first term 
in Eq. 13.6-24 or 25 also corresponds to the high Prandtl (or Schmidt) number asymptote 
of Eq. 13.4-20.6 

With the development of electrochemical methods of measuring mass transfer at 
surfaces, it has become possible to investigate the second term in Eq. 13.6-25. In 
Fig. 13.6-1 are shown the data of Shaw and Hanratty, who measured the diffusion- 
limited current to a wall electrode for values of the Schmidt number Sc = p/p9, ,  from 
693 to 37,200. These data are fitted3 very well by the expression 

Fig. 13.6-1. Turbulent 
mass-transfer data of 
D. A. Shaw and T. J. Han- 
ratty [AlChE Journal, 28, 
23-37,160-169 (1977)I 
compared to a curve 
based on Eq. 13.6-25 (solid 
curve). Shown also is a 
simple power law function 
obtained by Shaw and 
Hanratty. 

T. H. Chilton and A. P. Colburn, Ind. Eng. Chem., 26,1183-1187 (1934). Thomas Hamilton Chilton 
(1899-1972) had his entire professional career at the E. I. du Pont de Nemours Company, Inc., in 
Wilmington, Delaware; he was President of AIChE in 1951. After "retiring" he was a guest professor at a 
dozen or so universities. 

See also 0. C. Sandall and 0. T. Hanna, AIChE Journal, 25,290-192 (1979). 
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in which f(Re) is the friction factor defined in Chapter 6. Equation 13.6-26 combines the 
observed Re number dependence of the Sherwood number with the two leading terms 
of Eq. 13.6-25 (that is, the coefficients a,, a,, . . . are proportional to  em). Equation 
13.6-26 lends itself to clear physical interpretation: The leading term corresponds to a 
diffusional boundary layer so thin that the tangential velocity is linear in y and the wall 
curvature can be neglected, whereas the second term accounts for wall curvature and the 
y2 terms in the tangential velocity expansions of Eqs. 13.6-1 and 2). In higher approxima- 
tions, special terms can be expected to arise from edge effects as noted by ~ e w r n a n ~  and 
Stewart .3 

QUESTIONS FOR DISCUSSION 

1. Compare turbulent thermal conductivity and turbulent viscosity as to definition, order of 
magnitude, and dependence on physical properties and the nature of the flow. 

2. What is the "Reynolds analogy," and what is its significance? 
3. Is there any connection between Eq. 13.2-3 and Eq. 13.4-12, after the integration constants in 

the latter have been evaluated? 
4. Is the analogy between Fourier's law of heat conduction and Eq. 13.3-1 a valid one? 
5. What is the physical significance of the fact that the turbulent Prandtl number is of the order 

of unity? 

PROBLEMS 

13B.1. Wall heat flux for turbulent flow in tubes (ap- 
proximate). Work through Example 13.3-1, and fill in the 
missing steps. In particular, verify the integration in going 
from Eq. 13.3-6 to Eq. 13.3-7. 

13B.2. Wall heat flux for turbulent flow in tubes. 
(a) Summarize the assumptions in 513.4. 
(b) Work through the mathematical details of that section, 
taking particular care with the steps connecting Eq. 13.4-12 
and Eq. 13.4-16. 
(c) When is it not necessary to find the constant C, in Eq. 
13.4-12? 

13C.1. Wall heat flux for turbulent flow between two 
parallel plates. 
(a) Work through the development in g13.4, and then per- 
form a similar derivation for turbulent flow in a thin slit 
shown in Fig. 2B.3. Show that the analog of Eq. 13.4-19 is 

5 - -  
in which [ = x / B  and J(0 = I +([Id[. 

0 

(b) Show how the result in (a) simplifies for laminar flow 
of Newtonian fluids, and for "plug flow" (flat velocity pro- 
files). 
Answer: (b) g, 3 

13D.1. The temperature profile for turbulent flow in 
tubes. To calculate the temperature distribution for turbu- 
lent flow in circular tubes from Eq. 13.4-12, it is necessary 
to know C,. 
(a) Show how to get C2 by applying B.C. 4 as was done in 
510.8. The result is 

(b) Verify that Eq. 13D.1-1 gives C, = & for a Newtonian 
fluid. 

J. S. Newman, Electroanalytical Chemistry, 6, 187-352 (1973). 



Chapter 14 

Interphase Transport in 
Nonisothermal Svstems 

Definitions of heat transfer coefficients 

Analytical calculations of heat transfer coefficients for forced convection through 
tubes and slits 

Heat transfer coefficients for forced convection in tubes 

Heat transfer coefficients for forced convection around submerged objects 

Heat transfer coefficients for forced convection through packed beds 

Heat transfer coefficients for free and mixed convection 

Heat transfer coefficients for condensation of pure vapors on solid surfaces 

In Chapter 10 we saw how shell energy balances may be set up for various simple 
problems and how these balances lead to differential equations from which the tem- 
perature profiles may be calculated. We also saw in Chapter 11 that the energy bal- 
ance over an arbitrary differential fluid element leads to a partial differential 
equation-the energy equation-which may be used to set up more complex prob- 
lems. Then in Chapter 13 we saw that the time-smoothed energy equation, together 
with empirical expressions for the turbulent heat flux, provides a useful basis for 
summarizing and extrapolating temperature profile measurements in turbulent sys- 
tems. Hence, at this point the reader should have a fairly good appreciation for the 
meaning of the equations of change for nonisothermal flow and their range of applic- 
ability. 

It should be apparent that all of the problems discussed have pertained to systems 
of rather simple geometry and furthermore that most of these problems have contained 
assumptions, such as temperature-independent viscosity and constant fluid density. For 
some purposes, these solutions may be adequate, especially for order-of-magnitude esti- 
mates. Furthermore, the study of simple systems provides the stepping stones to the dis- 
cussion of more complex problems. 

In this chapter we turn to some of the problems in which it is convenient or necessary 
to use a less detailed analysis. In such problems the usual engineering approach is to for- 
mulate energy balances over pieces of equipment, or parts thereof, as described in Chapter 
15. In the macroscopic energy balance thus obtained, there are usually terms that require 
estimating the heat that is transferred through the system boundaries. This requires know- 
ing the heat transfer coefficient for describing the interphase transport. Usually the heat 
transfer coefficient is given, for the flow system of interest, as an empirical correlation of 
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the Nusselt number' (a dimensionless wall heat flux or heat transfer coefficient) as a func- 
tion of the relevant dimensionless quantities, such as the Reynolds and Prandtl numbers. 

This situation is not unlike that in Chapter 6, where we learned how to use dimen- 
sionless correlations of the friction factor to solve momentum transfer problems. How- 
ever, for nonisothermal problems the number of dimensionless groups is larger, the 
types of boundary conditions are more numerous, and the temperature dependence of 
the physical properties is often important. In addition, the phenomena of free convec- 
tion, condensation, and boiling are encountered in nonisothermal systems. 

We have purposely limited ourselves here to a small number of heat transfer formulas 
and correlations-just enough to introduce the reader to the subject without attempting to 
be encyclopedic. Many treatises and handbooks treat the subject in much greater depth."3,4,5~6 

514.1 DEFINITIONS OF HEAT TRANSFER COEFFICIENTS 

Let us consider a flow system with the fluid flowing either in a conduit or around a solid 
object. Suppose that the solid surface is warmer than the fluid, so that heat is being trans- 
ferred from the solid to the fluid. Then the rate of heat flow across the solid-fluid inter- 
face would be expected to depend on the area of the interface and on the temperature 
drop between the fluid and the solid. It is customary to define a proportionality factor h 
(the heat transfer coefficient) by 

Q=hAAT (14.1-1) 

in which Q is the heat flow into the fluid (J/hr or Btu/hr), A is a characteristic area, and AT 
is a characteristic temperature difference. Equation 14.1-1 can also be used when the fluid 
is cooled. Equation 14.1-1, in slightly different form, has been encountered in Eq. 10.1-2. 
Note that h is not defined until the area A and the temperature difference AT have been 
specified. We now consider the usual definitions for h for two types of flow geometry. 

As an example of flow in conduits, we consider a fluid flowing through a circular tube 
of diameter D (see Fig. 14.1-I), in which there is a heated wall section of length L and 
varying inside surface temperature To(z), going from To, to To,. Suppose that the bulk 
temperature Tb of the fluid (defined in Eq. 10.8-33 for fluids with constant p and ep) in- 
creases from Tbl to T,, in the heated section. Then there are three conventional definitions 
of heat transfer coefficients for the fluid in the heated section: 

This dimensionless group is named for Ernst Kraft Wilhelm Nusselt (1882-19571, the German 
engineer who was the first major figure in the field of convective heat and mass transfer. See, for 
example, W. Nusselt, Zeits. d. Ver. deutsck. Ing., 53,1750-1755 (19091, Forschungsarb. a. d. Geb. d .  
Ingenieurwes., No. 80,l-38, Berlin (1910), and Gesundkeits-kg., 38,477482,490496 (1915). 

M. Jakob, Heat Transfer, Vol. 1 (1949) and Vol. 2 (19571, Wiley, New York. 
W. M. Kays and M. E. Crawford, Convective Heat and Mass Transfer, 3rd edition, McGraw-Hill, 

New York (1993). 
H. D. Baehr and K. Stephan, Heat and Mass Transfer, Springer, Berlin (1998). 
9. M. Rohsenow, J. P. Hartnett, and Y. I. Cho (eds.), Handbook of Heat Transfer, McGraw-Hill, 

New York (1998). 
' H. Grober, S. Erk, and U. Grigull, Die Grundgesetze der Warmeiibertragung, Springer, Berlin, 3rd 

edition (1961). 
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"1" Element of "2" Fig. 14.1-1. Heat trans- 
fer in a circular tube. 

Inner surface /' I I \ ~nner  surface -L- 
at To1 I Heated section I at To2 

I .  I I with inner surface I 
temperature 

TOM 

That is, h, is based on the temperature difference AT, at the inlet, ha is based on the arith- 
metic mean AT, of the terminal temperature differences, and h,, is based on the corre- 
sponding logarithmic mean temperature difference AT,,. For most calculations h,, is 
preferable, because it is less dependent on L/D than the other two, although it is not al- 
ways used.' In using heat transfer correlations from treatises and handbooks, one must 
be careful to note the definitions of the heat transfer coefficients. 

If the wall temperature distribution is initially unknown, or if the fluid properties 
change appreciably along the pipe, it is difficult to predict the heat transfer coefficients 
defined above. Under these conditions, it is customary to rewrite Eq. 14.1-2 in the differ- 
ential form: 

dQ = h,oc(~Ddz)(To - Tb) hl,,(~Ddz)AT1, (14.1-5) 

Here dQ is the heat added to the fluid over a distance dz along the pipe, ATloc is the local 
temperature difference (at position z), and h,,, is the local heat transfer coefficient. This 
equation is widely used in engineering design. Actually, the definition of h,,, and AT,,, is 
not complete without specifying the shape of the element of area. In Eq. 14.1-5 we have 
set dA = ~ D d z ,  which means that h,,, and ATl,, are the mean values for the shaded area 
dA in Fig. 14.1-1. 

As an example of flow around submerged objects, consider a fluid flowing around a 
sphere of radius R, whose surface temperature is maintained at a uniform value To. Sup- 
pose that the fluid approaches the sphere with a uniform temperature T,. Then we 
may define a mean heat transfer coeficient, h,, for the entire surface of the sphere by the re- 
lation 

Q = ~ , ( ~ T R ~ ) ( T ,  - T,) (14.1-6) 

The characteristic area is here taken to be the heat transfer surface (as in Eqs. 14.1-2 to 5), 
whereas in Eq. 6.1-5 we used the sphere cross section. 

A local coefficient can also be defined for submerged objects by analogy with Eq. 
14.1-5: 

dQ = hloc(dA)(To - T,) (14.1-7) 

This coefficient is more informative than h, because it predicts how the heat flux is dis- 
tributed over the surface. However, most experimentalists report only h,,, which is easier 
to measure. 

If ATJAT, is between 0.5 and 2.0, then AT, may be substituted for ATl,, and h, for h,,, with a 
maximum error of 4%. This degree of accuracy is acceptable in most heat transfer calculations. 



514.1 Definitions of Heat Transfer Coefficients 425 

Table 14.1-1 Typical Orders of Magnitude for Heat 
Transfer Coefficientsa 

h 
(W/m2 K) or h 

System (kcal/m2. hr C )  (Btu/ft2 hr . F) 

Free convection 
Gases 3-20 1 4  
Liquids 100-600 20-120 
Boiling water 1000-20,000 200-4000 

Forced convection 
Gases 1 0-1 00 2-20 
Liquids 50-500 10-300 
Water 500-10,000 100-2000 

Condensing vapors 1000-1 00,000 200-20,000 

Taken from H. Grober, S. Erk, and U. Grigull, Wiirmeubertragung, 
Springer, Berlin, 3rd edition (19551, p. 158. When given k in 
kcal/m2. hr . C, multiply by 0.204 to get h in Btu/ft2 . hr . F, and 
by 1.162 to get h in W/m2. K. For additional conversion factors, 
see Appendix F. 

Let us emphasize that the definitions of A and AT must be made clear before h is de- 
fined. Keep in mind, also, that h is not a constant characteristic of the fluid medium. On 
the contrary, the heat transfer coefficient depffnds in a complicated way on many vari- 
ables, including the fluid properties (k, p, p, CJ, the system geometry, and the flow ve- 
locity. The remainder of this chapter is devoted to predicting the dependence of h on 
these quantities. Usually this is done by using experimental data and dimensional analy- 
sis to develop correlations. It is also possible, for some very simple systems, to calculate 
the heat transfer coefficient directly from the equations of change. Some typical ranges of 
h are given in Table 14.1-1. 

We saw in 510.6 that, in the calculation of heat transfer rates between two fluid 
streams separated by one or more solid layers, it is convenient to use an overall heat trans- 
fer coefficient, U,, which expresses the combined effect of the series of resistances through 
which the heat flows. We give here a definition of U, and show how to calculate it in the 
special case of heat exchange between two coaxial streams with bulk temperatures Th 
("hot") and T,  ("cold), separated by a cylindrical tube of inside diameter Do and outside 
diameter D,: 

1 1 +ln(D,/Do) + 1 ) - = (- 
DoUo D&" 2k"l Dlhl loc 

Note that Uo is defined as a local coefficient. This is the definition implied in most design 
procedures (see Example 15.4-1). 

Equations 14.1-8 and 9 are, of course, restricted to thermal resistances connected 
in series. In some situations there may be appreciable parallel heat flux at one or both 
surfaces by radiation, and Eqs. 14.1-8 and 9 will require special modification (see 
Example 16.5-2). 

To illustrate the physical significance of heat transfer coefficients and illustrate one 
method of measuring them, we conclude this section with an analysis of a hypothetical 
set of heat transfer data. 
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EXAMPLE 14.1-1 

Calculation of Heat 
Transfer Coeficients 
from Experimental 
Data 

SOLUTION 

Isothermal Heated 
section , section 

Fig. 14.1-2. Series of experiments 
for measuring heat transfer coef- " 
ficients. 

Pipe with 
heated section 
of length LA 

Pipe with 
heated section 

I 
of length L, , I 

I I I 

Pipe with 
heated section 
of length LC 

I I I I 

A series of simulated steady-state experiments on the heating of air in tubes is shown in Fig. 
14.1-2. In the first experiment, air at Tbl = 200.0°F is flowing in a 0.5-in. i.d. tube with fully de- 
veloped laminar velocity profile in the isothermal pipe section for z < 0. At z = 0 the wall 
temperature is suddenly increased to To = 212.O"F and maintained at that value for the re- 
maining tube length LA. At z = LA the fluid flows into a mixing chamber in which the cup- 
mixing (or "bulk) temperature T,, is measured. Similar experiments are done with tubes of 
different lengths, L,, LC, and so on, with the following results: 

Experiment A B C D E F G 

L (in.) 1.5 3.0 6.0 12.0 24.0 48.0 96.0 

In all experiments, the air flow rate w is 3.0 lb,,/hr. Calculate h,, h,, h,,, and the exit value of 
h,,, as functions of the L/D ratio. 

First we make a steady-state energy balance over a length L of the tube, by stating that the 
heat in through the walls plus the energy entering at z = 0 by convection equals the energy 
leaving the tube at z = L. The axial energy flux at the tube entry and exit may be calculated 
from Eq. 9.8-6. For fully developed flow, changes in the kinetic energy flux gpv2v and the 
work term [ T .  vl will be negligible relative to changes in the enthalpy flux. We also assume 
that q, << pHv,, so that the axial heat conduction term may be neglected. Hence the only con- 
tribution to the energy flux entering and leaving with the flow will be the term containing the 
enthalpy, which can be computed with the help of Eq. 9.8-8 and the assumptions that the heat 
capacity and density of the fluid are constant throughout. Therefore the steady-state energy 
balance becomes simply "rate of energy flow in = rate of energy flow out," or 

Using Eq. 14.1-2 to evaluate Q and rearranging gives 
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from which 

hl =- 
aD2 (To - Tbl) 

This gives us the formula for calculating h1 from the data given above. 
Analogously, use of Eqs. 14.1-3 and 14.1-4 gives 

WG ("2 - (r) h, = --- 
nD2 (To - Tb)a 

for obtaining h, and h,, from the data. 
To evaluate h,,,, we have to use the preceding data to construct a continuous curve Tb(z), 

as in Fig. 14.1-2, to represent the change in bulk temperature with z in the longest (96-in.) 
tube. Then Eq. 14.1-10 becomes 

By differentiating this expression with respect to z and combining the result with Eq. 14.1-5, 
we get 

Since To is constant, this becomes 

The derivative in this equation is conveniently determined from a plot of In(T, - Tb) versus 
z/L. Because a differentiation is involved, it is difficult to determine hlo, precisely. 

The calculated results are shown in Fig. 14.1-3. Note that all of the coefficients decrease 
with increasing LID, but that hi,, and hl, vary less than the others. They approach a common 
asymptote (see Problem 14B.5 and Fig. 14.1-3). Somewhat similar behavior is observed in tur- 
bulent flow with constant wall temperature, except that h,, approaches the asymptote much 
more rapidly (see Fig. 14.3-2). 

LID 

Fig. 14.1-3. Heat transfer coefficients calculated in Example 14.1-1. 
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314.2 ANALYTICAL CALCULATIONS OF HEAT TRANSFER 
COEFFICIENTS FOR FORCED CONVECTION 
THROUGH TUBES AND SLITS 

Recall from Chapter 6, where we defined and discussed friction factors, that for some 
very simple laminar flow systems we could obtain analytical formulas for the (dimen- 
sionless) friction factor as a function of the (dimensionless) Reynolds number. We would 
like to do the same for the heat transfer coefficient, h, which, however, is not dimension- 
less. Nonetheless we can construct with it a dimensionless quantity, Nu = hD/k, the 
Nusselt number, using the fluid thermal conductivity k and a characteristic length D that 
must be specified for each flow system. Two other related dimensionless groups are 
commonly used: the Stanton number, St = Nu/RePr, and the Chilton-Colbum j-fnctor for 
heat transfer, j, = N u / ~ e ~ r " ~ .  Each of these dimensionless groups may be "decorated 
with subscript 1, a, In, or m, corresponding to the subscript on the Nusselt number. 

By way of illustration, let us return to 310.8 where we discussed the heating of a 
fluid in laminar flow in a tube, with all the fluid properties being considered constant. 
From Eq. 10.8-33 and Eq. 10.8-31 we can get the difference between the wall temperature 
and the bulk temperature: 

in which R and D are the radius and diameter of the tube. Solving for the wall flux we 
get 

Then making use of the definition of the local heat transfer coefficient hlo,-namely, that 
q0 = h,,,(To - T&we find that 

This result is the entry in Eq. (L) of Table 14.2-1-namely, for the laminar flow of a con- 
stant-property fluid with a constant wall heat flux, for very large z. The other entries in 
Table 14.2-1 and 2 may be obtained in a similar way.' Some Nusselt numbers for New- 
tonian fluids with constant physical properties are shown in Fig. 14.2-1.' 

' These tables are taken from R. B. Bird, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric 
Liquids, Vol. 1 ,  Fluid Mechanics, 1st edition, Wiley, New York, (1987), pp. 212-213. They are based, in turn, 
on W. J. Beek and R. Eggink, De Ingenieur, 74, (35) Ch. 81-Ch. 89 (1962) and J. M. Valstar and W. J. Beek, 
De Ingenieur, 75, (I), Ch. 1-Ch. 7 (1963). 

The correspondence between the entries of Tables 14.2-1 and 2 and problems in this book is as 
follows ( 0  = circular tube, (1 = plane slit): 

Eq. (C) Problem 12D.4 0 ;  12D.5 11 Laminar Newtonian 
Eq. (F) Problem 12D.3 0 ;  12D.5 ) I  Laminar Newtonian 
Eq. (G) Problem 10B.9(a) 0; 10B.9(b) 11 Plug flow 
Eq. (I) Problem 12D.7 0; 12D.6 11 Laminar Newtonian 
Eq. (K) Problem 10D.2 0 Laminar non-Newtonian 
Eq. (L) Problem 12D.6 11 Laminar Newtonian 

Equations analogous to Eqs. (K) in Tables 14.2-1 and 2 are given for turbulent flow in Eqs. 13.4-19 and 
13C.1-1. 
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ruz crz 
(tube) or - (slit) 

(v,D2 (%P2 

Fig. 14.2-1. The Nusselt number for fully developed, laminar flow of Newtonian 
fluids with constant physical properties: NuIoc = hlOcD/k for circular tubes of diameter 
D, and Nul,, = 4hlocB/k for slits of half-width B. The limiting expressions are given in 
Tables 14.2-1 and 14.2-2. 

For turbulent pow in a circular tube with constant heat flux, the Nusselt number can 
be obtained from Eq. 13.4-20 (which in turn originated with Eq. (K) of Table 14.2-I):3 

This is valid only for az/(v,)D2 >> 1, for fluids with constant physical properties, and 
for tubes with no roughness. It has been applied successfully over the Prandtl-number 
range 0.7 < Pr < 590. Note that, for very large Prandtl numbers, Eq. 14.2-4 gives 

The Pr1l3 dependence agrees exactly with the large Pr limit in 513.6 and Eq. 13.3-7. For 
turbulent flow there is little difference between Nu for constant wall temperature and for 
constant wall heat flux. 

For the turbulent flow of liquid metals, for which the Prandtl numbers are generally 
much less than unity, there are two results of importance. Notter and Sleicher4 solved 
the energy equation numerically, using a realistic turbulent velocity profile, and ob- 
tained the rates of heat transfer through the wall. The final results were curve-fitted to 
simple analytical expressions for two cases: 

Constant wall temperature: Nul,, = 4.8 + 0.0156 (14.2-6) 

Constant wall heat flux: Nu,,, = 6.3 + 0.0167 ~ e " - " ~  (14.2-7) 

These equations are limited to L/D > 60 and constant physical properties. Equation 14.2- 
7 is displayed in Fig. 14.2-2. 

0. C. Sandall, 0. T. Hanna, and P. R. Mazet, Canad. I .  Chem. Eng., 58,443447 (1980). 
R. H. Notter and C. A. Sleicher, Chem. Eng. Sci, 27,2073-2093 (1972). 



Table 14.2-1 Asymptotic Results for Local Nusselt Numbers (Tube  low)".^; Nu,,, = h , , , ~ / k  

Constant wall heat flux Constant wall temperature 

4 TI  [+z 3 
z = o  T o 2  

All values are 
local Nu numbers 

Thermal entrance 
regionc 

Plug flow Plug flow 

Laminar non- 
Newtonian flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Laminar 
Newtonian flow 

Plug flow Plug flow 

Nu = &, where p, is the lowest 
eigenvalue of 

Laminar non- 
Newtonian flow 

Thermally fully 
developed flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Laminar 
Newtonian flow 

L 

a Note: c#&$) = v,/(v,), where 6 = r/R and R = D/2; for Newtonian fluids (v,)D2/az = RePr(D/z) with Re = D(v,)p/p. Here a = k/&. 
W. J. Beek and R. Eggink, De Ingenieur, 74, No. 35, Ch. 81-89 (1962); erratum, 75, No. 1, Ch. 7 (1963). 

T h e  grouping (v,)D2/az is sometimes written as Gz (L/z) where Gz = (v,)D2/cuL is called the Graetz number; here L is the length of the pipe past z = 0. Thus the 
thermal entry region corresponds to large Graetz number. 



Table 14.2-2 Asymptotic Results for Local Nusselt Numbers (Thin-Slit   low)".^; Nul,, = 4hl,,B/k 

All values are 
local Nu numbers 

Thermal entrance 
regionc 

Thermally fully 
developed flow 

Constant wall temperature 

Plug flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Plug flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Nu = 4&, where p, is the lowest 
eigenvalue of 

Plug flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Plug flow 

Laminar non- 
Newtonian flow 

Laminar 
Newtonian flow 

Constant wall heat flux 

a Note: +) = vv,/(vz), where u = y / B; for Newtonian fluids (vz)D2/cuz = 4 RePr(B/z) with Re = 4B(v,)p/p. Here cx = klp~,. 
' J. M. Valstar and W. J. Beek, De Ingenieur, 75, No. 1, Ch. 1-7 (1963). 
' The grouping (vz)B2/az is sometimes written as Gz - (L/z) where Gz = (vz)B2/aL is called the Graetz number; here L is the length of the slit past z = 0. Thus the 
thermal entry region corresponds to large Graetz number. 
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It has been emphasized that all the results of this section are limited to fluids with 
constant physical properties. When there are large temperature differences in the sys- 
tem, it is necessary to take into account the temperature dependence of the viscosity, 
density, heat capacity, and thermal conductivity. Usually this is done by means of an 
empiricism-namely, by evaluating the physical properties at some appropriate average 
temperature. Throughout this chapter, unless explicitly stated otherwise, it is under- 
stood that all physical properties are to be calculated at the film temperature Tf defined 
as  follow^:^ 

a. For tubes, slits, and other ducts, 

Fig. 14.2-2. Nusselt numbers 
for turbulent flow of liquid 

Pr metals in circular tubes, 
/,/0-06 based on the theoretical calcu- - 0.02 
<-0.01 lations of R. H. Notter and 
'-0.004 C. A. Sleicher, Chem. Eng. Sci., 

27,2073-2093 (1972). 

lo2 

Nu 

10 

in which To, is the arithmetic average of the surface temperatures at the two ends, 
To, = ;(T,, + To,), and Tb, is the arithmetic average of the inlet and outlet bulk 
temperatures, Tb, = ; ( T ~ ,  + Tb2). 

lo2 1 o3 104 
PC = PCclet number = RePr 

- I I I I I I I , ,  I I 1 1  , 1 1 1 1  

- 

//@@@; : 

- Laminar 

I I 

It is also recommended that the Reynolds number be written as Re = D(pv)/ 
p = Dw/Sp, in order to account for viscosity, velocity, and density changes over 
the cross section of area S. 

b. For submerged objects with uniform surface temperature To in a stream of liquid 
approaching with uniform temperature T,, 

Tf = $(T, + T,) 

For flow systems involving more complicated geometries, it is preferable to use ex- 
perimental correlations of the heat transfer coefficients. In the following sections we 
show how such correlations can be established by a combination of dimensional analysis 
and experimental data. 

j W. J. M. Douglas and S. W. Churchill, Chem. Eng. Pvog. Symposium Series, No. 18,52,23-28 (1956); 
E. R. G. Eckert, Recent Advances in Heat and Mass Transfer, McGraw-Hill, New York (1961), pp. 51-81, 
Eq. (20); more detailed reference states have been proposed by W. E. Stewart, R. Kilgour, and K.-T. Liu, 
University of Wisconsin-Madison Mathematics Research Center Report #I310 (June 1973). 
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514.3 HEAT TRANSFER COEFFICIENTS FOR 
FORCED CONVECTION IN TUBES 

In the previous section we have shown that Nusselt numbers for some laminar flows can 
be computed from first principles. In this section we show how dimensional analysis 
leads us to a general form for the dependence of the Nusselt number on various dimen- 
sionless groups, and that this form includes not only the results of the preceding section, 
but turbulent flows as well. Then we present a dimensionless plot of Nusselt numbers 
that was obtained by correlating experimental data. 

First we extend the dimensional analysis given in 511.5 to obtain a general form for 
correlations of heat transfer coefficients in forced convection. Consider the steadily driven 
laminar or turbulent flow of a Newtonian fluid through a straight tube of inner radius R, 
as shown in Fig. 14.3-1. The fluid enters the tube at z = 0 with velocity uniform out to very 
near the wall, and with a uniform inlet temperature TI (= Tbl). The tube wall is insulated 
except in the region 0 I z r L, where a uniform inner-surface temperature To is main- 
tained by heat from vapor condensing 02 the outer surface. For the moment, we assume 
constant physical properties p, p, k, and C,. Later we will extend the empiricism given in 
$14.2 to provide a fuller allowance for the temperature dependence of these properties. 

We follow the same procedure used in 56.2 for friction factors. We start by writing 
the expression for the instantaneous heat flow from the tube wall into the fluid in the 
system described above, 

which is valid for laminar or turbulent flow (in laminar flow, Q would, of course, be in- 
dependent of time). The + sign appears here because the heat is added to the system in 
the negative r direction. 

Equating the expressions for Q given in Eqs. 14.1-2 and 14.3-1 and solving for h,, we get 

Next we introduce the dimensionless quantities i. = r/D, i = z/D, and ? = (T - To)/ 
(Tbl - TO), and multiply by D/k to get an expression for the Nusselt number Nul = hlD/k: 

Thus the (instantaneous) Nusselt number is basically a dimensionless temperature gradient 
averaged over the heat transfer surface. 

Condenser 

Fluid enters 4 b j _  Fluid leaves 
at uniform - D I with bulk 

temperature T temperature Tb2 

I 

/ I 
Heated section 

I 
I I 

"1" with uniform surface "2" 
temperature To 

Fig. 14.3-1. Heat transfer in the entrance region of a tube. 
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The dimensionless temperature gradient appearing in Eq. 14.3-3 could, in principle, 
be evaluated by differentiating the expression for ? obtained by solving Eqs. 11.5-7, 8, 
and 9 with the boundary conditions 

where i7 = v/(uZ), and 9 = (9 - 91)/p(v,)~. As in s6.2, we have neglected the d 2 / d i 2  
terms of the equations of change on the basis of order-of-magnitude reasoning similar to 
that in 94.4. With those terms suppressed, upstream transport of heat and momentum 
are excluded, so that the solutions upstream of plane 2 in Fig. 14.3-1 do not depend on 
L/D. 

From Eqs. 11.5-7,8, and 9 and these boundary conditions, we conclude that the di- 
mensionless instantaneous temperature distribution must be of the following form: 

? = ?(?, 8, i, i; Re, Pr, Br) for 0 5 i 5 L/D (14.3-9) 

Substitution of this relation into Eq. 14.3-3 leads to the conclusion that  NU,(^) = Nul(Re, 
Pr, Br, L/D, i). When time-averaged over an interval long enough to include all the tur- 
bulent disturbances, this becomes 

Nul = Nul(Re, Pr, Br, L / D )  (14.3-10) 

A similar relation is valid when the flow at plane 1 is fully developed. 
If, as is often the case, the viscous dissipation heating is small, the Brinkman number 

can be omitted. Then Eq. 14.3-10 simplifies to 

Nu, = Nul(Re, Pr, L /  D) (14.3-1 1) 

Therefore, dimensional analysis tells us that, for forced-convection heat transfer in circu- 
lar tubes with constant wall temperature, experimental values of the heat transfer coeffi- 
cient h1 can be correlated by giving Nu, as a function of the Reynolds number, the 
Prandtl number, and the geometric ratio L/D. This should be compared with the similar, 
but simpler, situation with the friction factor (Eqs. 6.2-9 and 10). 

The same reasoning leads us to similar expressions for the other heat transfer coeffi- 
cients we have defined. It can be shown (see Problem 14.B-4) that 

Nu, = Nu,(Re, Pr, LID) 
Nul, = Nu,(Re, Pr, LID) 

Nuloc = Nul,,(Re, Pr, z/  D) 

in which Nu, = h,D/k, Nul, = hl,D/k, and Nu,,, = hl,,D/k. That is, to each of the heat 
transfer coefficients, there is a corresponding Nusselt number. These Nusselt numbers 
are, of course, interrelated (see Problem 14.B-5). These general functional forms for the 
Nusselt numbers have a firm scientific basis, since they involve only the dimensional 
analysis of the equations of change and boundary conditions. 

Thus far we have assumed that the physical properties are constants over the tem- 
perature range encountered in the flow system. At the end of s14.2 we indicated that 
evaluating the physical properties at the film temperature is a suitable empiricism. How- 
ever, for very large temperature differences, the viscosity variations may result in such a 
large distortion of the velocity profiles that it is necessary to account for this by introduc- 
ing an additional dimensionless group, pb/po, where pb is the viscosity at the arithmetic 
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average bulk temperature and po is the viscosity at the arithmetic average wall tempera- 
ture.' Then we may write 

Nu = Nu(Re, Pr, L /  D, pb/po) (14.3-15) 

This type of correlation seems to have first been presented by Sieder and Tate.2 If, in ad- 
dition, the density varies significantly, then some free convection may occur. This effect 
can be accounted for in correlations by including the Grashof number along with the 
other dimensionless groups. This point is pursued further in 914.6. 

Let us now pause to reflect on the significance of the above discussion for con- 
structing heat transfer correlations. *The heat transfer coefficient h depends on eight 
physical quantities (D ,  (v), p, PO, pb, Cp, k, L). However, Eq. 14.3-15 tells us that this de- 
pendence can be expressed more concisely by giving Nu as a function of only four di- 
mensionless groups (Re, Pr, L I D ,  pb/pO). Thus, instead of taking data on h for 5 values 
of each of the eight individual physical quantities (58 tests), we can measure h for 5 
values of the dimensionless groups (5"ests)-a rather dramatic saving of time and 
effort. 

A good global view of heat transfer in circular tubes with nearly constant wall tem- 
perature can be obtained from the Sieder and Tate2 correlation shown in Fig. 14.3-2. This 
is of the form of Eq. 14.3-15. It has been found empiri~ally~,~ that transition to turbulence 
usually begins at about Re = 2100, even when the viscosity varies appreciably in the ra- 
dial direction. 

For highly turbulent flow, the curves for LID > 10 converge to a single curve. For 
Re > 20,000 this curve is described by the equation 

This equation reproduces available experimental data within about ?20% in the ranges 
lo4 < Re < 105and0.6 < Pr < 100. 

For laminar flow, the descending lines at the left are given by the equation 

One can arrive at the viscosity ratio by inserting into the equations of change a temperature- 
dependent viscosity, described, for example, by a Taylor expansion about the wall temperature: 

When the series is truncated and the differential quotient is approximated by a difference quotient, we get 

Thus, the viscosity ratio appears in the equation of motion and hence in the dimensionless correlation. 
E. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28,1429-1435 (1936). 
A. P. Colburn, Trans. AIChE, 29,174-210 (1933). Alan Philip Colburn (1904-1955), provost at the 

University of Delaware (1950-1955), made important contributions to the fields of heat and mass transfer, 
including the "Chilton-Colburn relations." 
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Fig. 14.3-2. Heat transfer coefficients for fully developed flow in smooth tubes. The lines for lami- 
nar flow should not be used in the range RePrD/L < 10, which corresponds to (To - Tb),/(T0 - T,), 
< 0.2. The laminar curves are based on data for RePrD/L >> 10 and nearly constant wall tem- 
perature; under these conditions h, and kl, are indistinguishable. We recommend using k,, as op- 
posed to the h, suggested by Sieder and Tate, because this choice is conservative in the usual heat- 
exchanger design calculations [E. N. Sieder and G. E. Tate, Ind. Eng. Chem., 28,1429-1435 (1936)l. 

which is based on Eq. (C) of Table 14.2-l4 and Problem 12D.4. The numerical coefficient 
in Eq. (C) has been multiplied by a factor of $ to convert from h,,, to hln, and then further 
modified empirically to account for the deviations due to variable physical properties. 
This illustrates how a satisfactory empirical correlation can be obtained by modifying 
the result of an analytical derivation. Equation 14.3-17 is good within about 20% for RePr 
D / L  > 10, but at lower values of RePr D / L  it underestimates hl, considerably. The occur- 
rence of Pr1'3 in Eqs. 14.3-16 and 17 is consistent with the large Prandtl number asymp- 
tote found in 9913.6 and 12.4. 

The transition region, roughly 2100 < Re < 8000 in Fig. 14.3-2, is not well understood 
and is usually avoided in design if possible. The curves in this region are supported by 
experimental measurements2 but are less reliable than the rest of the plot. 

The general characteristics of the curves in Fig. 14.3-2 deserve careful study. Note 
that for a heated section of given L  and D  and a fluid of given physical properties, the or- 
dinate is proportional to the dimensionless temperature rise of the fluid passing 
through-that is, (T,, - T,,)/(T, - Tb)ln Under these conditions, as the flow rate (or 
Reynolds number) is increased, the exit fluid temperature will first decrease until Re 
reaches about 2100, then increase until Re reaches about 8000, and then finally decrease 
again. The influence of L / D  on h,, is marked in laminar flow but becomes insignificant 
for Re > 8000 with L I D  > 60. 

Equation (C) is an asymptotic solution of the Graetz problem, one of the classic problems of heat 
convection: L. Graetz, Ann. d. Physik, 13,79-94 (1883), 25,337-357 (1885); see J. Leveque, Ann. Mines 
(Series 12), 13,201-299,305-362,381415 (1928) for the asymptote in Eq. (C). An extensive summary 
can be found in M. A. Ebadian and Z. F. Dong, Chapter 5 of Handbook of Heat Transfer, 3rd edition, 
(W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds.), McGraw-Hill, New York (1998). 
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Note also that Fig. 14.3-2 somewhat resembles the friction-factor plot in Fig. 6.2-2, al- 
though the physical situation is quite different. In the highly turbulent range (Re > 
10,000) the heat transfer ordinate agrees approximately with f/2 for the long smooth 
pipes under consideration. This was first pointed out by Colburn," who proposed the fol- 
lowing empirical analogy for long, smooth tubes: 

where S is the area of the tube cross section, w is the mass rate of flow through the tube, 
and f/2 is obtainable from Fig. 6.2-2 using Re = Dw/Sp = 4w/n-Dp. Clearly the analogy 
of Eq. 14.3-18 is not valid below Re = 10,000. For rough tubes with fully developed tur- 
bulent flow the analogy breaks down completely, because f is affected more by rough- 
ness than j, is. 

One additional remark about the use of Fig. 14.3-2 has to do with the application to 
conduits of noncircular cross section. For highly turbulent flow, one may use the mean 
hydraulic radius of Eq. 6.2-16. To apply that empiricism, D is replaced by 4R, every- 
where in the Reynolds and Nusselt numbers. 

Air at 70°F and 1 atm is to be pumped through a straight 2-in. i.d. tube at a rate of 70 IbJhr. 
A section of the tube is to be heated to an inside wall temperature of 250°F to raise the air tem- 

Design of a perature to 230°F. What heated length is required? 
Heater 

SOLUTION 

The arithmetic average bulk temperature is T,, = 150°F, and the film temperatur_e is Tf = 

i(150 + 250) = 200°F. At this temperature the properties of air are p = 0.052 lb,/ft hr, C, = 0.242 
Btu/lb, F, k = 0.0180 Btu/hr. ft . F, and Pr = Crp/k = 0.70. The viscosities of air at 150°F and 
250°F are 0.049 and 0.055 Ib,/ft . hr, respectively, so that the viscosity ratio is pb/pO = 
0.049/0.055 = 0.89. 

The Reynolds number, evaluated at the film temperature, 200°F, is then 

From Fig. 14.3-1 we obtain 

When this is solved for L/D we get 

Hence the required length is 

If Reb had been much smaller, it would have been necessary to estimate LID before reading 
Fig. 14.3-2, thus initiating a trial-and-error process. 
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Note that in this problem we did not have to calculate h. Numerical evaluation of h is 
necessary, however, in more complicated problems such as heat exchange between two fluids 
with an intervening wall. 

514.4 HEAT TRANSFER COEFFICIENTS FOR FORCED 
CONVECTION AROUND SUBMERGED OBJECTS 

Another topic of industrial importance is the transfer of heat to or from an object around 
which a fluid is flowing. The object may be relatively simple, such as a single cylinder or 
sphere, or it may be more complex, such as a "tube bundle" made up of a set of cylindri- 
cal tubes with a stream of gas or liquid flowing between them. We examine here only a 
few selected correlations for simple systems: the flat plate, the sphere, and the cylinder. 
Many additional correlations may be found in the references cited in the introduction to 
the chapter. 

Flow Along a Flat Plate 

We first examine the flow along a flat plate, oriented parallel to the flow, with its surface 
maintained at To and the approaching stream having a uniform temperature T, and a 
uniform velocity v,. The heat transfer coefficient hlOc = qo/(To - T,) and the friction fac- 
tor fi,, = T , / ; ~ V ~  are shown in Fig. 14.1-1. For the laminar region, which normally exists 
near the leading edge of the plate, the following theoretical expressions are obtained (see 
Eq. 4.4-30 as well as Eqs. 12.4-12,12.4-15, and 12.4-16): 

Fig. 14.4-1. Transfer coefficients for a smooth flat plate in tangential flow. Adapted from H. Schlichting, 
Boundary-Layer Theo y, McGraw-Hill, New York (1955), pp. 438-439. 
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As shown in Table 12.4-1, a more accurate value of the numerical coefficient in Eq. 14.4-2 
is that of Pohlhausen-namely, 0.332. If we use this value, then Eq. 14.4-2 gives 

Since the numerical coefficient in Eq. 14.4-3 is the same as that in Eq. 14.4-1, we then 

€9 

for the Colburn analogy between heat transfer and fluid friction. This was to be ex- 
pected, because there is no "form drag" in this flow geometry. 

Equation 14.4-4 was derived for fluids with constant physical properties.' When the 
physical properties are evaluated at the film temperature Ti = :(To + T,), Eq. 14.4-3 is 
known to work well for gases.* The analogy of Eq. 14.4-4 is accurate within 2% for Pr > 
0.6, but becomes inaccurate at lower Prandtl numbers. 

For highly turbulent flows, the Colburn analogy still holds with fair accuracy, with 
f,,, given by the empirical curve in Fig. 14.4-1. The transition between laminar and turbu- 
lent flow resembles that for pipes in Fig. 14.3-1, but the limits of the transition region are 
harder to predict. For smooth, sharp-edged flat plates in an isothermal flow the transi- 
tion usually begins at a Reynolds number Re, = xv,p/p of 100,000 to 300,000 and is al- 
most complete at a 50% higher Reynolds number. 

Flow Around a Sphere 

In Problem 10B.1 it is shown that the Nusselt number for a sphere in a stationary fluid is 
2. For the sphere with constant surface temperature To in a flowing fluid approaching 
with a uniform velocity v,, the mean Nusselt number is given by the following empiri- 
cism3 

Nu, = 2 + 0.60 ~ e ' / '  Pr1l3 (14.4-5) 

This result is useful for predicting the heat transfer to or from droplets or bubbles. 
Another correlation that has proven successful4 is 

Nu,, = 2 + (0.4 Re'12 + 0 .06Re~/~)Pr~ ,~  (14.4-6) 

in which the physical properties appearing in Nu,, Re, and Pr are evaluated at the ap- 
proaching stream temperature. This correlation is recommended for 3.5 < Re < 7.6 x 
10" 0.71 < Pr < 380, and 1.0 < p,/p, < 3.2. In contrast to Eq. 14.4-5, it is not valid in the 
limit that Pr -, w. 

' The result in Eq. 14.4-1 was first obtained by H. Blasius, Z. Math. Phys., 56,l-37 (1908), and that in 
Eq. 14.4-3 by E. Pohlhausen, Z. angew. Math. Mech., 1,115-121 (1921). 

E. R. G. Eckert, Trans. ASME, 56,1273-1283 (1956). This article also includes high-velocity flows, 
for which compressibility and viscous dissipation become important. 

W. E. Ranz and W. R. Marshall, Jr., Chern. Eng. Prog., 48,141-146,173-180 (1952). N.  Frossling, 
Gerlands Beitr. Geophys., 52,170-216 (1938), first gave a correlation of this form, with a coefficient of 0.552 
in lieu of 0.60 in the last term. 

S. Whitaker, Fundamental Principles of Heat Transfer, Krieger Publishing Co., Malabar, Fla. (1977), 
pp. 340-342; AIChE Journal, 18,361-371 (1972). 
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Flow Around a Cylinder 

A cylinder in a stationary fluid of infinite extent does not admit a steady-state solution. 
Therefore the Nusselt number for a cylinder does not have the same form as that for a 
sphere. Whitaker recommends for the mean Nusselt number4 

Nu, = (0.4 ~ e ' / '  + 0.06 R~'/~))PP' ( i"' 
in the range 1.0 < Re < 1.0 X lo5, 0.67 < Pr < 300, and 0.25 < p,/po < 5.2. Here, as in 
Eq. 14.4-6, the values of viscosity and thermal conductivity in Re and Pr are those at the 
approaching stream temperature. Similar results are available for banks of cylinders, 
which are used in certain types of heat exchangers.' 

Another ~orrelation,~ based on a curve-fit of McAdams' compilation of heat transfer 
coefficient data: and on the low-Re asymptote in Problem 12B.6, is 

[ j7'r) + 4.18 Re]p1i3Re1/3Pr1" Nu, = (0.376 ~ e ' / '  + 0.057 Re2/3)~r"3 + 0.92 In - 

This correlation has the proper behavior in the limit that Pr + m, and also behaves prop- 
erly for small values of the Reynolds number. This result can be used for analyzing the 
steady-state performance of hot-wire anemometers, which typically operate at low 
Reynolds numbers. 

Flow Around Other Objects 

We learn from the preceding three discussions that, for the flow around objects of shapes 
other than those described above, a fairly good guess for the heat transfer coefficients 
can be obtained by using the relation 

Nu, -  NU,^,, = 0.6 Re1l2 Pr1I3 (14.4-9) 

in which Nu,,o is the mean Nusselt number at zero Reynolds number. This generaliza- 
tion, which is shown in Fig. 14.4-2, is often useful in estimating the heat transfer from ir- 
regularly shaped objects. 

- 8 

1.5 Cylinders (Eq. 14.4-8) 

Flat plates (Eq. 14.4-2) 

0.5 

W. E. Stewart (to be published). 
W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954), p. 259. 

Spheres (Eq. 14.4-5) and Eq. 14.4-9 Fig. 14.4-2. Graph comparing the 
0 I I I I I Nusselt numbers for flow around flat 
o.l lo loo lo3 lo4 lo5 plates, spheres, and cylinders with 

Reynolds number Eq. 14.4-9. 
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514.5 HEAT TRANSFER COEFFICIENTS FOR FORCED 
CONVECTION THROUGH PACKED BEDS 

Heat transfer coefficients between particles and fluid in packed beds are important in the 
design of fixed-bed catalytic reactors, absorbers, driers, and pebble-bed heat exchangers. 
The velocity profiles in packed beds exhibit a strong maximum near the wall, attribut- 
able partly to the higher void fraction there and partly to the more ordered interstitial 
passages along this smooth boundary. The resulting segregation of the flow into a fast 
outer stream and a slower interior one, which mix at the exit of the bed, leads to compli- 
cated behavior of mean Nusselt numbers in deep packed beds,' unless the tube-to-parti- 
cle diameter ratio D J D ,  is very large or close to unity. Experiments with wide, shallow 
beds show simpler behavior and are used in the following discussion. 

We define hi,, for a representative volume Sdz of particles and fluid by the following 
modification of Eq. 14.1-5: 

Here a is the outer surface area of particles per unit bed volume, as in 96.4. Equations 6.4- 
5 and 6 give the effective particle size D, as 6/a, = 6(1 - &)/a for a packed bed with void 
fraction E. 

Extensive data on forced convection for the flow of gases2 and liquids3 through shal- 
low packed beds have been critically analyzed4 to obtain the following local heat transfer 
correlation, 

j, = 2.19 ~ e - ~ / ~  + 0.78 Re-0,381 (14.5-2) 

and an identical formula for the mass transfer function j, defined in 922.3. Here the 
Chilton-Colburn j, factor and the Reynolds number are defined by 

In this equation the physical properties are all evaluated at the film temperature T f  = 

$(To - TJ, and Go = w / S  is the superficial mass flux introduced in 96.4. The quantity 4 is 
a particle-shape factor, with a defined value of 1 for spheres and a fitted value4 of 0.92 for 
cylindrical pellets. A related shape factor was used by Gamson5 in Re and j,; the present 
factor + is used in Re only. 

For small Re, Eq. 14.5-2 yields the asymptote 

' H. Martin, Chem. Eng. Sci., 33,913-919 (1978). 
B. W. Gamson, G. Thodos, and 0. A. Hougen, Trans. AIChE, 39,l-35 (1943); C. R. Wilke and 0. A. 

Hougen, Trans. AICkE, 41,445451 (1945). 
L. K. McCune and R. H. Wilhelm, Ind. Eng. Chem., 41,1124-1134 (1949); J. E. Williamson, K. E. 

Bazaire, and C. J. Geankoplis, Ind. Eng. Chem. Fund., 2,126-129 (1963); E. J. Wilson and C. J. Geankoplis, 
Ind. Eng. Chem. Fund., 5,9-14 (1966). 

W. E. Stewart, to be submitted. 
B. W. Gamson, Chem. Eng. Prog., 47,19-28 (1951). 
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consistent with boundary layer theory6 for creeping flow with RePr >> 1. The latter re- 
striction gives Nu >> 1 corresponding to a thin thermal boundary layer relative to 
DJ(1 - E)$. This asymptote represents the creeping-flow mass-transfer data for liquids3 
very well. 

The exponent 5 in Eq. 14.5-3 is a high-Pr asymptote given by boundary layer theory 
for steady laminar flows6 and for steadily driven turbulent flows.7 This dependence is 
consistent with the cited data over the full range Pr > 0.6 and the corresponding range of 
the dimensionless group Sc for mass transfer. 

514.6 HEAT TRANSFER COEFFICIENTS FOR 
FREE AND MIXED CONVECTION1 

Here we build on Example 11.4-5 to summarize the behavior of some important sys- 
tems in the presence of appreciable buoyant forces, first by rephrasing the results ob- 
tained there in terms of Nusselt numbers and then by extension to other situations: (1) 
small buoyant forces, where the thin-boundary-layer assumption of Example 11.4-5 
may not be valid; (2) very large buoyant forces, where turbulence can occur in the 
boundary layer, and (3) mixed forced and free convection. We shall confine ourselves to 
heat transfer between solid bodies and a large quiescent volume of surrounding fluid, 
and to the constant-temperature boundary conditions of Example 11.4-5. Discussions of 
other situations, including transient behavior and duct and cavity flows, are available 
elsewhere.' 

In Example 11.4-5 we saw that for the free convection near a vertical flat plate, the 
principal dimensionless group is GrPr, which is often called the Rayleigh number, Ra. If 
we define the area mean Nusselt number as Nu,, = hH/k = qavgH/k(T0 - TI), then Eq. 
11.4-51 may be written as 

Nu, = c ( G ~ P ~ ) " ~  (14.6-1) 

where C was found to be a weak function of Pr. The heat transfer behavior at moderate 
values of Ra = GrPr is governed, for many shapes of solids, by laminar boundary layers 
of the type described in Example 11.4-5, and the results of those discussions are normally 
used directly. 

However, at small values of GrPr direct heat conduction to the surroundings may 
invalidate the boundary layer result, and at sufficiently high values of GrPr the mecha- 
nism of heat transfer shifts toward random local eruptions or plumes of fluid, producing 
turbulence within the boundary layer. Then the Nusselt number becomes independent 
of the system size. The case of combined forced and free convection (normally referred 
to as mixed convection) is more complex: one must now consider Pr, Gr, and Re as inde- 
pendent variables, and also whether the forced and free convection effects are in the 
same or different directions. Only the former seems to be at all well understood. The de- 
scription of the behavior is further complicated by lack of abrupt transitions between the 
various flow regimes. 

' W. E. Stewart, AIChE Journal, 9,528-535 (1963); R. Pfeffer, Ind. Eng. Chem. Fund., 3,380-383 (1964); 
J. P. Sdrensen and W. E. Stewart, Chem. Eng. Sci., 29,833-837 (1974). See also Example 12.4-3. 

W. E. Stewart, AIChE Journal, 33,2008-2016 (1987); corrigenda 34,1030 (1988). 
' G. D. Raithby and K. G. T. Hollands, Chapter 4 in W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, 

eds., Handbook of Heat Transfer, 3rd edition, McGraw-Hill, New York (1998). 
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It has been shown, however, that simple and reliable predictions of heat transfer 
rates (expressed as area mean Nusselt numbers Nu,) may be obtained for this wide vari- 
ety of flow regimes by empirical combinations of asymptotic expressions: 

a.  NU^^, for conduction in the absence of buoyant forces or forced convection 

b. NU:", for thin laminar boundary layers, as in Example 11.4-5 

c. NU~X'~, for turbulent boundary layers 

d.  NU^^, for pure forced convection 

These are dealt with in the following subsections. 

No Buoyant Forces 

The limiting Nusselt number for vanishingly small free and forced convection is ob- 
tained by solving the heat conduction equation (the Laplace equation, V2T = 0) for con- 
stant, uniform temperature over the solid surface and a different constant temperature at 
infinity. The mean Nusselt number then has the general form 

With K equal to zero for all objects with at least one infinite dimension (e.g., infinitely 
long cylinders or infinitely wide plates). For finite bodies K is nonzero, and an important 
case is that of the sphere for which, according to Problem 10B.1, 

with the characteristic length taken to be the sphere diameter. Oblate ellipsoids of revo- 
lution and circular disks are discussed in Problem 14D.1. 

Thin Laminar Boundary Layers 

For thin laminar boundary layers, the isothermal vertical flat plate is a representative 
system, conforming to Eq. 14.6-1. This equation may be generalized to 

Moreover, the function of Pr and shape can be factored into the product 

Representative values',3 of C, and C, are given in Tables 14.6-1 and 2, respectively. Shape 
factors for a wide variety of other shapes are a~ai lable .~,~ For heated horizontal flat sur- 
faces facing downward and cooled horizontal flat surfaces facing upward, the following 
correlation5 is recommended: 

lam = 0.527 
[I + ( I . ~ / P ~ ) ~ / ~ ~ I ~ / ~  

(Gr~r)'/' 

S. W. Churchill and R. Usagi, AIChE Journal, 23,1121-1128 (1972). 
W. E. Stewart, Int. J .  Heat and Mass Transfer, 14,1013-1031 (1971). 

%. Acrivos, AIChE Journal, 6,584-590 (1960). 
T. Fujii, M. Honda, and I. Morioka, Int. J. Heat and Mass Transfer, 15,755-767 (1972). 
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Table 14.6-1 The Factor C1 in Eq. 14.6-5, and the D in the Nusselt 
Number, for Several Representative Shapesa 
- - 

Vertical Horizontal Horizontal 
Shape + plate platea cylinder Sphere 

CI 1 .O 0.835 0.772 0.878 

" D  in Nu Height H Width W Diameter D Diameter D 

" For a hot upper surface and an insulated lower one, or the reverse for cold 
surfaces. 

Table 14.6-2 The Factor C2 as a Function of the Prandtl Number 

Hg Gases Water Oils 

Pr 0.022 0.71 1 .O 2.0 4.0 6.0 50 100 2000 

For the vertical plate with a constant-heat-flux boundary condition, the recommended 
power on GrPr is also 1 / 5 .  

Laminar free-convection heat fluxes tend to be small, and a conduction correction 
is often necessary for accurate predictions. The conduction limit is determined by 
solving the equation V2T = 0 for the given geometry, and this leads to the calculation 

, . Then the combined Nusselt number, of a "conduction Nusselt number,"  NU'""^ 
 NU;^"^, is estimated by combining the two contributing Nusselt numbers by an equa- 
tion of the form1 

cond n I / n  =  NU^"')^ + (Nu,, ) ] (14.6-8) 

Optimum values of n are shape-dependent, but 1.07 is a suggested rough estimate in the 
absence of specific information. 

Turbulent Boundary Layers 

The effects of turbulence increase gradually, and it is common practice to combine the 
laminar and turbulent contributions as follows:' 

N u P  = [ ( ~ ~ z ~ ~ ) ~  + ( N ~ E ~ ) ~ ] ~ / ~  

Thus for the vertical isothermal flat plate, one writes' 

turb - - 
C3(Gr~r)'/3 

1 + (1.4 x 109/Gr) 

with 

and m = 6. The values of m in Eq. 14.6-9 are heavily geometry-dependent. 
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Mixed Free and Forced Convection 

Finally, one must deal with the problem of simultaneous free and forced convection, and 
this is again done through the use of an empirical combining rule? 

This rule appears to hold reasonably well for all geometries and situations, provided 
only that the forced and free convection have the same primary flow direction. 

EXAMPLE 14.6-1 

Heat Loss by Free 
Convection from a 
Horizontal Pipe 

Estimate the rate of heat loss by free convection from a unit length of a long horizontal pipe, 6 
in. in outside diameter, if the outer surface temperature is 100°F and the surrounding air is at 
1 atm and 80°F. 

SOLUTION 

The properties of air at 1 atm and a film temperature Tf  = 90°F = 550"R are 

Other relevant values are D = 0.5 ft, AT = 20°R, and g = 4.17 X lo8 ft/hr2. From these data we 
obtain 

Then from Eqs. 14.6-4 to 6 and Table 14.6-1 we get 

Nu,  = 0.772 0.671 
(11 + (0.492,0.7291~/~~1~/~ 10.4 x I O ~ ) ~ / '  

The heat transfer coefficient is then 

The rate of heat loss per unit length of the pipe is 

This is the heat loss by convection only. The radiation loss for the same problem is obtained in 
Example 16.5-2. 

E. Ruckenstein, Adv. in Chern. Eng., 13,ll-112 (1987) E. Ruckenstein and R. Rajagopalan, Chem. 
Eng. Communications, 4,15-29 (1980). 
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Y Fig. 14.7-1. Film condensation on a verti- 
cal surface (interfacial temperature dis- 
continuity exaggerated). 

Velocity distribution v J y ,  z 

Temperature distribution T(y, z )  

Vapor 
movement 

thickness 
6(z) 

514.7 HEAT TRANSFER COEFFICIENTS FOR CONDENSATION 
OF PURE VAPORS ON SOLID SURFACES 

The condensation of a pure vapor on a solid surface is a particularly complicated heat 
transfer process, because it involves two flowing fluid phases: the vapor and the conden- 
sate. Condensation occurs industrially in many types of equipment; for simplicity, we 
consider here only the common cases of condensation of a slowly moving vapor on the 
outside of horizontal tubes, vertical tubes, and vertical flat walls. 

The condensation process on a vertical wall is illustrated schematically in Fig. 14.7-1. 
Vapor flows over the condensing surface and is moved toward it by the small pressure 
gradient near the liquid surface.' Some of the molecules from the vapor phase strike the 
liquid surface and bounce off; others penetrate the surface and give up their latent heat 
of condensation. The heat thus released must then move through the condensate to the 
wall, thence to the coolant on the other side of the wall. At the same time, the condensate 
must drain from the surface by gravity flow. 

The condensate on the wall is normally the sole important resistance to heat 
transfer on the condensing wall. If the solid surface is clean, the condensate will usu- 
ally form a continuous film over the surface, but if traces of certain impurities are pre- 
sent, (such as fatty acids in a steam condenser), the condensate will form in droplets. 
"Dropwise condensati~n"~ gives much higher rates of heat transfer than "film con- 
densation," but is difficult to maintain, so that it is common practice to assume film 
condensation in condenser design. The correlations that follow apply only to film 
condensation. 

The usual definition of h,, for condensation of a pure vapor on a solid surface of area 
A and uniform temperature To is 

in which Q is the rate of heat flow into the solid surface, and Td is the dew point of the 
vapor approaching the wall surfacethat is, the temperature at which the vapor would 

Note that there occur small but abrupt changes in pressure and temperature at an interface. These 
discontinuities are essential to the condensation process, but are generally of negligible magnitude in 
engineering calculations for pure fluids. For mixtures, they may be important. See R. W. Schrage, 
Interphase Mass Transfer, Columbia University Press (1953). 

Dropwise condensation and boiling are discussed at length by J. G. Collier and J. R. Thome, 
Convective Boiling and Condensation, 3rd edition, Oxford University Press (1996). 



g14.7 Heat Transfer Coefficients for Condensation of Pure Vapors on Solid Surfaces 447 

condense if cooled slowly at the prevailing pressure. This temperature is very nearly that 
of the liquid at the liquid-gas interface. Therefore h, may be regarded as a heat transfer 
coefficient for the liquid film. 

Expressions for h, have been derived3 for laminar nonrippling condensate flow by ap- 
proximate solution of the equations of energy and motion for a falling liquid film (see 
Problem 14C.1). For film condensation on a horizontal tube of diameter D, length L, and 
constant surface temperature To, the result of Nusselt3 may be written as 

Here w/L is the mass rate of condensation per unit length of tube, and it is understood 
that all the physical properties of the condensate are to be calculated at the film tempera- 
ture, Ti = :(T, + To). 

For moderate temperature differences, Eq. 14.7-2 may be rewritten with the aid of an 
energy balance on the condensate to give 

Equations 14.7-2 and 3 have been confirmed experimentally within 2 10% for single hori- 
zontal tubes. They also seem to give satisfactory results for bundles of horizontal tubesf4 
in spite of the complications introduced by condensate dripping from tube to tube. 

For film condensation on vertical tubes or vertical walls of height L, the theoretical re- 
sults corresponding to Eqs. 14.7-2 and 3 are 

and 

respectively. The quantity r in Eq. 14.7-4 is the total rate of condensate flow from the bot- 
tom of the condensing surface per unit width of that surface. For a vertical tube, r = w/nD, 
where w is the total mass rate of condensation on the tube. For short vertical tubes ( L  < 0.5 ft), 
the experimental values of h, confirm the theory well, but the measured values for long ver- 
tical tubes (L  > 8 ft) may exceed the theory for a given T, - To by  as much as 70%. This dis- 
crepancy is attributed to ripples that attain greatest amplitude on long vertical tubes: 

We now turn to the empirical expressions for turbulent condensate flow. Turbulent 
flow begins, on vertical tubes or walls, at a Reynolds number Re = T / p  of about 350. For 
higher Reynolds numbers, the following empirical formula has been pr~posed:~  

This equation is equivalent, for small T, - To, to the formula 

W. Nusselt, Z. Ver. deutsch. Ing., 60,541-546,596-575 (1916). 
* B. E. Short and H. E. Brown, Proc. General Disc. Heat Transfer, London (19511, pp. 27-31. See also 

D. Butterworth, in Handbook of Heat Exchangev Design (G. F. Hewitt, ed.), Oxford University Press, 
London (1977), pp. 426462. 

W. H. McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954) p. 333. 
U. Grigull, Forsch. lngenieurwesen, 13,49-57 (1942); Z.  Ver. dtsch. Ing., 86,444-445 (1942). 
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Fig. 14.7-2. Correlation of heat transfer data for film condensa- 
tion of pure vapors on vertical surfaces. [H. Grober, S. Erk, and 
U. Grigull, Die Grundgesetze der Wiirmeiibertragung, 3rd edition, 
Springer-Verlag, Berlin (1955), p. 296.1 

Equations 14.7-4 to 7 are summarized in Fig. 14.7-2, for convenience of making calcula- 
tions and to show the extent of agreement with the experimental data. Somewhat better 
agreement could have been obtained by using a family of lines in the turbulent range to 
represent the effect of Prandtl number. However, in view of the scattering of the data, a 
single line is adequate. 

Turbulent condensate flow is very difficult to obtain on horizontal tubes, unless the 
tube diameters are very large or high temperature differences are encountered. Equa- 
tions 14.7-2 and 3 are believed to be satisfactory up to the estimated transition Reynolds 
number, Re = w,/Lp, of about 1000, where w, is the total condensate flow leaving a given 
tube, including the condensate from the tubes above.7 

The inverse process of vaporization of a pure fluid is considerably more complicated 
than condensation. We do not attempt to discuss heat transfer to boiling liquids here, but 
refer the reader to some  review^.^" 

W .  H.  McAdams, Heat Transmission, 3rd edition, McGraw-Hill, New York (1954), pp. 338-339. 
H. D. Baehr and K Stephan, Heat and Mass Transfer, Springer, Berlin (19981, Chapter 4. 
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Condensation of Steam 
on a Vertical Surface 

A boiling liquid flowing in a vertical tube is being heated by condensation of steam on the 
outside of the tube. The steam-heated tube section is 10 ft high and 2 in. in outside diameter. 
If saturated steam is used, what steam temperature is required to supply 92,000 Btu/hr of 
heat to the tube at a tube-surface temperature of 200°F? Assume film condensation. 

SOLUTION The fluid properties depend on the unknown temperature T,. We make a guess of T, = To = 
200°F. Then the physical properties at the film temperature (also 200°F) are 

Assuming that the steam gives up only latent heat (the assumption Td = 7'" = 200°F implies 
this), an energy balance around the tube gives 

in which Q is the heat flow into the tube wall. The film Reynolds number is 

Reading Fig. 14.7-2 at this value of the ordinate, we find that the flow is laminar. Equation 
14.7-2 is applicable, but it is more convenient to use the line based on this equation in Fig. 
14.7-2, which gives 

from which 

Therefore, the first approximation to the steam temperature is Td = 222°F. This result is close 
enough; evaluation of the physical properties in accordance with this result gives T, = 220 as 
a second approximation. It is apparent from Fig. 14.7-2 that this result represents an upper 
limit. On account of rippling, the temperature drop through the condensate film may be as lit- 
tle as half that predicted here. 

QUESTIONS FOR DISCUSSION 

1. Define the heat transfer coefficient, the Nusselt number, the Stanton number, and the Chilton- 
Colburn jw How can each of these be "decorated to indicate the type of temperature-differ- 
ence driving force that is being used? 

2. What are the characteristic dimensionless groups that arise in the correlations for Nusselt 
numbers for forced convection? For free convection? For mixed convection? 

3. To what extent can Nusselt numbers be calculated a priori from analytical solutions? 
4. Explain how one develops an experimental correlation for Nusselt numbers as a function of 

the relevant dimensionless groups. 
5. To what extent can empirical correlations be developed in which the Nusselt number is given 

as the product of the relevant dimensionless groups, each raised to a characteristic power? 



450 Chapter 14 Interphase Transport in Nonisothermal Systems 

6. In addition to the Nusselt number, we have met up with the Reynolds number Re, the 
Prandtl number Pr, the Grashof number Gr, the Peclet number Pe, and the Rayleigh number 
Ra. Define each of these and explain their meaning and usefulness. 

7. Discuss the concept of wind-chill temperature. 

PROBLEMS 

14A.1. Average heat transfer coefficients (Fig. 14A.1). 
Ten thousand pounds per hour of an oil with a heat capac- 
ity of 0.6 Btu/lb, . F are being heated from 100°F to 200°F 
in the simple heat exchanger shown in the accompanying 
figure. The oil is flowing through the tubes, which are cop- 
per, 1 in. in outside diameter, with 0.065-in. walls. The 
combined length of the tubes is 300 ft. The required heat is 
supplied by condensation of saturated steam at 15.0 psia 
on the outside of the tubes. Calculate h,, ha, and h,, for the 
oil, assuming that the inside surfaces of the tubes are at the 
saturation temperature of the steam, 213°F. 
Answers: 78,139,190 Btu/hr ft2 F 

Cold + 

oil in 

Steam in + 
+ Hot 

oil out 

+ 
Condensate out 

Fig. 14A.1. A single-pass "shell-and-tube" heat exchanger. 

14A.2. Heat transfer in laminar tube flow. One hundred 
pounds per hour of oil at 100°F are flowing through a 1-in. 
i.d. copper tube, 20 ft long. The inside surface of the tube is 
maintained at 215°F by condensing steam on the outside 
surface. Fully developed flow may be assumed through 
the length of the tube, and the physical properties of the oil 
may be cpnsidered constant at the following values: p = 55 
lbm/ft3, C p  = 0.49 Btu/lbm F, p = 1.42 lbm/hr . ft, k = 
0.0825 Btu/hr. ft . F. 
(a) Calculate Pr. 
(b) Calculate Re. 
(c) Calculate the exit temperature of the oil. 
Answers: (a) 8.44; (b) 1075; (c) 155°F 

14A.3. Effect of flow rate on exit temperature from a 
heat exchanger. 
(a) Repeat parts (b) and (c) of Problem 14A.2 for oil flow 
rates of 200,400,800,1600, and 3200 lbm/hr. 

(b) Calculate the total heat flow through the tube wall for 
each of the oil flow rates in (a). 

14A.4. Local heat transfer coefficient for turbulent 
forced convection in a tube. Water is flowing in a 2-in. 
i.d. tube at a mass flow rate w = 15,000 lb,/hr. The inner 
wall temperature at some point along the tube is 160°F, 
and the bulk fluid temperature at that point is 60°F. What 
is the local heat flux q, at the pipe wall? Assume that h,,, 
has attained a constant asymptotic value. 
Answer: 7 . 8  X lo4 Btu/hr ft2 

14A.5. Heat transfer from condensing vapors. 
(a) The outer surface of a vertical tube 1 in. in outside di- 
ameter and 1 ft long is maintained at 190°F. If this tube is 
surrounded by saturated steam at 1 atm, what will be the 
total rate of heat transfer through the tube wall? 
(b) What would the rate of heat transfer be if the tube 
were horizontal? 
Answers: (a) 8400 Btujhr; (b) 12,000 Btu/hr 

14A.6. Forced-convection heat transfer from an isolated 
sphere. 
(a) A solid sphere 1 in. in diameter is placed in an other- 
wise undisturbed air stream, which approaches at a veloc- 
ity of 100 ft/s, a pressure of 1 atm, and a temperature of 
100°F. The sphere surface is maintained at 200°F by means 
of an imbedded electric heating coil. What must be the rate 
of electrical heating in cal/s to maintain the stated condi- 
tions? Neglect radiation, and use Eq. 14.4-5. 
(b) Repeat the problem in (a), but use Eq. 14.4-6. 
Answer: (a) 12.9W = 3.lcal/s; (b) 16.8W = 4.0 cal/s 

14A.7. Free convection heat transfer from an isolated 
sphere. If the sphere of Problem 14A.6 is suspended in still 
air at 1 atm pressure and 100°F ambient air temperature, and 
if the sphere surface is again maintained at 200°F, what rate 
of electrical heating would be needed? Neglect radiation. 
Answer: 0.80W = 0.20 cal/s 

14A.8. Heat loss by free convection from a horizontal 
pipe immersed in a liquid. Estimate the rate of heat loss 
by free convection from a unit length of a long horizontal 
pipe, 6 in. in outside diameter, if the outer surface temper- 
ature is 100°F and the surrounding water is at 80°F. Com- 
pare the result with that obtained in Example 14.6-1, in 
which air is the surrounding medium. The properties of 
water at a film temperature of 90°F (or 32.3"C) are p = 
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0.7632 cp, ep = 0.9986 cal/g. c and k = 0.363 ~ t ~ / h ~ .  ft . F. in which 1 is the current required to maintain the desired 

Also, the density of water in the neighborhood of 90°F is temperature, is the velocity of the approaching 

T(C) 30.3 31.3 32.3 33.3 
and C is a constant. How well does this equation agree 

34'3 with the predictions of Eq. 14.4-7 or Eq. 14.4-8 for the fluid 
p(gicm3) 0.99558 0'99528 0.99496 0.99463 0'99430 and wire of (a) over a fluid velocity range of 100 to 300 
Answer: Q/L  = 1930 Btu/hr . ft ft/s? What is the significance of the constant C in Eq. 

14A.9. The ice-fisheman on Lake Mendota. Compare 
the rates of heat loss of an ice-fisherman, when he is fish- 
ing in calm weather (wind velocity zero) and when the 
wind velocity is 20 mph out of the north. The ambient air 
temperature is -10°F. Assume that a bundled-up ice-fish- 
erman can be approximated as a sphere 3 ft in diameter. 

14B.1. Limiting local Nusselt number for plug flow 
with constant heat flux. 
(a) Equation 10B.9-1 gives the asymptotic temperature 
distribution for heating a fluid of constant physical proper- 
ties in plug flow in a long tube with constant heat flux at 
the wall. Use this temperature profile to show that the lim- 
iting Nusselt number for these conditions is Nu = 8. 
(b) The asymptotic temperature distribution for the analo- 
gous problem for plug flow in a plane slit is given in Eq. 
108.9-2. Use this to show that the limiting Nusselt number 
is Nu = 12. 

148.2. Local overall heat transfer coefficient. In Prob- 
lem 14A.1 the thermal resistances of the condensed steam 
film and wall were neglected. Justify this neglect by calcu- 
lating the actual inner-surface temperature of the tubes at 
that cross section in the exchanger at which the oil bulk 
temperature is 150°F. You may assume that for the oil bloc 
is constant throughout the exchanger at 190 Btu/hr ft2 . F. 
The tubes are horizontal. 

14B.3. The hot-wire anemometer.' A hot-wire anemome- 
ter is essentially a fine wire, usually made of platinum, 
which is heated electrically and inserted into a flowing 
fluid. The wire temperature, which is a function of the fluid 
temperature, fluid velocity, and the rate of heating, may be 
determined by measuring its electrical resistance. 
(a) A straight cylindrical wire 0.5 in. long and 0.01 in. in 
diameter is exposed to a stream of air at 70°F flowing past 
the wire at 100 ft/s. What must the rate of energy input be 
in watts to maintain the wire surface at 600°F? Neglect ra- 
diation as well as heat conduction along the wire. 
(b) It has been reported2 that for a given fluid and wire at 
given fluid and wire temperatures (hence a given wire 
resistance) 

I ~ = B & + c  (14B.3-1) 

See, for example, G. Comte-Bellot, Chapter 34 in The 
Handbook of Fluid Dynamics (R. W .  Johnson, ed.), CRC Press, Boca 
Raton, Fla. (1999). 

L. V. King, Phil. Trans. Roy. Soc. (London), A214,373-432 
(1914). 

14B.4. Dimensional analysis. Consider the flow system 
described in the first paragraph of s14.3, for which dimen- 
sional analysis has already given the dimensionless veloc- 
ity profile (Eq. 6.2-7) and temperature profile (Eq. 14.3-9). 
(a) Use Eqs. 6.2-7 and 14.3-9 and the definition of cup- 
mixing temperature to get the time-averaged expression. 

Tb2 - Tbl 
= a function of Re, Pr, L /  D (14B.4-1) 

TO - Tbl 

(b) Use the result just obtained and the definitions of the 
heat transfer coefficients to derive Eqs. 14.3-12/13, and 14. 

14B.5. Relation between h,,, and h,,. In many industrial 
tubular heat exchangers (see Example 15.4-2) the tube- 
surface temperature To varies linearly with the bulk fluid 
temperature Tb. For this common situation hloc and hl, may 
be simply interrelated. 
(a) Starting with Eq. 14.1-5, show that 

and therefore that 

(b) Combine the result in (a) with Eq. 14.1-4 to show that 

in which L is the total tube length, and therefore that (if 
(dh,,,/dL), = 0, which is equivalent to the statement that 
axial heat conduction is neglected) 

14B.6. Heat loss by free convection from a pipe. In Ex- 
ample 14.6-1, would the heat loss be higher or lower if the 
pipe-surface temperature were 200°F and the air tempera- 
ture were 180°F? 

14C.1. The Nusselt expression for film condensation 
heat transfer coefficients (Fig. 14.7-1). Consider a laminar 
film of condensate flowing down a vertical wall, and as- 
sume that this liquid film constitutes the sole heat transfer 
resistance on the vapor side of the wall. Further assume 
that (i) the shear stress between liquid and vapor may be 
neglected; (ii) the physical properties in the film may be 
evaluated at the arithmetic mean of vapor and cooling- 
surface temperatures and that the cooling-surface temper- 
ature may be assumed constant; (iii) acceleration of fluid 
elements in the film may be neglected compared to the 
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gravitational and viscous forces; (iv) sensible heat changes, 
C&T, in the condensate film are unimportant compared to 
the latent heat transferred through it; and (v) the heat flux 
is very nearly normal to the wall surface. 
(a) Recall from 52.2 that the average velocity of a film of 
constant thickness 6 is (v,) = pgS2/3p. Assume that this re- 
lation is valid for any value of z. 

(b) Write the energy equation for the film, neglecting film 
curvature and convection. Show that the heat flux through 
the film toward the cold surface is 

(c) As the film proceeds down the wall, it picks up addi- 
tional material by the condensation procps. In this 
process, heat is liberated to the extent of AH,,, per unit 
mass of material that undergoes the change in state. Show 
that equating the heat liberation by condensation with the 
heat flowing through the film in a segment dz of the film 
leads to 

(d) Insert the expression for the average velocity from (a) 
into Eq. 14C.1-2 and integrate from z = 0 to z = L to obtain 

(e) Use the definition of the heat transfer coefficient and 
the result in (d) to obtain Eq. 14.7-5. 
(f) Show that Eqs. 14.7-4 and 5 are equivalent for the con- 
ditions of this problem. 

14C.2. Heat transfer correlations for agitated tanks (Fig. 
14C.2). A liquid of essentially constant physical properties 
is being continuously heated by passage through an agi- 
tated tank, as shown in the accompanying figure. Heat is 
supplied by condensation of steam on the outer wall of the 
tank. The thermal resistance of the condensate film and the 
tank wall may be considered small compared to that of 
the fluid in the tank, and the unjacketed portion of the tank 

t 
Condensate out 

Fig. 14C.2. Continuous heating of a liquid in an agitated 
tank. 

may be assumed to be well insulated. The rate of liquid 
flow through the tank has a negligible effect on the flow 
pattern in the tank. 

Develop a general form of dimensionless heat transfer 
correlation for the tank corresponding to the correlation 
for tube flow in 514.3. Choose the following reference 
quantities: reference length, D, the impeller diameter; ref- 
erence velocity, ND, where N is the rate of shaft rotation in 
revolutions per unit time; reference pressure, ~ P D ~ ,  
where p is the fluid density. 

14D.1. Heat transfer from an oblate ellipsoid of revolu- 
tion. Systems of this sort are best described in oblate ellip- 
soidal coordinates (5; 7, +)' for which 

5 = constant describes oblate ellipsoids (0 5 5 < m )  

77 = constant describes hyperboloids of revolution 
(0 5 77 I 7r) 

+ = constant describes half planes (0 I + < 27r) 

Note that 5 = 6, can describe oblate ellipsoids, with 5, = 0 
being a limiting case of the two-sided disk, and the limit as 
+ a~ being a sphere. In this problem we investigate the 

corresponding two limiting values of the Nusselt number. 
(a) First use Eq. A.7-13 to get the scale factors from the re- 
lation between oblate ellipsoidal coordinates and Carte- 
sian coordinates: 

x = a cosh 5 sin 7 cos + (14D.1-1) 

y = a cosh sin 7 sin + (14D.1-2) 

z = a  sinhc cos 77 (14D.1-3) 

in which a is one-half the distance between the foci. Show 
that 

h,, = a cosh 5 sin 77 (14D.1-5) 

Equations A.7-13 and 14 can then be used to get any of the 
V-operations that are needed. 
(b) Next obtain the temperature profile outside of an 
oblate ellipsoid with surface temperature To, which is em- 
bedded in an infinite medium with the temperature T,  far 
from the ellipsoid. Let O = (T - To)/(T, - To) be a dimen- 
sionless temperature, and show that Laplace's equation 
describing the heat conduction exterior to the ellipsoid is 

, - ,  7 

1 Id (cosh 6 $) + . . = 0 (14D.1-6) 
a2(cosh2 5 - sin2 77) d5 

' For a discussion of oblate ellipsoidal coordinates, see 
P. Moon and D. E. Spencer, Field Theory Handbook, Springer, Berlin 
(1961), pp. 31-34. See also J. Happel and H. Brenner, Low Reynolds 
Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. 
(196.51, pp. 512-516; note that their scale factors are the reciprocals 
of those defined in this book. 
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The terms involving derivatives with respect to 77 and t,b 
have been omitted because they are not needed. Show that 
this equation may be solved with the boundary conditions 
that @(to) = 0 and @(a) = 1 to obtain 

(c) Next, specialize this result for the two-sided disk (that 
is, the limiting case that to = O), and show that the normal 
temperature gradient at the surface is 

where a has been expressed as X, the disk radius. Show fur- 
ther that the total heat loss through both sides of the disk is 

and that the Nusselt number is given by Nu = 16/a = 

5.09. Since Nu = 2 for the analogous sphere problem, we 
see that the Nusselt number for any oblate ellipsoid must 
lie somewhere between 2 and 5.09. 
(d) By dimensional analysis show that, without doing any 
detailed derivation (such as the above), one can predict 
that the heat loss from the ellipsoid must be proportional 
to the linear dimension a rather than to the surface area. Is 
this result limited to ellipsoids? Discuss. 



Chapter 15 

Macroscopic Balances for 
Nonisothermal Systems 

The macroscopic energy balance 

The macroscopic mechanical energy balance 

Use of the macroscopic balances to solve steady-state problems with flat velocity 
profiles 

The d-forms of the macroscopic balances 

Use of the macroscopic balances to solve unsteady-state problems and problems 
with nonflat velocity profiles 

In Chapter 7 we discussed the macroscopic mass, momentum, angular momentum, and 
mechanical energy balances. The treatment there was restricted to systems at constant 
temperature. Actually this restriction is somewhat artificial, since in real flow systems 
mechanical energy is always being converted into thermal energy by viscous dissipation. 
What we really assumed in Chapter 7 is that any heat so produced is either too small to 
change the fluid properties or is immediately conducted away through the walls of the 
system containing the fluid. In this chapter we extend the previous results to describe 
the overall behavior of nonisothermal macroscopic flow systems. 

For a nonisothermal system there are five macroscopic balances that describe the re- 
lations between the inlet and outlet conditions of the stream. They may be derived by in- 
tegrating the equations of change over the macroscopic system: 

L t j  

(eq. of continuity) dV = macroscopic mass balance 

(eq. of motion) dV = macroscopic momentum balance 

(eq. of angular momentum) dV = macroscopic angular momentum balance 

IW (eq. of mechanical energy) dV = macroscopic mechanical energy balance 

Iv(t, (eq. of (total) energy) dV = macroscopic (total) energy balance 

The first four of these were discussed in Chapter 7, and their derivations suggest that 
they can be applied to nonisothermal systems just as well as to isothermal systems. In 
this chapter we add the fifth balance-namely, that for the total energy. This is derived 
in 915.1, not by performing the integration above, but rather by applying the law of con- 
servation of total energy directly to the system shown in Fig. 7.0-1. Then in 915.2 we re- 
visit the mechanical energy balance and examine it in the light of the discussion of the 
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(total) energy balance. Next in 515.3 we give the simplified versions of the macroscopic 
balances for steady-state systems and illustrate their use. 

In 515.4 we give the differential forms (d-forms) of the steady-state balances. In these 
forms, the entry and exit planes 1 and 2 are taken to be only a differential distance apart. 
The "d-forms" are frequently useful for problems involving flow in conduits in which 
the velocity, temperature, and pressure are continually changing in the flow direction. 

Finally, in 515.5 we present several illustrations of unsteady-state problems that can 
be solved by the macroscopic balances. 

This chapter will make use of nearly all the topics we have covered so far and pro- 
vides an excellent opportunity to review the preceding chapters. Once again we take this 
opportunity to remind the reader that in using the macroscopic balances, it may be nec- 
essary to omit some terms and to estimate the values of others. This requires good intu- 
ition or some extra experimental data. 

515.1 THE MACROSCOPIC ENERGY BALANCE 

We consider the system sketched in Fig. 7.0-1 and make the same assumptions that were 
made in Chapter 7 with regard to quantities at the entrance and exit planes: 

(i) The time-smoothed velocity is perpendicular to the relevant cross section. 

(ii) The density and other physical properties are uniform over the cross section. 

(iii) The forces associated with the stress tensor T are neglected. 

(iv) The pressure does not vary over the cross section. 

To these we add (likewise at the entry and exit planes): 

(v) The energy transport by conduction q is small compared to the convective en- 
ergy transport and can be neglected. 

(vi) The work associated with [T . v] can be neglected relative to pv. 

We now apply the statement of conservation of energy to the fluid in the macroscopic 
flow system. In doing this, we make use of the concept of potential energy to account for 
the work done against the external forces (this corresponds to using Eq. 11.1-9, rather 
than Eq. 11.1-7, as the equation of change for energy). 

The statement of the law of conservation of energy then takes the form: 

rate of increase of rate at which internal, kinetic, and 
internal, kinetic, and potential energy enter the system 
potential energy in at plane 1 by flow 
the system 

- @&(v2) + $P*(& + P&s)& (15.1-1) 
rate at which internal, kinetic, and 
potential energy leave the system 
at plane 2 by flow 

+ Q + Wm + (p,(v1)S1 - p*(v2)S*) 
rate at which rate at which work is done on rate at which work is 
heat is added the system by the surroundings done on the system by the 
to the system by means of the moving surroundings at planes 1 
across boundary surfaces and 2 

Here U,, = J p ~ d v ,  Kt,, = J$p2dv, and @,,, = $ p & d ~  are the total internal, kinetic, and 
potential energy in the system, the integrations being performed over the entire volume 
of the system. 
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This equation may be written in a more compact form by introducing the mass rates 
of flow w1 = pl(vl)S1 and w, = p,(v,)S,, and the total energy E,,, = U,,, + Kt,,+ a,,,. We 
thus get for the unsteady state macroscopic energy balance 

It is clear, from the derivation of Eq. 15.1-1, that the "work done on the system by the 
surroundings" consists of two parts: (1) the work done by the moving surfaces W,, ~ n d  
(2) the work done at the ends of the system (planes 1 and 21, which appears as -A(pVw) 
in Eq. 15.1-2. Although we have combined the pV terms with the internal, kinetic, and 
potential energy terms in Eq. 15.1-2, it is inappropriate to say that "pV energy enters 
and leaves the system" at the inlet and outlet. The pV terms originate as work terms and 
should be thought of as such. 

We now consider the situation where the system is operating at steady state so that 
the total energy E,,, is constant, and the mass rates of flow in and out are equal (w, = w, = 

w). Then it is convenient tojntroduce the symbols Q = Q/w (the heat addition per unit 
mass of flowing fluid) and W, = W,/w (the work done on a unit mass of flowing fluid). 
Then the steady state macroscopic energy balance is 

Here we have written 6, = ghl and 6, = gh, where h, and h, are heights above an 
~rbitrariLy chosep datum plane (see the discussion just before Eq. 3.3-2). Similarly, H~ = 

U1 + plVl and H2 = U, + p2V2 are enthalpies per unit mass measured with respect to 
an arbitrarily specified reference state. The explicit formula for the enthalpy is given in 
Eq. 9.8-8. 

For many problems in the chemical industry the kinetic energy, potential energy, 
and work terms are negligibie compare4 with the thermal terms in Eq. 15.1-3, and the 
energy balance simplifies to H2 - H1 = Q, often called an "enthalpy balance." However 
this relation should not be construed as a conservation equation for enthalpy. 

515.2 THE MACROSCOPIC MECHANICAL ENERGY BALANCE 

The macroscopic mechanical energy balance, given in 57.4 and derived in 57.8, is re- 
peated here for comparison with Eqs. 15.1-2 and 3. The unsteady-state macroscopic mechan- 
ical energy balance, as given in Eq. 7.4-2, is 

where E, and E, are defined in Eqs. 7.4-3 and 4. An approximate form of the steady-state 
macroscopic mechanical balance, as given in Eq. 7.4-7, is 

The details of the approximation introduced here are explained in Eqs. 7.8-9 to 12. 
The integral in Eq. 15.2-2 must be evaluated along a "representative streamline" in 

the system. To do this, one must know the equation of state p y p(p, T )  and also how T 
changes with p along the streamline. In Fig. 15.2-1 the surface V = Q(p, T) for an ideal 
gas is shown. In the pT-plane there is shown a curve beginning at pl, T1 (the inlet stream 
conditions) and ending at p,, T2 (the outlet stream conditions). The curve in the pT-plane 
indicates the succession of states through which the gas passes in going from the initial 
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Fig. 15.2-1. Graphical representa- 
tion of the integral in_Eq. 15.2-2. 
The ruled area is SF: Vdp = 

SF; (1 / p )dp .  Note that the value 
of this integral is negative here, 
because we are integrating from 
right to left. 

state to the final state. The integral J: (1 /p) dp is then the projection of the shaded area in 
Fig. 15.2-1 onto the pc-plane. It is evident that the value of this integral changes as the 
"thermodynamic pa th  of the process from plane 1 to 2 is altered. If one knows the path 
and the equation of state then one can compute J: (1 /p) dp. 

In several special situations, it is not difficult to evaluate the integral: 

For isothermal systems, the integral is evaluated by prescribing the isothermal 
equation of s ta te that  is, by giving a relation for p as a function of p. For exam- 
ple, for ideal gases p = pM/RT and 

RT P21 RT P2 1 d p  = - 1 dp = - In - (ideal gases) (15.2-3) 
M PI M PI 

For incompressible liquids, p is constant so that 

1 1,' dp = p (p2 - pl) (incompressible liquids) (15.2-4) 

For frictionless adiabatic flow of ideal gases with constant heat capacity, p and p are 
related by the expression pp-? = constant, in which y = kP/& as shown in Exarn- 
ple 11.4-6. Then the integral becomes 

Hence for this special case of nonisothermal flow, the integration can be per- 
formed analytically. 

We now conclude with several comments involving both the mechanical energy bal- 
ance and the total energy balance. We emphasized in 57.8 that Eq. 7.4-2 (same as Eq. 
15.2-1) is derived by taking the dot product of v with the equation of motion and then in- 
tegrating the result over the volume of the flow system. Since we start with the equation 
of motion-which is a statement of the law of conservation of linear momentum-the 
mechanical energy balance contains information different from that of the (total) energy 
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balance, which is a statement of the law of conservation of energy. Therefore, in general, 
both balances are needed for problem solving. The mechanical energy balance is not "an 
alternative form" of the energy balance. 

In fact, if we subtract the mechanical energy balance in Eq. 15.2-1 from the total en- 
ergy balance in Eq. 15.1-2 we get the macroscopic balance for the internal energy 

This states that the total internal energy in the system changes because of the difference 
in the amount of internal energy entering and leaving the system by fluid flow, because 
of the heat entering (or leaving) the system through walls of the system, because of 
the heat produced (or consumed) within the fluid by compression (or expansion), and 
because of the heat produced in the system because of viscous dissipation heating. 
Equation 15.2-6 cannot be written a priori, since there is no conservation law for inter- 
nal energy. It can, however, be obtained by integrating Eq. 11.2-1 over the entire flow 
system. 

s15.3 USE OF THE MACROSCOPIC BALANCES 
TO SOLVE STEADY-STATE PROBLEMS 
WITH FLAT VELOCITY PROFILES 

The most important applications of the macroscopic balances are to steady-state prob- 
lems. Furthermore, it is usually assumed that the flow is turbulent so that the variation 
of the velocity over the cross section can be safely neglected (see "Notes" after Eqs. 7.2-3 
and 7.4-7). The five macroscopic balances, with these additional restrictions, are summa- 
rized in Table 15.3-1. They have been generalized to multiple inlet and outlet ports to ac- 
commodate a larger set of problems. 

Table 15.3-1 Steady-State Macroscopic Balances for Turbulent Flow in Nonisothermal Systems 

Mass: E w l  - E w 2  = 0 (A) 

Momentum: mW, + p , S h  - m72w2 + p2S2h2 + m ~ g  = FPs (B) 

Angular momentum: E(v,w, + p,S,)[r, X u,l - 2(v2w2 + p2S2)[r2 X u21 + Text = Tf-ts (C) 

Mechanical energy: w, = - W, + E,  + E. (D) 

(Total) energy: + gh, + H&U, - E($v: + gh, + H , ) ~  = - W, - Q (El 

Notes: 
" All formulas here imply flat velocity profiles. 

Xw1 = wla + wlb + w,, + ..., where w,, = p,,v,,S,,, and so on. 
h, and h, are elevations above an arbitrary datum plane. 

and H2 are enthalpies per unit mass relative to some arbitrarily chosen reference state (see Eq. 9.8-8). 

All equations are written for compressible flow; for incompressible flow, E, = 0. The quantities E, and 
E, are defined in Eqs. 7.3-3 and 4. 

f u, and u, are unit vectors in the direction of flow. 
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EXAMPLE 15.3-1 

The Cooling of an 
Ideal Gas 

SOLUTION 

Air out at 0" F and 15 psia Fig. 15.3-1. The cooling of air in a countercurrent 
<v>=? heat exchanger. 

---------- - Plane 2 

liquid in 

10 ft 

Hot - liquid 
---------- out 

- Plane 1 

Air in at 300°F and 30 psia 
<v> = 100 ft sec-' 

Two hundred pounds per hour of dry air enter the inner tube of the heat exchanger shown in 
Fig. 15.3-1 at 300°F and 30 psia, with a velocity of 100 ft/sec. The air leaves the exchanger at 
O"F and 15 psia, at 10 ft above the exchanger entrance. Calculate the rate of energy removal 
across the tube wall. Assume turbulent flow and ideal gas behavior, and use the following ex- 
pression for the heat capacity of air: 

where ?, is in Btu/(lb-mole . R) and T is in degrees R. 

For this system, the macroscopic energy balance, Eq. 15.1-3, becomes 

The enthalpy difference may be obtained from Eq. 9.8-8, and the velocity may be obtained as 
a function of temperature and pressure with the aid of the macroscopic mass balance plv, = 

p2v2 and the ideal gas law p = pRT/M. Hence Eq. 15.3-2 becomes 

The explicit expression for in Eq. 15.3-1 may then be inserted into Eq. 15.3-3 and the inte- 
gration performed. Next substitution of the numerical values gives the heat removal per 
pound of fluid passing through the heat exchanger: 

The rate of heat removal is then 

Note, in Eq. 15.3-4, that the kinetic and potential energy contributions are negligible in com- 
parison with the enthalpy change. 



460 Chapter 15 Macroscopic Balances for Nonisothermal Systems 

I I Fig. 15.3-2. The mixing of two ideal gas 
streams. 

Two steady, turbulent streams of the same ideal gas flowing at different velocities, tempera- 
tures, and pressures are mixed as shown in Fig. 15.3-2. Calculate the velocity, temperature, 

Mixing of Two Ideal and pressure of the resulting stream. 
Gas Streams 

SOLUTION 

The fluid behavior in this example is more complex than that for the incompressible, isother- 
mal situation discussed in Example 7.6-2, because here changes in density and temperature 
may be important. We need to use the steady-state macroscopic energy balance, Eq. 15.2-3, 
and the ideal gas equation of state, in addition to the mass and momentum balances. With 
these exceptions, we proceed as in Example 7.6-2. 

We choose the inlet planes (la and lb) to be cross sections at which the fluids first begin 
to mix. The outlet plane (2) is taken far enough downstream that complete mixing has oc- 
curred. As in Example 7.6-2 we assume flat velocity profiles, negligible shear stresses on the 
pipe wall, and no changes in the potential energy. In addition, we neglect the changes in the 
heat capacity of the fluid and assume adiabatic operation. We now write the following equa- 
tions for this system with two entry ports and one exit port: 

Mass: w1 = wla + wlb = W, (15.3-6) 

Equation of state: P2 = P~RTz/M (15.3-9) 

In this set of equations we know all the quantities at l a  and lb, and the four unknowns are p,, 
T2, p2, and v,. Tref is the reference temperature for the enthalpy. By multiplying Eq. 15.3-6 by 
k p ~ , ,  and adding the result to Eq. 15.3-8 we get 

The right sides of Eqs. 15.3-6,7, and 10 contain known quantities and we designate them by 
w, P, and E, respectively. Note that w, P, and E are not independent, because the pressure, 
temperature, and density of each inlet stream must be related by the equation of state. 

We now solve Eq. 15.3-7 for v, and eliminate p, by using the ideal gas law. In addition we 
write w, as p2v2S2. This gives 

RT2 - P v,+--- 
Mv, w 

This equation can be solved for T,, which is inserted into Eq. 15.3-10 to give 
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in which y = C,/Cv, a quantity which varies from about 1.1 to 1.667 for gases. Here we 
have used the fact that G/R = y / ( y  - 1) for an ideal gas. When Eq. 15.3-12 is solved for v2 
we get 

On physical grounds, the radicand cannot be negative. It can be shown (see Problem 15B.4) 
that, when the radicand is zero, the velocity of the final stream is sonic. Therefore, in general 
one of the solutions for v2 is supersonic and one is subsonic. Only the lower (subsonic) solu- 
tion can be obtained in the turbulent mixing process under consideration, since supersonic 
duct flow is unstable. The transition from supersonic to subsonic duct flow is illustrated in 
Example 11.4-7. 

Once the velocity v, is known, the pressure and temperature may be calculated from Eqs. 
15.3-7 and 11. The mechanical energy balance can be used to get (E ,  + E,). 

515.4 THE d-FORMS OF THE MACROSCOPIC BALANCES 

The estimation of E, in the mechanical energy balance and Q in the total energy balance 
often presents some difficulties in nonisothermal systems. 

For example, for E,,, consider the following two nonisothermal situations: 

a. For liquids, the average flow velocity in a tube of constant cross section is nearly 
constant. However, the viscosity may change markedly in the direction of the 
flow because of the temperature changes, so that f in Eq. 7.5-9 changes with dis- 
tance. Hence Eq. 7.5-9 cannot be applied to the entire pipe. 

b. For gases, the viscosity does not change much with pressure, so that the local 
Reynolds number and local friction factor are nearly constant for ducts of con- 
stant cross section. However, the average velocity may change considerably 
along the duct as a result of the change in density with temperature. Hence Eq. 
7.5-9 cannot be applied to the entire duct. 

Similarly for pipe flow with the wall temperature changing with distance, it may be 
necessary to use local heat transfer coefficients. For such a situation, we can write Eq. 
15.1-3 on an incremental basis and generate a differential equation. Or the cross sectional 
area of the conduit may be changing with downstream distance, and this situation also 
results in a need for handling the problem on an incremental basis. 

It is therefore useful to rewrite the steady-state macroscopic mechanical energy bal- 
ance and the total energy balance by taking planes 1 and 2 to be a differential distance dl 
apart. We then obtain what we call the "d-forms" of the balances: 

The d-Form of the Mechanical Energy Balance 

If we take planes 1 and 2 to be a differential distance apart, then we may write Eq. 15.2-2 
in the following differential form (assuming flat velocity profiles): 

1 * * 
d($v2) + gdh + - dp = d W - d E ,  

P 

Then using Eq. 7.5-9 for a differential length dl, we write 
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in which f is the local friction factor, and Rk is the local value of the mean hydraulic ra- 
dius. In most applications we omit the d~ term, since work is usually done at isolated 
points along the flow path. The term d w would be needed in tubes with extensible walls, 
magnetically driven flows, or systems with transport by rotating screws. 

The d-Form of the Total Energy Balance 

If we write Eq. 15.1-3 in differential form, we have (with flat velocity profiles) 

d($') + gdh + d f i  = d~ + d~ (15.4-3) 

Then using Eq. 9.8-7 for d 6  and Eq. 14.1-8 for d B  we get 

[ A (;;)A "fOczAT dl + d ii ~ d v + g d h + ? ~ d ~ +  V - T -  d p =  

in which U,,, is the local overall heat transfer coefficient, Z is the corresponding local 
conduit perimeter, and AT is the local temperature difference between the fluids inside 
and outside of the conduit. 

The examples that follow illustrate applications of Eqs. 15.4-2 and 15.4-4. 

EXAMPLE 15.4-1 

Parallel- or Counter- 
Flow Heat Exchangers 

SOLUTION 

It is desired to describe the performance of the simple double-pipe heat exchanger shown in 
Fig. 15.4-1 in terms of the heat transfer coefficients of the two streams and the thermal resis- 
tance of the pipe wall. The exchanger consists essentially of two coaxial pipes with one fluid 
stream flowing through the inner pipe and another in the annular space; heat is transferred 
across the wall of the inner pipe. Both streams may flow in the same direction, as indicated in 
the figure, but normally it is more efficient to use counter flow-that is, to reverse the direc- 
tion of one stream so that either wk or w, is negative. Steady-state turbulent flow may be as- 
sumed, and the heat losses to the surroundings may be neglected. Assume further that the 
local overall heat transfer coefficient is constant along the exchanger. 

(a) Macroscopic energy balance for each stream as a whole. We designate quantities refer- 
ring to the hot stream with a subscript h and the cold stream with subscript c. The steady- 
state energy balance in Eq. 15.1-3 becomes, for negligible changes in kinetic and potential 
energy, 

Cold stream in 
T = T,, 

Plane 2 

I I I I 
11r I I I 

Hot stream in 1 ! I I 1 1 I Hot stream out 
T = Thl -1 I I I- 

I I I ,I, 1 T = Th2 

Plane 1 Cold stream out 
T = T,, 

Fig. 15.4-1. A double-pipe heat exchanger. 
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Because there is no heat loss to the surroundings, Qh = -Qc. For incompressible l ip ids  with 
a press_ure Grop that is not too large, or for ideal gases, Eq. 9.8-8 gives for constant C, the rela- 
tion AH = CpAT. Hence Eqs. 15.4-5 and 6 can be rewritten as 

w,$,(T, - Tcl) = Q, = -Qh (15.4-8) 

(b) d-form of the macroscopic energy balance. Application of Eq. 15.4-4 to the hot stream 
gives 

where ro is the outside radius of the inner tube, and Uo is the overall heat transfer coefficient 
based on the radius ro (see Eq. 14.1-8). 

Rearrangement of Eq. 15.4-9 gives 

The corresponding equation for the cold stream is 

Adding Eqs. 15.4-10 and 11 gives a differential equation for the temperature difference of the 
two fluids as a function of I :  

By assuming that U, is independent of 1 and integrating from plane 1 to plane 2, we get 

This expression relates the terminal temperatures to the stream rates and exchanger dimen- 
sions, and it can thus be used to describe the performance of the exchanger. However, it is 
conventional to rearrange Eq. 15.4-13 by taking advantage ofnthe steady-state energy balances 
in Eq. 15.4-7 and 8. We solve each of these equations for wC, and substitute the results into 
Eq. 15.4-13 to obtain 

Here A, is the total outer surface of the inner tube, and (T,, - TC),, is the "logarithmic mean 
temperature difference" between the two streams. Equations 15.4-14 and 15 describe the rate 
of heat exchange between the two streams and find wide application in engineering practice. 
Note that the stream rates do not appear explicitly in these equations, which are valid for 
both parallel-flow and counter-flow exchangers (see Problem 15A.1). 

From Eqs. 15.4-10 and 11 we can also get the stream temperatures as functions of 1 if de- 
sired. Considerable care must be used in applying the results of this example to laminar flow, 
for which the variation of the overall heat transfer coefficient may be quite large. An example 
of a problem with variable U, is Problem 15B.1. 



464 Chapter 15 Macroscopic Balances for Nonisothermal Systems 

EXAMPLE 15.4-2 

Power Requirement 
for Pumping a 
Compressible Fluid 
through a Long Pipe 

I I I 
Cooler 1 I Cooler I 

Natural I 43s -p 
Natural 

gas I 
I 

gas 

Compressor I 1 Compressor I - I I 
I I I 
I I I 

Plane 1 Plane 2 Plane 3 
1=0 1 = 10 miles 

Fig. 15.4-2. Pumping a compressible fluid through a pipeline. 

A natural gas, which may be considered to be pure methane, is to be pumped through a long, 
smooth pipeline with a 2-ft inside diameter. The gas enters the line at 100 psia with a velocity 
of 40 ft/s and at the ambient temperature of 70°F. Pumping stations are provided every 10 
miles along the line, and at each of these stations the gas is recompressed and cooled to its 
original temperature and pressure (see Fig. 15.4-2). Estimate the power that must be ex- 
pended on the gas at each pumping station, assuming ideal gas behavior, flat velocity pro- 
files, and negligible changes in elevation. 

SOLUTION We find it convenient to consider the pipe and compressor separately. First we apply Eq. 15.4- 
2 to a length dl of the pipe. We then integrate this equation between planes 1 and 2 to obtain 
the unknown pressure p2. Once this is known, we may apply Eq. 15.2-2 to the system between 
planes 2 and 3 to obtain the work done by the pump. 

(a) Flow through the pipe. For this portion of the system, Eq. 15.4-2 simplifies to 

where D is the pipe diameter. Since the pipe is quite long, we assume that the fluid is isother- 
mal at 70°F. We may then eliminate both v and p from Eq. 15.4-16 by use of the assumed equa- 
tion of state, p = pRT/M, and the macroscopic mass balance, which may be written pv = p,v,. 
With p and v written in terms of the pressure, Eq. 15.4-16 becomes 

We pointed out in 51.3 that the viscosity of ideal gases is independent of the pressure. From 
this it follows that the Reynolds number of the gas, Re = Dw/Sp, and hence the friction factor 
f, must be constants. We may then integrate Eq. 15.4-17 to obtain 

This equation gives p, in terms of quantities that are already known, except for f, which is eas- 
ily calculated: the kinematic viscosity of methane at 100 psi and 70 F is about 2.61 X fi?/s, 
and therefore Re = Dv/v = (200 ft)(40 ft/s)/(2.61 ft2/s) = 3.07 X lo6. The friction factor can 
then be estimated to be 0.0025 (see Fig. 6.2-2). 

Substituting numerical values into Eq. 15.4-18, we get 
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By solving this equation with p, = 100 psia, we obtain p2 = 86 psia. 

(b) Flow through the compressor. We are now ready to apply the mechanical energy bal- 
ance to the compressor. We start by putting Eq. 15.2-2 into the form 

To evaluate _the integral in this equation, we assume that the compression is adiabatic and 
further that E, between planes 2 and 3 can be neglected. We may use Eq. 15.2-5 to rewrite Eq. 
15.2-21 as 

in which w,, is the energy required of the compressor. By substituting numerical values into 
Eq. 15.4-22, we get 

The power required to compress the fluid is 

The power required would be virtually the same if the flow in the pipeline were adiabatic (see 
Problem 15A.2). 

The assumptions used here-assuming the compression to be adiabatic and neglecting 
the viscous dissipation-are conventional in the design of compressor-cooler combinatiops. 
Note that the energy required to run the compressor is greater than the calculated work, W,, 
by (i) g, between planes 2 and 3, (ii) mechanical losses in the compressor itself, and (iii) errors 
in the assume$ p-p path. Normally the energy required at the pump shaft is at least 15 to 20% 
greater than W,. 

$15.5 USE OF THE MACROSCOPIC BALANCES TO SOLVE 
UNSTEADY-STATE PROBLEMS AND PROBLEMS 
WITH NONFLAT VELOCITY PROFILES 

In Table 15.5-1 we summarize all five macroscopic balances for unsteady state and non- 
flat velocity profiles, and for systems with multiple entry and exit ports. One practically 
never needs to use these balances in this degree of completeness, but it is convenient to 
have the entire set of equations collected in one place. We illustrate their use in the ex- 
amples that follow. 
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Table 15.5-1 Unsteady-State Macroscopic Balances for Flow in Nonisothermal Systems 

Mass: 

Momentum: 

Angular momentum: 

Mechanical energy: 

(Total) energy: 

Notes: 

a CW, = wla + wlb + w,, + - , where w,, = p,,v,,S,,, and so on. 
h, and h, are elevations above an arbitrary datum plane. 

' kl and H> are enthalpies per unit mass relative to some arbitrarily chosen reference state; the formula for k is given in Eq. 9.8-8. 

All equations are written for compressible flow; for incompressible flow, E, = 0. The quantities E, and E ,  are defined in Eqs. 7.3-3 and 4. 

u, and u, are unit vectors in the direction of flow. 

A cylindrical tank capable of holding 1000 ft%f liquid is equipped with an agitator having 
sufficient power to keep the liquid contents at a uniform temperature (see Fig. 15.5-1). Heat is 

Heating of a Liquid in transferred to the contents by means of a coil arranged in such a way that the area available 
an Agitated ~ank'  for heat transfer is proportional to the quantity of liquid in the tank. This heating coil consists 

of 10 turns, 4 ft in diameter, of 1-in. 0.d. tubing. Water at 20°C is fed into this tank at a rate of 
20 lb/min, starting with no water in the tank at time t = 0. Steam at 105OC flows through the 

Steam in 

Instantaneous 
liquid level \ 

Liquid 
inlet 

It4"" 
Fig. 15.5-1. Heating of a liquid in a tank with a 

Condensate out variable liquid level. 

This problem is taken in modified form from W. R. Marshall, Jr., and R. L. Pigford, Applications of 
Differential Equations to Chemical Engineering Problems, University of Delaware Press, Newark, Del. (19471, 
pp. 16-18. 
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SOLUTION 

heating coil, and the overall heat transfer coefficient is 100 Btu/hr ft2 . F. What is the temper- 
ature of the water when the tank is filled? 

We shall make the following assumptions: 

a. The steam temperature is uniform throughout the coil. 

b. The density and heat capacity do not change very much with temperature. 
* h 

c. The fluid is approximately incompressible so that C, = C,. 

d. The agitator maintains uniform temperature throughout the liquid. 

e. The heat transfer coefficient is independent of position and time. 

f. The walls of the tank are perfectly insulated so that no heat loss occurs. 

We select the fluid within the tank as the system to be considered, and we make a time- 
dependent energy balance over this system. Such a balance is provided by Eq. (E) of Table 
15.5-1. On the left side of the equation the time rates of change of kinetic and potential ener- 
gies can be neglected relative to that of the internal energy. On the right side we can normally 
omit the work term, and the kinetic and potential energy terms can be discarded, since they 
will be small compared with the other terms. Inasmuch as there is no outlet stream, we can 
set w2 equal to zero. Hence for this system the total energy balance simplifies to 

This states that the internal energy of the system increases because of the enthalpy added by 
the incoming fluid, and because of the addition of heat through the steam coil. 

Since U,,, and H ,  cannot bengiven absolutely, y e  now select th? inlet temperature TI  as 
the thermal datum plane. Then H1 = 0 and U,,, = pCVV(T - T I )  = pCpV(T - TI ) ,  where T and 
V are the instantaneous temperature and volume of the liquid. Furthermore, the rate of heat 
addition to the liquid Q is given by Q = U d ( T s  - T), in which T, is the steam temperature, 
and A is the instantaneous heat transfer area. Hence Eq. 15.5-1 becomes 

The expressions for V ( t )  and A(t) are 

in which V, and A. are the volume and 
ergy balance equation becomes 

heat transfer area when the tank is full. Hence the en- 

which is to be solved with the initial condition that T = TI at t = 0. 
The equation is more easily solved in dimensionless form. We divide both sides by 

W,?,(T~ - T I )  to get 

This equation suggests that suitable definitions of dimensionless temperature and time are 

@ =  - Udot  and T = - 
P ? , Y O  
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EXAMPLE 15.5-2 

Operation of a Simple 
Temperature Controller 

Fig. 15.5-2. Plot of dimensionless temper- 
ature, O = (T - TJ/(T, - TI), vecsus 
dimensionless time, 7 = (UJ,/pC,V,)t, 
according to Eq. 15.5-10. [W. R. Marshall 
and R. L. Pigford, Application of Differen- 
tial Equations to Chemical Engineering, Uni- 
versity of Delaware Press, Newark, Del. 
(1947), p. 18.1 

Then the equation in Eq. 15.5-5 becomes after some rearranging 

and the initial condition requires that O = 0 at 7 = 0. 
This is a first-order linear differential equation whose solution is (see Eq. C.l-2) 

The constant of integration, C, can be obtained from the initial condition after first multiply- 
ing Eq. 15.5-9 by r. In that way it is found that C = 1, so that the final solution is 

This function is shown in Fig. 15.5-2. 
Finally, the temperature To of the liquid in the tank, whe? it has been filled, is given by 

Eq. 15.5-10 when t = pV,/wl (from Eq. 15.5-3) or T = U&/w,C, (from Eq. 15.5-7). Therefore, 
in terms of the original variables, 

Thus it can be seen tpat the final liquid temperature is determined entirely by the dimension- 
less group U&/wlCr which, for this problem, has the value of 2.74. Knowing this we can 
find from Eq. 15.5-11 that (To - Tl)/(T, - T,) = 0.659, whence To = 76°C. 

A well-insulated agitated tank is shown in Fig. 15.5-3. Liquid enters at a temperature T,(t), 
which may vary with time. It is desired to control the temperature, T,(t), of the fluid leaving 
the tank. It is presumed that the stirring is sufficiently thorough that the temperature in the 
tank is uniform and equal to the exit temperature. The volume of the liquid in the tank, V, 
and the mass rate of liquid flow, w, are both constant. 

To accomplish the desired control, a metallic electric heating coil of surface area A is 
placed in the tank, and a temperature-sensing element is placed in the exit steam to measure 
TJt). These devices are connected to a temperature controller that supplies energy to the 
heating coil at a rate Q, = b(T,,, - TJ, in which T,,, is the maximum temperature for which 
the controller is designed to operate, and b is a known parameter. It may be assumed that the 
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SOLUTION 

Power 
supply 

Temperature 
/ indicator 

Temperature 
controller 

Electric 
heater 

Liquid - 
inlet 

\ 

Liquid 
outlet 

- - -  

TI = TI, (for t > 0 )  

Fig. 15.5-3. An agitated tank with a temperature controller. 

liquid temperature T,(t) is always less than T,,, in normal operation. The heating coil sup- 
plies energy to the liquid in the tank at a rate Q = UA(T, - T2), where U is the overall heat 
transfer coefficient between the coil and the liquid, and T, is the instantaneous coil tempera- 
ture, considered to be uniform. 

Up to time t = 0, the system has been operating at steady state with liquid inlet tempera- 
ture TI = TI, and exit temperature T, = T,,. At time t = 0, the inlet stream temperature is sud- 
denly increased to TI = T,, and held there. As a consequence of this disturbance, the tank 
temperature will begin to rise, and the temperature indicator in the outlet stream will signal 
the controller to decrease the power supplied to the heating coil. Ultimately, the liquid tem- 
perature in the tank will attain a new steady-state value Tz,. It is desired to describe the be- 
havior of the liquid temperature T2(f). A qualitative sketch showing the various temperatures 
is given in Fig. 15.5-4. 

We first write the unsteady-state macroscopic energy balances [Eq. (E) of Table 15.5-11 for the 
liquid in the tank and for the heating coil: 

(liquid) 

(coil) 

Note that in applying the macroscopic energy balance to the liquid, we have neglected kinetic 
and potential energy changes as well as the power input to the agitator. 

4 Underdamped 

Overdamped 

I 
1 bitlet 
I temperature 
I T2(t) 
I TI 

I 
I L Fig. 15.5-4. Inlet and outlet temperatures as 

t = O  f functions of time. 
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(a) Steady-state behavior for t < 0. When the time derivatives in Eqs. 15.5-12 and 13 are set 
equal to zero and the equations added, we get for t < 0, where TI = TI,: 

Then from Eq. 15.5-13 we can get the initial temperature of the coil 

(b) Steady-state behavior for t + m. When similar operations are performed with TI = TI,, 
we get 

and 

for the final temperature of the coil. 

(c) Unsteady state behavior for t > 0. It is convenient to define dimensionless variables 
using the steady-state quantities for t < 0 and t + m: 

T2 - T2m 
O2 = = dimensionless liquid temperature (15.5-18) 

T20 - T20: 

T' - T,, 
0, = = dimensionless coil temperature 

Tc, - Tc, 

UAt r = ,-- = dimensionless time 
P C , ~  

In addition we define three dimensionless parameters: 
A 

R = pC,V/p,Cp,Vc = ratio of thermal capacities (15.5-21) 

F = W ~ / U A  = flow-rate parameter (15.5-22) 

b /  U A  = controller parameter (15.5-23) 

In terms of these quantities, the unsteady-state balances in Eqs. 15.5-12 and 13 become (after 
considerable manipulation): 

elimination of 0, between this pair of equations gives a single second-order linear ordinary 
differential equation for the exit liquid temperature as a function of time: 

This equation has the same form as that obtained for the damped manometer in Eq. 7.7-21 
(see also Eq. C.1-7). The general solution is then of the form of Eq. 7.7-23 or 24: 

0, = C+ exp (m+r) + C exp (m-r) (m+ + m-) (15.5-27) 

0, = C, exp rnr + C2r exp r n ~  (m, = m- = m) (15.5-28) 
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EXAMPLE 15.5-3 

Flow of Compressible 
Fluids Through 
Head Meters 

where 

m, = $[-(I + R + F) * d(1 + R + F ) ~  - 4 R ( B  + F ) ]  (15.5-29) 

Thus by analogy with Example 7.7-2, the fluid exit temperature may approach its final value 
as a monotone increasing function (overdamped or critically damped) or with oscillations 
(underdamped). The system parameters appear in the dimensionless time variable, as well as 
in the parameters B, F, and R. Therefore, numerical calculations are needed to determine 
whether in a particular system the temperature will oscillate or not. 

Extend the development of Example 7.6-5 to the steady flow of compressible fluids through 
orifice meters and Venturi tubes. 

SOLUTION 

We begin, as in Example 7.6-5, by writing the steady-state mass and mechanical energy bal- 
ances between reference planes 1 and 2 of the two flow meters shown in Fig. 15.5-5. For com- 
pressible fluids, these may be expressed as 

in which the quantities ai = ( v ~ ) ~ / ( v ~ )  are included to allow for the replacement of the average 
of the cube by the cube of the average. 

. . 

Direction - 
of flow 

1 0 and 2 
I Throat 1 

I 
I Direction - ,*I I I. 7' maximum 

of flow I J 

Fig. 15.5-5. Measurement of mass flow rate by use of (a) an orifice 
meter, and ( b )  a Venturi tube. 
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We next eliminate (v,) and (v,) from the above two equations to get an expression for the 
mass flow rate: 

We now repeat the assumptions of Example 7.6-5: (i) e, = 0, (ii) a, = 1, and (iii) cr2 = (so/s2)'. 
Then Eq. 15.5-32 becomes 

The empirical "discharge coefficient," Cd, is included in this equation to permit correction of 
this expression for errors introduced by the three assumptions and must be determined ex- 
perimentally. 

For Venturi meters, it is convenient to put plane 2 at the point of minimum cross section of 
the meter so that S2 = So. Then a, is very nearly unity, and it has been found experimentally 
that Cd is almost the same for compressible and incompressible fluids-that is, about 0.98 for 
well designed Venturi meters. For orifice meters, the degree of contraction of a compressible 
fluid stream at plane 2 is somewhat less than for incompressible fluids, especially at high flow 
rates, and a different discharge coefficient2 is required. 

In order to use Eq. 15.5-33, the fluid density must be known as a function of pressure. 
That is, one must know both the path of the expansion and the equation of state of the fluid. 
In most cases the assumption of frictionless adiabatic behavior appears to be acceptable. For 
ideal gases, one may write p p P  = constant, where y = CJCV (see Eq. 15.2-5). Then Eq. 15.5- 
33 becomes 

This formula expresses the mass flow rate as a function of measurable quantities and the dis- 
charge coefficient. Values of the latter may be found in engineering  handbook^.^ 

A compressible gas, initially at T = To, p = p,,, and p = po, is discharged from a large station- 
ary insulated tank through a small convergent nozzle, as shown in Fig. 15.5-6. Show how the 

Free Batch fractional remaining mass of fluid in the tank, p/p,, may be determined as a function of time. 
of  a Compressible Fluid Develop working equations, assuming that the gas is ideal. 

SOLUTION For convenience, we divide the tank into two parts, separated by the surface 1 as shown in 
the figure. We assume that surface 1 is near enough to the tank exit that essentially all of the 
fluid mass is to left of it, but far enough from the exit that the fluid velocity through the sur- 
face 1 is negligible. We further assume that the average fluid properties to the left of 1 are 
identical with those at surface 1. We now consider the behavior of these two parts of the sys- 
tem separately. 

(a) The bulk of the fluid in the tank. For the region to the left of surface 1, the unsteady state 
mass balance in Eq. (A) of Table 15.5-1 is 

R. H. Perry, D. W. Green, and J. 0. Maloney, Chemical Engineers' Handbook, 7th Edition, 
McGraw-Hill, New York (1997); see also, Chapter 15 of Handbook of Fluid Dynamics and Fluid Machinery 
(J. A. Schertz and A. E. Fuhs, eds.), Wiley, New York (1996). 
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Insulation Fig. 15.5-6. Free batch expansion of 

Convergent ;, nozzle 

f' 1 Tank volume = V ] 

a ~ompressible fluid.  hes sketch 
shows the locations of surfaces 1 
and 2. 

Ambient pressure = p, 1 

For the same region, the energy balance of Eq. (E) of Table 15.5-1 becomes 

in which V is the total volume in the system being considered, and w1 is the mass rate of flow 
of gas leaving the system. In writing this equation, we have neglected the kinetic energy of 
the fluid. 

Substituting the mass balance into both sides of the energy equation gives 

,. 
For a stationary system under the influence of no external forces other than gravity, d @ , / d t  = 
0, so that Eq. 15.5-37 becomes 

This equation may be combined with the thermal and caloric equations of state for the fluid in 
order to obtain pl(pl) and T,(p,). We find, thus, that the condition of the fluid in the tank de- 
pends only on the degree to which the tank has been emptied and not on t t e  rate of dis- 
charge. For the special case of an ideal gas with constant Cv, for which dU = C d T  and p = 
pRT/M, we may integrate Eq. 15.5-38 to obtain 

in which y = CJC,. This result also follows from Eq. 11.4-57. 

(b) Discharge of the gas through the nozzle. For the sake of simplicity we assume here that 
the flow between surfaces 1 and 2 is both frictionless and adiabatic. Also, since w, is not far 
different from w2, it is also appropriate to consider at any one instant that the flow is quasi- 
steady-state. Then we can use the macroscopic mechanical energy balance in the form of Eq. 
15.2-2 with the second, fourth, and fifth terms omitted. That is, 

Since we are dealing with an ideal gas, we may use the result in Eq. 15.5-34 to get the instan- 
taneous discharge rate. Since in this problem the ratio S2/S1 is very small and its square is 
even smaller, we can replace the denominator under the square root sign in Eq. 15.5-34 by 
unity. Then the p2 outside the square root sign is moved inside and use is made of Eq. 15.5-39. 
This gives 

in which S2 is the cross-sectional area of the nozzle opening. 
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PROBLEMS 1 s ~ ~ .  

Now we use Eq. 15.5-39 to eliminate p, from Eq. 15.5-41. Then we have a first-order dif- 
ferential equation for p,, which may be integrated to give 

From this equation we can obtain the time required to discharge any given fraction of the 
original gas. 

At low flow rates the pressure p2 at the nozzle opening is equal to the ambient pressure. 
However, examination of Eq. 15.5-41 shows that, as the ambient pressure is reduced, the cal- 
culated mass rate of flow reaches a maximum at a critical pressure ratio 

For air ( y  = 1.4), this critical pressure ratio is 0.53. If the ambient pressure is further reduced, 
the pressure just inside the nozzle will remain at the value of p2 calculated from Eq. 15.5-43, 
and the mass rate of flow will become independent of ambient pressure p,. Under these con- 
ditions, the discharge rate is 

Then, for p J p ,  < r, we may write Eq. 15.5-42 more simply: 

If p , / p l  is initially less than r, both Eqs. 15.5-46 and 42 will be useful for calculating the total 
discharge time. 

QUESTIONS FOR DISCUSSION 

Give the physical significance of each term in the five macroscopic balances. 
How are the equations of change related to the macroscopic balances? 
Does each of the four terms within the parentheses in Eq. 15.1-2 represent a form of energy? 
Explain. 
How is the macroscopic (total) energy balance related to the first law of thermodynamics, AU = 

Q +  w? 
Explain how the averages (v) and (v3) arise in Eq. 15.1-1. 
What is the physical significance of E,  and E,? What sign do they have? How are they related 
to the velocity distribution? How can they be estimated? 
How is the macroscopic balance for internal energy derived? 
What information can be obtained from Eq. 15.2-2 about a fluid at rest? 

Heat transfer in double-pipe heat exchangers. 
(a) Hot oil entering the heat exchanger in Example 15.4-1 at surface 2 is to be cooled by water 
entering at surface 1. That is, the exchanger is being operated in countercurrent flow. Compute 
the required exchanger area A, if the heat transfer coefficient U is 200 Btu/hr. ft2 . F and the 
fluid streams have the following properties: 
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Mass flow Heat Temperature 
rate capacity entering leaving 

(lbm / hr) (Btu/lb, . F) (OF) (OF) 

Oil 10,000 0.60 200 100 
Water 5,000 1 .OO 60 - 

(b) Repeat the calculation of part (a) if U, = 50 and U2 = 350 Btu/hr ft2 F. Assume that U 
varies linearly with the water temperature, and use the results of Problem 15B.1. 
(c) What is the minimum amount of water that can be used in (a) and (b) to obtain the de- 
sired temperature change for the oil? What is the minimum amount of water that can be used 
in parallel flow? 
(dl Calculate the required heat exchanger area for parallel flow operation, if the mass rate of 
flow of water is 15,500 Ib,/hr and U is constant at 200 Btu/hr. ft2 SF. 
Answers: (a) 104 ft2; (b) 122 ft2; (c) 4290 lbm/hr, 15,000 lb,/hr; (d) about 101 ft2 

15A.2. Adiabatic flow of natural gas in a pipeline. Recalculate the power requirement wlk in Ex- 
ample 15.4-2 if the flow in the pipeline were adiabatic rather than isothermal. 
(a) Use the result of Problem 15B.3(d) to determine the density of the gas at plane 2. 
(b) Use your answer to (a), along with the result of Problem 15B.3(e), to obtain p2. 
(c) Calculate the power requirement, as in Example 15.4-2. 
Answers: (a) 0.243 lb,/ft3; (b) 86 psia; (c) 504 hp 

15A.3. Mixing of two ideal-gas streams. 
(a) Calculate the resulting velocity, temperature, and pressure when the following two air 
streams are mixed in an apparatus such as that described in Example 15.3-2. The heat capac- 
ity C, of air may be considered constant at 6.97 Btu/lb-mole . F. The properties of the two 
streams are: 

Stream la: 1000 1000 80 1 .OO 
Stream lb: 10,000 100 80 1 .OO 

Answer: (a) 11,000 Ib,/hr; about 110 ft/s; 86.5 OF; 1.00 atrn 
(b) What would the calculated velocity be, if the fluid density were treated as constant? 
(c) Estimate k, for this operation, basing your calculation on the results of part (b). 
Answers: (b) 109 ft/s; (c) 1.4 X lo3 ft Ibf/lb, 

15A.4. Flow through a Venturi tube. A Venturi tube, with a throat 3 in. in diameter, is placed in a 
circular pipe 1 ft in diameter carrying dry air. The discharge coefficient Cd of the meter is 0.98. 
Calculate the mass flow rate of air in the pipe if the air enters the Venturi at 70°F and 1 atrn 
and the throat pressure is 0.75 atm. 
(a) Assume adiabatic frictionless flow and y = 1.4. 
(b) Assume isothermal flow. 
(c) Assume incompressible flow at the entering density. 
Answers: (a) 2.07 lb,/s; (b) 1.96 lbm/s; (c) 2.43 lbm/s 

15A.5. Free batch expansion of a compressible fluid. A tank with volume V = 10 ft3 (see Fig. 15.5-6) 
is filled with air (y = 1.4) at To = 300K and po = 100 atm. At time t = 0 the valve is opened, al- 
lowing the air to expand to the ambient pressure of 1 atrn through a convergent nozzle, with 
a throat cross section S2 = 0.1 ft2. 
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(a) Calculate the pressure and temperature at the throat of the nozzle, just after the start of 
the discharge. 
(b) Calculate the pressure and temperature within the tank when p2 attains its final value of 1 
atm. 
(c) How long will it take for the system to attain the state described in (b)? 

Heating of air in a tube. A horizontal tube of 20 ft length is heated by means of an electrical 
heating element wrapped uniformly around it. Dry air enters at 5'F and 40 psia at a velocity 
75 ft/s and 185 lb,/hr. The heating element provides heat at a rate of 800 Btu/hr per foot of 
tube. At what temperature will the air leave the tube, if the exit pressure is 15 psia? Assume 
turbulent flow and ideal gas behavior. For air in the range of interest the heat capacity at con- 
stant pressure in Btu/lb-mole . F is 

where T is expressed in degrees Rankine. 
Answer: T, = 354°F 

Operation of a simple double-pipe heat exchanger. A cold-water stream, 5400 lb,,/hr at 
70°F, is to be heated by 8100 lb,,/hr of hot water at 200°F in a simple double-pipe heat ex- 
changer. The cold water is to flow through the inner pipe, and the hot water through the an- 
nular space between the pipes. Two 20-ft lengths of heat exchanger are available, and also all 
the necessary fittings. 
(a) By means of a sketch, show the way in which the two double-pipe heat exchangers should 
be connected in order to get the most effective heat transfer. 
(b) Calculate the exit temperature of the cold stream for the arrangement decided on in (a) 
for the following situation: 

(i) The heat-transfer coefficient for the annulus, based on the heat transfer area of the 
inner surface of the inner pipe is 2000 Btu/hr. ft2. F. 

(ii) The inner pipe has the following properties: total length, 40 ft; inside diameter 0.0875 
ft; heat transfer surface per foot, 0.2745 ft2; capacity at average velocity of 1 ft/s is 1345 lb,/hr. 

(iii) The average properties of the water in the inner pipe are: 

(iv) The combined resistance of the pipe wall and encrustations is 0.001 hr . ft2 . F/Btu 
based on the inner pipe surface area. 
(c) Sketch the temperature profile in the exchanger. 
Answer: (b) 136°F 

Performance of a double-pipe heat exchanger with variable overall heat transfer coeffi- 
cient. Develop an expression for the amount of heat transferred in an exchanger of the type 
discussed in Example 15.4-1, if the overall heat transfer coefficient U  varies linearly with the 
temperature of either stream. 
(a) Since Th - T,  is a linear function of both Th and T,, show that 

U - U ,  - A T - A T ,  
- 

U2 - U, AT2 - ATl 

in which AT = Th - T,, and the subscripts 1 and 2 refer to the conditions at control surfaces 1 
and 2. 
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(b) Substitute the result in (a) for T,, - T, into Eq. 15.4-12, and integrate the equation thus ob- 
tained over the length of the exchanger. Use this result to show that1 

15B.2. Pressure drop in turbulent flow in a slightly converging tube (Fig. 15B.2). Consider the tur- 
bulent flow of an incompressible fluid in a circular tube with a diameter that varies linearly 
with distance according to the relation 

At z = 0, the velocity is v,  and may be assumed to be constant over the cross section. The 
Reynolds number for the flow is such that f is given approximately by the Blasius formula of 
Eq. 6.2-13, 

Obtain the pressure drop p, - p2 in terms of v,, D,, D,, p, L, and v = p / p .  

(a) Integrate the d-form of the mechanical energy balance to get 

and then eliminate v, from the equation. 
(b) Show that both v and f are functions of D: 

Of course, D is a function of z according to Eq. 158.2-1. 
(c) Make a change of variable in the integral in Eq. 15B.2-3 and show that 

(d) Combine the results of (b) and (c) to get finally 

(e) Show that this result simplifies properly for Dl = D,. 

Diameter Dl 
I Diameter D2 

I 

u I 
1 - 2 Fig. 15B.2. Turbulent flow in a hori- 

z = O  Direction of flow z = L zontal, slightly tapered tube (Dl is 
(Z direction) slightly greater than D,). 

' A. P. Colburn, Ind. Eng. Chem., 25,873 (1933). 
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15B.3. Steady flow of ideal gases in ducts of constant cross section. 
(a) Show that, for the horizontal flow of any fluid in a circular duct of uniform diameter D, 
the d-form of the mechanical energy balance, Eq. 15.4-1, may be written as 

in which de, = (4f/D)dL. Assume flat velocity profiles. 
(b) Show that Eq. 15B.3-1 may be rewritten as 

Show further that, when use is made of the d-form of the mass balance, Eq. 15B.3-2 becomes 
for isothermal flow of an ideal gas 

2RTdv dv de, = -- - 
M v3 2u 

(c) Integrate Eq. 15B.3-3 between any two pipe cross sections 1 and 2 enclosing a total pipe 
length L. Make use of the ideal gas equation of state and the macroscopic mass balance to 
show that vJv1 = pl/p2 = pI/p2, SO that the "mass velocity" G can be put in the form 

J plpl(1 - r)  
G = plvl = (isothermal flow of ideal gases) (158.3-4) e, - In r 

in which r = (p2/p,I2. Show that, for any given value of e, and conditions at section 1, 
the quantity G reaches its maximum possible value at a critical value of r defined by Inr, t 
(1 - T , ) / Y ,  = e,,. See also Problem 15B.4. 
(d) Show that, for the adiabatic flow of an ideal gas with constant 4 in a horizontal duct of 
constant cross section, the d-form of the total energy balance (Eq. 15.4-4) simplifies to 

+ ( G ) $ v 2  = constant 

where y = C,/CV. Combine this result with Eq. 15B.3-2 to get 

Integrate this equation between sections 1 and 2 enclosing the resistance e,, assuming y con- 
stant. Rearrange the result with the aid of the macroscopic mass balance to obtain the follow- 
ing relation for the mass flux G. 

PlPl 
G = plvl = (adiabatic flow of ideal gases) (15B.3-7) 

in which s = (p2/p,)2. 

(e) Show by use of the macroscopic energy and mass balances that for horizontal adiabatic 
flow of ideal gases with constant 7, 

p2 - p2 1 + ---[ [ l  - (PI/PZ)~IG~ (y2; 1 j] 
Pl PI PlPl 

This equation can be combined with Eq. 158.3-7 to show that, as for isothermal flow, there is a 
critical pressure ratio p2/pI corresponding to the maximum possible mass flow rate. 
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15B.4. The Mach number in the mixing of two fluid streams. 
(a) Show that when the radicand in Eq. 15.3-13 is zero, the Mach number of the final stream is 
unity. Note that the Mach number, Ma, which is the ratio of the local fluid velocity to the ve- 
locity of sound at the local conditions, may be written for an ideal gas as v/v, = v / m  
(see Problem 11C.1). 
(b) Show how the results of Example 15.3-2 may be used to predict the behavior of a gas 
passing through a sudden enlargement of duct cross section. 

15B.5. Limiting discharge rates for Venturi meters. 
(a) Starting with Eq. 15.5-34 (for adiabatic flow), show that as the throat pressure in a Venturi 
meter is reduced, the mass rate of flow reaches a maximum when the ratio r = p,/p, of throat 
pressure to entrance pressure is defined by the expression 

(b) Show that for S1 >> So the mass flow rate under these limiting conditions is 

(c) Obtain results analogous to Eqs. 15B.5-1 and 2 for isothermal pow. 

15B.6. Flow of a compressible fluid through a convergent-divergent nozzle (Fig. 15B.6). In many 
applications, such as steam turbines or rockets, hot compressed gases are expanded through 
nozzles of the kind shown in the accompanying figure in order to convert the gas enthalpy 
into kinetic energy. This operation is in many ways similar to the flow of gases through ori- 
fices. Here, however, the purpose of the expansion is to produce power-for example, by the 
impingement of the fast-moving fluid on a turbine blade, or by direct thrust, as in a rocket 
engine. 

To explain the behavior of such a system and to justlfy the general shape of the nozzle 
described, follow the path of expansion of an ideal gas. Assume that the gas is initially in a 
very large reservoir at essentially zero velocity and that it expands through an adiabatic fric- 
tionless nozzle to zero pressure. Further assume flat velocity profiles, and neglect changes in 
elevation. 
(a) Show, by writing the macroscopic mechanical energy balance or the total energy balance 
between planes 1 and 2, that 

I 
I 
I 
I 
I 
I 
I 
I irection of gas flow Ax%!-!- -.- 

symmetry ; 
I 
I 
I 
I 
I 
I 
I 
I 

P = P2 
T = T, Fig. 15B.6. Schematic cross section of a conver- 
0 = 4. gent-divergent nozzle. 
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(b) Show, by use of the ideal gas law, the steady-state macroscopic mass balance, and Eq. 
15B.6-1, that the cross section S of the expanding stream goes through a minimum at a critical 
pressure 

(c) Show that the Mach number, Ma = v2/v,(T2), of the fluid at this minimum cross section is 
unity (u, for low-frequency sound waves is derived in Problem llC.l). How does the result of 
part (a) above compare with that in Problem 15B.5? 
(d) Calculate fluid velocity v, fluid temperature T,  and stream cross section S as a function of 
the local pressure p for the discharge of 10 lb-moles of air per second from 560°R and 10 atm 
to zero pressure. Discuss the significance of your results. 
Answer: 

15B.7. Transient thermal behavior of a chromatographic device (Fig. 15B.7). You are a consultant 
to an industrial concern that is experimenting, among other things, with transient thermal 
phenomena in gas chromatography. One of the employees first shows you some reprints of a 
well-known researcher and says that he is trying to apply some of the researcher's new ap- 
proaches, but that he is currently stuck on a heat transfer problem. Although the problem is 
only ancillary to the main study, it must nonetheless be understood in connection with his in- 
terpretation of the data and the application of the new theories. 

Chromatographic column 
contained within the coil 

A 

I 

I I 
I I 
I I 
I I 
I I + 

t = O  t = t, Fig. 15B.7. (a) Chromatographic device; 
Time f (b)  temperature response of the chromato- 

(b)  graphic system. 
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A very tiny chromatographic column is contained within a coil, which is in turn inserted 
into a pipe through which a gas is blown to control the temperature (see Fig. 15B.7a). The gas 
temperature will be called T&t). The temperature at the ends of the coil (outside the pipe) is 
To, which is not very much different from the initial value of T,. The actual temperature 
within the chromatographic column (i.e., within the coil) will be called T(t). Initially the gas 
and the coil are both at the temperature T8. Then beginning at time t = 0, the gas temperature 
is increased linearly according to the equation 

where to is a known constant with dimensions of time. 
You are told that, by inserting thermocouples into the column itself, the people in the lab 

have obtained temperature curves that look like those in Fig. 15B.7(b). The T(t) curve seems to 
become parallel to the T&t) curves for large t. You are asked to explain the above pair of 
curves by means of some kind of theory. Specifically you are asked to find out the following: 
(a) At any time t, what will Tg - T be? 
(b) What will the limiting value of T, - T be when t + m? Call this quantity (AT),. 
(c) What time interval t ,  is required for T, - T to come within, say, 1% of (AT),? 
(d) What assumptions had to be made to model the system? 
(e) What physical constants, physical properties, and so on, have to be known in order to 
make a comparison between the measured and theoretical values of (AT),? 

Devise the simplest possible theory to account for the temperature curves and to answer 
the above five questions. 

15B.8. Continuous heating of a slurry in an agitated tank (Fig. 15B.8). A slurry is being heated by 
pumping it through a well-stirred heating tank. The inlet temperature of the slurry is Ti and 
the temperature of the outer surface of the steam coil is T,. Use the following symbols: 

V = volume of the slurry in the tank 
A 

p, C, = density and heat capacity of the slurry 

w = mass rate of flow of slurry through the tank 

U = overall heat transfer coefficient of heating coil 

A = total heat transfer area of the coil 

Assume that the stirring is sufficiently thorough that the fluid temperature in the tank is uni- 
form and the same as the outlet fluid temperature. 

Steam at 
temperature 

Slurrv in at T, 
temperature - 

Ti 

Temperature 
in tank is T( t )  

Exit - temperature 

Condensate out 
is T ( f )  Fig. 158.8. Heating of a slurry in an 

at approximately T, agitated tank. 
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(a) By means of an energy balance, show that the slurry temperature 
differential equation 

T(t) is described by the 

(15B.8-1) 

The variable t is the time since the start of heating. 
(b) Rewrite this differential equation in terms of the dimensionless variables 

where 

What is the physical significance of T,@, and T,? 
(c) Solve the dimensionless equation obtained in (b) for the initial condition that T = Ti at t = 0. 
(d) Check the solution to see that the differential equation and initial condition are satisfied. 
How does the system behave at large time? Is this limiting behavior in agreement with your 
intuition? 
(e) How is the temperature at infinite time affected by the flow rate? Is this reasonable? 

- " - e x y [ - ( ~  + E)~] Answer: (c) ------ - Ti - T ,  &V pV 

Parallel-counterflow heat exchangers (Fig. 15C.1). In the heat exchanger shown in the ac- 
companying figure, the "tube fluid" (fluid A) enters and leaves at the same end of the heat ex- 
changer, whereas the "shell f luid (fluid B) always moves in the same direction. Thus there 
are both parallel flow and counterflow in the same apparatus. This flow arrangement is one 
of the simplest examples of "mixed flow," often used in practice to reduce exchanger length.' 

T ~ 2  T ~ l  

Tube fluid 4 I Shell 
out a 

I I 
I I 

I I I I 74 
- ----- - Shell 

d A  = increment of fluid out 
heat-exchange area TB2 

Fig. l5C.1. A 
parallel-counterflow 
heat exchanger. 

See D. Q. Kern, Process Heat Transfer, McGraw-Hill, New York (1950), pp. 127-189; J. H. Perry, 
Chemical Engineers' Handbook, 3rd edition, McGraw-Hill, New York, (1950), pp. 464-465; W. M. Rohsenow, 
J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer, 3rd edition, McGraw-Hill, New York (19981, 
Chapter 17; S. Whitaker, Fundamentals of Heat Transfer, corrected edition, Krieger Publishing Company, 
Malabar, Fla., (1983), Chapter 11. 
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The behavior of this kind of equipment may be simply analyzed by making the following as- 
sumptions: 

(i) Steady-state conditions exist. 
(ii) The overall heat transfer coefficient U and the heat capacities of the two fluids are 

constants. 
(iii) The shell-fluid temperature TB is constant over any cross section perpendicular to the 

flow direction. 
(iv) There is an equal amount of heating area in each tube fluid "passu-that is, for 

streams I and I1 in the figure. 
(a) Show by an energy balance over the portion of the system between planes a and b that 

TB - T,, = R ( T ~  - T;) where R = I W ~ ~ ~ / W ~ ~ ~ ~ I  (15c.1-1) 

(b) Show that over a differential section of the exchanger, including a total heat exchange sur- 
face dA, 

dTi 
- I (TB - Ti) 

da 2 

in which da = (U/wAtPA)d~,  and WA and epA are defined as in Example 15.4-1. 
(c) Show that when Ti and T; are eliminated between these three equations, a differential 
equation for the shell fluid can be obtained: 

in which @(a) = (TB - TB2)/(TB, - TB2). Solve this equation (see Eq. C.l-7) with the boundary 
conditions 

B.C. 1: 

B.C. 2: 

in which A, is the total heat-exchange surface of the exchanger. 
(dl Use the result of part (c) to obtain an expression for dTB/da. Eliminate dTB/da from this 
expression with the aid of Eq. 15C.1-4 and evaluate the resulting equation at a = 0 to obtain 
the following relation for the performance of the exchanger: 

in which = (TA2 - TAl)/(TBl - TAl). 
(e) Use this result to obtain the following expression for the rate of heat transfer in the ex- 
changer: 

in which 
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The quantity Y represents the ratio of the heat transferred in the "1-2 parallel-counterflow ex- 
changer" shown to that transferred in a true counterflow exchanger of the same area and ter- 
minal fluid temperatures. Values of Y(R, W are given graphically in Perry's handbook.' It 
may be seen that Y(R, q) is always less than unity. 

Discharge of air from a large tank. It is desired to withdraw 5 Ib,,/s from a large storage tank 
through an equivalent length of 55 ft of new steel pipe 2.067 in. in diameter. The air undergoes 
a sudden contraction on entering the pipe, and the accompanying contraction loss is not in- 
cluded in the equivalent length of the pipe. Can the desired flow rate be obtained if the air in 
the tank is at 150 psig and 70°F and the pressure at the downstream end of the pipe is 50 psig? 

The effect of the sudden contraction may be estimated with reasonable accuracy by con- 
sidering the entrance to consist of an ideal nozzle converging to a cross section equal to that 
of the pipe, followed by a section of pipe with e, = 0.5 (see Table 7.5-1). The behavior of the 
nozzle can be determined from Eq. 15.5-34 by assuming the cross sectional area S, to be infi- 
nite and Cd to be unity. 
Answer: Yes. The calculated discharge rate is about 6 1bJs if isothermal flow is assumed (see 
Problem 15B.3) and about 6.3 lb,/s for adiabatic flow. The actual rate should be between these 
limits for an ambient temperature of 70°F. 

Stagnation temperature (Fig. 15C.3). A "total temperature probe," as shown in the figure, is 
inserted in a steady stream of an ideal gas at a temperature T ,  and moving with a velocity v,. 
Part of the moving gas enters the open end of the probe and is decelerated to nearly zero veloc- 
ity before slowly leaking out of the bleed holes. This deceleration results in a temperature rise, 
which is measured by the thermocouple. Since the deceleration is rapid, it is nearly adiabatic. 
(a) Develop an expression for the temperature registered by the thermocouple in terms of T, 
and v, by using the steady-state macroscopic energy balance, Eq. 15.1-3. Use as your system a 
representative stream of fluid entering the probe. Draw reference plane 1 far enough up- 
stream that conditions may be assumed unaffected by the probe, and reference plane 2 in the 
probe itself. Assume zero velocity at plane 2, neglect radiation, and neglect conduction of 
heat from the fluid as it passes between the reference planes. 
(b) What is the function of the bleed holes? 
Answer: (a) & - TI = v ; ? / 2 c  Temperature rises within about 2% of those given by this ex- 
pression and may be obtained with well-designed probes. 

The macroscopic entropy balance. 
(a) Show that integration of the equation of change for entropy (Eq. llD.l-3) over the flow 
system of Fig. 7.0-1 leads to 

in which 

Stot = 

No. 30 I-C thermocouple 
Steel 

I 
0.025" sphere 

5 
0.071" 0.095" 

4 Fig. 15C.3. A "total temperature 
Plastic Three 0.023" bleed holes probe." [H. C. Hottel and A. Kalitin- 

equally spaced sky, J. Appl. Mech., 12, A25 (1945).] 
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(b) Give a term-by-term interpretation of the equations in (a). 
(c) IS the term in g,,,, involving the stress tensor the same as the energy dissipation by vis- 
cous heating? 

Derivation of the macroscopic energy balance. Show how to integrate Eq. (N) of Table 11.4- 
1 over the entire volume V of a flow system, which, because of moving parts, may be a func- 
tion of time. With the help of the Gauss divergence theorem and the Leibniz formula for 
differentiating an integral, show that this gives the macroscopic total energy balance Eq. 15.1- 
2. What assumptions are made in the derivation? How is W, to be interpreted? (Hint: Some 
suggestions on solving this problem may be obtained by studying the derivation of the 
macroscopic mechanical energy balance in 97.8.) 

Operation of a heat-exchange device (Fig. 15D.3). A hot fluid enters the circular tube of ra- 
dius R, at position z = 0 and moves in the positive z direction to z = L, where it leaves the 
tube and flows back along the outside of that tube in the annular space. Heat is exchanged be- 
tween the fluid in the tube and that in the annulus. AIso heat is lost from the annulus to the 
air outside, which is at the ambient air temperature T, (a constant). Assume that the density 
and heat capacity are constant. Use the following notation: 

Ul = overall heat transfer coefficient between the fluid in the tube and the fluid in 
the annular space 

LI, = overall heat transfer coefficient between the fluid in the annulus and the air 
at temperature T, 

Tl(z) = temperature of the fluid in the tube 

T2(z) = temperature of the fluid in the annular space 

w = mass flow rate through the system (a constant) 

If the fluid enters at the inlet temperature Ti, what will be the outlet temperature T,? It is sug- 
gested that t$e following dimensionless quantities be used: 0, = (TI - T,)/(T, - T,), Nl = 

2nRlUlL/w Cp, and 5 = z/L. 

Discharge of a gas fr9m a moving tank (Fig. 15.5-6). Equation 15.5-38 in Example 15.5-4 was 
obtained by setting d @ / d t  equal to zero, a procedure justified only because the tank was said 
to be stationary. It is nevertheless true that Eq. 15.5-38 is correct for moving tanks as well. 
This statement can be proved as follows: 
(a) Consider a tank such as that pictured in Fig. 15.5-6, but moving at a velocity v that is 
much larger than the relative velocity of fluid and tank in the region to the left of surface 1. 
Show that for this region of the tank the macroscopic momentum balance becomes 

\ C I 
Fluid temperature T1(d I /  - I 

coefficient Ul ; 

I 
coefficient U2 y 

Air temperature T, 

I 
I 
I 
I 

Fig. 15D.3. A heat- 
Z ~ O  z = L exchange device. 
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in which the fluid velocity is assumed to be uniform and equal to v. Then take the dot prod- 
uct of both sides of Eq. 15D.4-1 with v to obtain 

where & / d l  is neglected. 
(b) Substitute this result into the macroscopic energy balance, and continue as in Example 
15.5-4. 

15D.5. The classical Bernoulli equation. Below Eq. 15.2-5 we have emphasized that the mechanical 
energy balance and the total energy balance contain different information, since the first is a 
consequence of conservation of momentum, whereas the second is a consequence of conser- 
vation of energy. 

For the steady-state flow of a compressible fluid with zero transport properties, both bal- 
ances lead to the classical Bernoulli equation. The derivation based on the equation of motion 
was given in Example 3.5-1. Make a similar derivation for the steady state energy equation, 
assuming zero transport properties, that is, for isentropic flow.3 

R. B. Bird and M. D. Graham, in Handbook of Fluid Dynamics (R. W .  Johnson, ed.), CRC Press, Boca 
Raton, Fla. (19981, p. 3-13. 



Chapter 16 

Energy Transport by Radiation 

516.1 The spectrum of electromagnetic radiation 

916.2 Absorption and emission at solid surfaces 

516.3 Planck's distribution law, Wien's displacement law, and the Stefan-Boltzmann 
law 

516.4 Direct radiation between black bodies in vacuo at different temperatures 

516.5' Radiation between nonblack bodies at different temperatures 

516.6' Radiant energy transport in absorbing media 

We concluded Part I of this book with a chapter about fluids that cannot be described by 
Newton's law of viscosity, but that require various kinds of nonlinear and time-depen- 
dent expressions. We now end Part I1 with a brief discussion of radiative energy trans- 
port, which cannot be described by Fourier's law. 

In Chapters 9 to 15 the transport of energy by conduction and by convection has 
been discussed. Both modes of transport rely on the presence of a material medium. For 
heat conduction to occur, there must be temperature inequalities between neighboring 
points. For heat convection to occur, there must be a fluid that is free to move and trans- 
port energy with it. In this chapter, we turn our attention to a third mechanism for en- 
ergy transport-namely, radiation. Radiation is basically an electromagnetic mechanism, 
which allows energy to be transported with the speed of light through regions of space 
that are devoid of matter. The rate of energy transport between two "black bodies in a 
vacuum is proportional to the difference of the fourth powers of their absolute tempera- 
tures. This mechanism is qualitatively very different from the three transport mecha- 
nisms considered elsewhere in this book: momentum transport in Newtonian fluids, 
proportional to the velocity gradient; energy transport by heat conduction, proportional 
to a temperature gradient; and mass transport by diffusion, proportional to a concentra- 
tion gradient. Because of the uniqueness of radiation as a means of transport and be- 
cause of the importance of radiant heat transfer in industrial calculations, we have 
devoted a separate chapter to this subject. 

A thorough understanding of the physics of radiative transport requires the use of 
several different  discipline^:',^ electromagnetic theory is needed to describe the essen- 
tially wavelike nature of radiation, in particular the energy and pressure associated with 
electromagnetic waves; thermodynamics is useful for obtaining some relations among 

M. Planck, Theory ofHeat, Macmillan, London (1932), Parts 111 and IV. Nobel Laureate Max Karl 
Ernst Ludwig Planck (1858-1947) was the first to hypothesize the quantization of energy and thereby 
introduce a new fundamental constant h (Planck's constant); his name is also associated with the 
"Fokker-Planck" equation of stochastic dynamics. 

W. Heitler, Quantum Theory of Radiation, 2nd edition, Oxford University Press (1944). 
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the "bulk properties" of an enclosure containing radiation; quantum mechanics is neces- 
sary in order to describe in detail the atomic and molecular processes that occur when 
radiation is produced within matter and when it is absorbed by matter; and statistical 
mechanics is needed to describe the way in which the energy of radiation is distributed 
over the wavelength spectrum. All we can do in this elementary discussion is define the 
key quantities and set forth the results of theory and experiment. We then show how 
some of these results can be used to compute the rate of heat transfer by radiant 
processes in simple systems. 

In $16.1 and $16.2 we introduce the basic concepts and definitions. Then in s16.3 
some of the principal physical results concerning black-body radiation are given. In the 
following section, $16.4, the rate of heat exchange between two black bodies is discussed. 
This section introduces no new physical principles, the basic problems being those of 
geometry. Next, 516.5 is devoted to an extension of the preceding section to nonblack 
surfaces. Finally, in the last section, there is a brief discussion of radiation processes in 
absorbing media.3 

516.1 THE SPECTRUM OF ELECTROMAGNETIC RADIATION 

When a solid body is heated-for example, by an electric coil-the surface of the solid 
emits radiation of wavelength primarily in the range 0.1 to 10 microns. Such radiation is 
usually referred to as thermal radiation. A quantitative description of the atomic and mol- 
ecular mechanisms by which the radiation is produced is given by quantum mechanics 
and is outside the scope of this discussion. A qualitative description, however, is possi- 
ble: When energy is supplied to a solid body, some of the constituent molecules and 
atoms are raised to "excited states." There is a tendency for the atoms or molecules to re- 
turn spontaneously to lower energy states. When this occurs, energy is emitted in the 
form of electromagnetic radiation. Because the emitted radiation results from changes in 
the electronic, vibrational, and rotational states of the atoms and molecules, the radiation 
will be distributed over a range of wavelengths. 

Actually, thermal radiation represents only a small part of the total spectrum of elec- 
tromagnetic radiation. Figure 16.1-1 shows roughly the kinds of mechanisms that are re- 
sponsible for the various parts of the radiation spectrum. The various kinds of radiation 
are distinguished from one another only by the range of wavelengths they include. In a 
vacuum, all these forms of radiant energy travel with the speed of light c. The wave- 
length A, characterizing an electromagnetic wave, is then related to its frequency v by the 
equation 

in which c = 2.998 x lo8 m/s. In the visible part of the spectrum, the various wave- 
lengths are associated with the "color" of the light. 

For some purposes, it is convenient to think of electromagnetic radiation from a cor- 
puscular point of view. Then we associate with an electromagnetic wave of frequency v a 
photon, which is a particle with charge zero and mass zero with an energy given by 

For additional information on radiative heat transfer and engineering applications, see the 
comprehensive textbook by R. Siege1 and J. R. Howell, Thermal Radiation Heat Transfer, 3rd edition, 
Hemisphere Publishing Co., New York (1992). See also J. R. Howell and M. P. Mengoq, in Handbook of 
Heat Transfer, 3rd edition, (W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, eds.), McGraw-Hill, New York 
(1998), Chapter 7. 
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Electrical conductor 

11 Radio waves - - - - - - - - - - - carrying alternating 8" current 

- - - - Molecular rotations 

Near infrared - - - - - - - - - Molecular vibrations 

~ i b k  3 Displacement of outer 

iolet - - - - - - electrons of an atom 

Displacement of inner 
electrons of an atom 

Displacement of nucleons 
in an atomic nucleus 

Fig. 16.1-1. The spectrum of electromagnetic radiation, showing 
roughly the mechanisms by which various wavelengths of radiation 
are produced (1 A = Angstrom unit = lo-' cm = 0.1 nm; 1 p = 1 mi- 
cron = l ~ - ~  m). 

Here h = 6.626 X J,s is Planck's constant. From these two equations and the infor- 
mation from Fig. 16.1-1, we see that decreasing the wavelength of electromagnetic radia- 
tion corresponds to increasing the energy of the corresponding photons. This fact ties in 
with the various mechanisms that produce the radiation. For example, relatively small 
energies are released when a molecule decreases its speed of rotation, and the associated 
radiation is in the infrared. On the other hand, relatively large energies are released 
when an atomic nucleus goes from a high energy state to a lower one, and the associated 
radiation is either gamma- or x-radiation. The foregoing statements also make it seem 
reasonable that the radiant energy emitted from heated objects will tend toward shorter 
wavelengths (higher energy photons) as the temperature of the body is raised. 

Thus far we have sketched the phenomenon of the emission of radiant energy or pho- 
tons when a molecular or atomic system goes from a high to a low energy state. The re- 
verse process, known as absorption, occurs when the addition of radiant energy to a 
molecular or atomic system causes the system to go from a low to a high energy state. 
The latter process is then what occurs when radiant energy impinges on a solid surface 
and causes its temperature to rise. 
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516.2 ABSORPTION AND EMISSION AT SOLID SURFACES 

Having introduced the concepts of absorption and emission in terms of the atomic pic- 
ture, we now proceed to the discussion of the same processes from a macroscopic view- 
point. We restrict the discussion here to opaque solids. 

Radiation impinging on the surface of an opaque solid is either absorbed or re- 
flected. The fraction of the incident radiation that is absorbed is called the absorptivity 
and is given the symbol a. Also the fraction of the incident radiation with frequency v 
that is absorbed is designated by a,. That is, a and a, are defined as 

in which qt'dv and q!'dv are the absorbed and incident radiation per unit area per unit 
time in the frequency range v to v + dv. For any real body, a, will be less than unity and 
will vary considerably with the frequency. A hypothetical body for which a, is a con- 
stant, less than unity, over the entire frequency range and at all temperatures is called a 
gray body. That is, a gray body always absorbs the same fraction of the incident radiation 
of all frequencies. A limiting case of the gray body is that for which a, = 1 for all frequen- 
cies and all temperatures. This limiting behavior defines a black body. 

All solid surfaces emit radiant energy. The total radiant energy emitted per unit area 
per unit time is designated by q'", and that emitted in the frequency range u to u + dv  is 
called qf'dv. The corresponding rates of energy emission from a black body are given the 
symbols qjf) and qlP,'du. In terms of these quantities, the emissivity for the total radiant-en- 
ergy emission as well as that for a given frequency are defined as 

The emissivity is also a quantity less than unity for real, nonfluorescing surfaces and is 
equal to unity for black bodies. At any given temperature the radiant energy emitted by 
a black body represents an upper limit to the radiant energy emitted by real, nonfluo- 
rescing surfaces. 

We now consider the radiation within an evacuated enclosure or "cavity" with 
isothermal walls. We imagine that the entire system is at equilibrium. Under this condi- 
tion, there is no net flux of energy across the interfaces between the solid and the cavity. 
We now show that the radiation in such a cavity is independent of the nature of the 
walls and dependent solely on the temperature of the walls of the cavity. We connect 
two cavities, the walls of which are at the same temperature, but are made of two differ- 
ent materials, as shown in Fig. 16.2-1. If the radiation intensities in the two cavities were 
different, there would be a net transport of radiant energy from one cavity to the other. 
Because such a flux would violate the second law of thermodynamics, the radiation in- 
tensities in the two cavities must be equal, regardless of the compositions of the cavity 
surfaces. Furthermore, it can be shown that the radiation is uniform and unpolarized 
throughout the cavity. This cavity radiation plays an important role in the development 

Material 1 Material 2 

Fig. 16.2-1. Thought experiment for proof that cavity radi- 
ation is independent of the wall materials. 
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of Planck's law. We designate the intensity of the radiation as q"""). This is the radiant 
energy that would impinge on a solid surface of unit area placed anywhere within the 
cavity. 

We now perform two additional thought experiments. In the first, we put into a cav- 
ity a small black body at the same temperature as the walls of the cavity. There will be 
no net interchange of energy between the black body and the cavity walls. Hence the en- 
ergy impinging on the black-body surface must equal the energy emitted by the black 
body: 

From this result, we draw the important conclusion that the radiation emitted by a black 
body is the same as the equilibrium radiation intensity within a cavity at the same tem- 
perature. 

In the second thought experiment, we put a small nonblack body into the cavity, 
once again specifying that its temperature be the same as that of the cavity walls. There 
is no net heat exchange between the nonblack body and the cavity walls. Hence we can 
state that the energy absorbed by the nonblack body will be the same as that radiating 
from it: 

Comparison of Eqs. 16.2-5 and 6 leads to the result 

The definition of the emissivity e in Eq. 16.2-3 allows us to conclude that 

PI (16.2-8) 

This is Kirchhoff's law,' which states that at a given temperature the emissivity and ab- 
sorptivity of any solid surface are the same when the radiation is in equilibrium with the 
solid surface. It can be shown that Eq. 16.2-8 is also valid for each wavelength separately: 

(16.2-9) 

Values of the total emissivity e for some solids are given in Table 16.2-1. Actually, e de- 
pends also on the frequency and on the angle of emission, but the averaged values given 
there have found widespread use. The tabulated values are, with a few exceptions, for 
emission normal to the surface, but they may be used for hemispheric emissivity, partic- 
ularly for rough surfaces. Unoxidized, clean, metallic surfaces have very low emissivi- 
ties, whereas most nonmetals and metallic oxides have emissivities above 0.8 at room 
temperature or higher. Note that emissivity increases with increasing temperature for 
nearly all materials. 

We have indicated that the radiant energy emitted by a black body is an upper limit 
to the radiant energy emitted by real surfaces and that this energy is a function of the 
temperature. It has been shown experimentally that the total emitted energy flux from a 
black surface is 

- - - 

G. Kirchhoff, Monatsbeu. d. preuss. Akad. d. Wissenschaften, p. 783 (1859); Poggendorffs Annalen, 109, 
275-301 (1860). Gustav Robert Kirchhoff (1824-1887) published his famous laws for electrical circuits 
while still a graduate student; he taught at Breslau, Heidelberg, and Berlin. 
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Table 16.2-1 The Total Emissivities of Various Surfaces for Perpendicular Emissiona 

Aluminum 
Highly polished,98.3% pure 
Oxidized at 1110°F 
Al-coated roofing 

Copper 
Highly polished, electrolytic 
Oxidized at 11 10°F 

Iron 
Highly polished, electrolytic 
Completely rusted 
Cast iron, polished 
Cast iron, oxidized at llOO°F 

Asbestos paper 
Brick 

Red, rough 
Silica, unglazed, rough 
Silica, glazed, rough 

Lampblack, 0.003 in. or thicker 
Paints 

Black shiny lacquer on iron 
White lacquer 
Oil paints, 16 colors 
Aluminum paints, varying age 

and lacquer content 
Refractories, 40 different 

Poor radiators 
Good radiators 

Water, liquid, thick layerb 

"elected values from the table compiled by H. C. Hottel for W. H. McAdams, Heat 
Transmission, 3rd edition, McGraw-Hill, New York (1954), pp. 472479. 

Calculated from spectroscopic data. 

in which T is the absolute temperature. This is known as the Stefan-Boltzmann law.' The 
Stefan-Boltzmann constant u has been found to have the value of 0.1712 X Btu/hr 
ft2 R or 1.355 X 10-l2 cal/s cm2 . K. In the next section we indicate two routes by which 
this important formula has been obtained theoretically. For nonblack surfaces at tempera- 
ture T the emitted energy flux is 

q(e) = euT4 1 (16.2-1 1) 

J. Stefan, Sitzber. Akad. Wiss. Wien, 79, part 2,391428 (1879); L. Boltzmann, Ann. Phys. (Wied. Ann.), 
Ser. 2,22,291-294 (1884). Slovenian-born Josef Stefan (1835-1893), rector of the University of Vienna 
(1876-1877), in addition to being known for the law of radiation that bears his name, also contributed to 
the theory of multicomponent diffusion and to the problem of heat conduction with phase change. 
Ludwig Eduard Boltzmann (1844-1906), who held professorships in Vienna, Graz, Munich, and Leipzig, 
developed the basic differential equation for gas kinetic theory (see Appendix D) and the fundamental 
entropy-probability relation, S = K In W, which is engraved on his tombstone in Vienna; K is called the 
Boltzmann constant. 
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in which e must be evaluated at temperature T. The use of Eqs. 16.2-10 and 11 to calcu- 
late radiant heat transfer rates between heated surfaces is discussed in g516.4 and 5. 

We have mentioned that the Stefan-Boltzmann constant has been experimentally 
determined. This implies that we have a true black body at our disposal. Solids with 
perfectly black surfaces do not exist. However, we can get an excellent approximation 
to a black surface by piercing a very small hole in the wall of an isothermal cavity. The 
hole itself is then very nearly a black surface. The extent to which this is a good ap- 
proximation may be seen from the following relation, which gives the effective emis- 
sivity of the hole, eh,,,, in a rough-walled enclosure in terms of the actual emissivity e 
of the cavity walls and the fraction f of the total internal cavity area that is cut away 
by the hole: 

If e = 0.8 and f = 0.001, then e,,,, = 0.99975. Therefore, 99.975% of the radiation that falls 
on the hole will be absorbed. The radiation that emerges from the hole will then be very 
nearly black-body radiation. 

516.3 PLANCK'S DISTRIBUTION LAW, WIEN'S DISPLACEMENT 
LAW, AND THE STEFAN-BOLTZMANN LAW1r2r3 

The Stefan-Boltzmann law may be deduced from thermodynamics, provided that cer- 
tain results of the theory of electromagnetic fields are known. Specifically, it can be 
shown that for cavity radiation the energy density (that is, the energy per unit volume) 
within the cavity is 

Since the radiant energy emitted by a black body depends on temperature alone, the 
energy density u"' must also be a function of temperature only. It can further be 
shown that the electromagnetic radiation exerts a pressure p(') on the walls of the cav- 
ity given by 

(r) - Z (7) P - 3 u  (16.3-2) 

The preceding results for cavity radiation can also be obtained by considering the cavity 
to be filled with a gas made up of photons, each endowed with an energy hv and mo- 
mentum hv/c. We now apply the thermodynamic formula 

to the photon gas or radiation in the cavity. Insertion of U'" = Vu'" and p'" = $u"' into 
this relation gives the following ordinary differential equation for u(')(T): 

' J. de Boer, Chapter VII in Leerboek der Nafuurkunde, 3rd edition, (R. Kronig, ed.), Scheltema and 
Holkema, Amsterdam (1951). 

H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edition, Wiley, New York 
(1985), pp. 78-79. 

" M. Planck, Vorlesungen uber die Theorie der Wiirmestmhlung, 5th edition, Barth, Leipzig (1923); Ann. 
Phys., 4,553-563,564-566 (1901). 
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This equation can be integrated to give 

in which b is a constant of integration. Combination of this result with Eq. 16.3-1 gives 
the radiant energy emitted from the surface of a black body per unit area per unit time: 

This is the Stefan-Boltzmann law. Note that the thermodynamic development does not 
predict the numerical value of a. 

The second way of deducing the Stefan-Boltzmann law is by integrating the Planck 
distribution law. This famous equation gives the radiated energy flux qg from a black sur- 
face in the wavelength range A to A + dA: 

Here h is Planck's constant. The result can be derived by applying quantum statistics to a 
photon gas in a cavity, the photons obeying Bose-Einstein  statistic^.^,' The Planck distri- 
bution, which is shown in Fig. 16.3-1, correctly predicts the entire energy versus wave- 
length curve and the shift of the maximum toward shorter wavelengths at higher 
temperatures. When Eq. 16.3-7 is integrated over all wavelengths, we get 

In the above integration we changed the variable of integration from A to x = ch/h~T. 
Then the integration over x was performed by expanding l/(ex - 1) in a Taylor series in 
8 (see 5C.2) and integrating term by term. The quantum statistical approach thus gives 
the details of the spectral distribution of the radiation and also the expression for the Ste- 
fan-Boltzmann constant, - 
having the value 1.355 X lo-'' cal/s cm2 . K, which is confirmed within experimental 
uncertainty by direct radiation measurements. Equation 16.3-9 is an amazing formula, 
interrelating as it does the a from radiation, the K from statistical mechanics, the speed of 
light c from electromagnetism, and the h from quantum mechanics. 

In addition to obtaining the Stefan-Boltzmann law from the Planck distribution, we 
can get an important relation pertaining to the maximum in the Planck distribution. First 

- 

J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley, New York (1940), pp. 363-374. 
' L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd edition, Part 1, Pergamon, Oxford (1980), §63. 
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A,,, for solar radiation 0.5 micron 

8 ,  

v Wavelength, A, microns 
Visible spectrum 
0.3-0.7 microns 

Fig. 16.3-1. The spectrum of 
equilibrium radiation as given by 
Planck's law. [M. Planck, Veuh. der 
deutschen ahusik. Gesell., 2,202,237 

we rewrite Eq. 16.3-7 in terms of x and then set dqg/dx = 0. This gives the following 
equation for x,,,, which is the value of x for which the Planck distribution shows a maxi- 
mum: 

The solution to this equation is found numerically to be x,, = 4.9651. . . . Hence at a 
given temperature T 

Inserting the values of the universal constants and the value for x,,,, we then get 

This result, originally found experimentally,6 is known as Wien's displacement law. It is 
useful primarily for estimating the temperature of remote objects. The law predicts, in 
agreement with experience, that the apparent color of radiation shifts from red (long 
wavelengths) toward blue (short wavelengths) as the temperature increases. 

Finally, we may reinterpret some of our previous remarks in terms of the Planck dis- 
tribution law. In Fig. 16.3-2 we have sketched three curves: the Planck distribution law 
for a hypothetical black body, the distribution curve for a hypothetical gray body, and a 
distribution curve for some real body. It is thus clear that when we use the total ernissiv- 
ity values, such as those in Table 16.2-1, we are just accounting empirically for the devia- 
tions from Planck's law over the entire spectrum. 

We should not leave the subject of the Planck distribution without pointing out that 
Eq. 16.3-7 was presented at the October 1900 meeting of the German Physical Society as 

W. Wien, Sitzungsber. d .  kglch. preuss. Akad. d .  Wissenschaften, (VI), p. 55-62 (1893). 
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Planck's law (black body) 

Fig. 16.3-2. Comparison of the emit- 
ted radiation from black, gray, and 
real surfaces. 

an empiricism that fitted the available data.7 However, before the end of the year,' Planck 
succeeded in deriving the equation, but at the expense of introducing the radical notion 
of the quantization of energy, an idea that was met with little enthusiasm. Planck himself 
had misgivings, as clearly stated in his textbook.' In a letter in 1931, he wrote: ". . . what I 
did can be described as an act of desperation. . . . I had been wrestling unsuccessfully for 
six years. . . with the problem of equilibrium between radiation and matter, and I knew 
that the problem was of fundamental importance. . ." Then Planck went on to say that 
he was "ready to sacrifice every one of my previous convictions about physical laws" ex- 
cept for the first and second laws of  thermodynamic^.'^ Planck's radical proposal ush- 
ered in a new and exciting era of physics, and quantum mechanics penetrated into 
chemistry and other fields in the twentieth century. 

EXAMPLE 16.3-1 

Temperature and 

For approximate calculations, the sun may be considered a black body, emitting radiation 
with a maximum intensity at h = 0.5 microns (5000 A). With this information, estimate (a) the 
surface temperature of the sun, and (b) the emitted heat flux at the sun's surface. 

Radian t-Energy 
Emission of the Sun SOLUTION 

(a) From Wien's displacement law, Eq. 16.3-12, 

(b) From the Stefan-Boltzmann law, Eq. 16.2-10, 

0. Lummer and E. Pringsheim, Wied. Ann., 63,396 (1897); Ann. der Physik, 3,159 (1900). 
M. Planck, Verhandl. d ,  deutsch. physik. Ges., 2,202 and 237 (1900); Ann. Phys., 4,553-563,564-566 

(1901). 
M. Planck, The Theory of Heat Radiation, Dover, New York (1991), English translation of Vorlesungen 

uber die Theorie der Warmestrahlung (1913), p. 154. 
lo A. Hermann, The Genesis of Quantum Theory, MIT Press (1971), pp. 23-24. 
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Fig. 16.4-1. Radiation at an angle 0 from 
the normal to the surface into a solid angle 
sin 8ddd4. 

516.4 DIRECT RADIATION BETWEEN BLACK BODIES 
IN VACUO AT DIFFERENT TEMPERATURES 

In the preceding sections we have given the Stefan-Boltzmann law, which describes the 
total radiant-energy emission from a perfectly black surface. In this section we discuss 
the radiant-energy transfer between two black bodies of arbitrary geometry and orienta- 
tion. Hence we need to know how the radiant energy emanating from a black body is 
distributed with respect to angle. Because black-body radiation is isotropic, the follow- 
ing relation, known as Lambert's cosine law,' can be deduced: 

in which qg is the energy emitted per unit area per unit time per unit solid angle in a di- 
rection 8 (see Fig. 16.4-1). The energy emitted through the shaded solid angle is then 
q t  sin 8 de d+ per unit area of black solid surface. Integration of the foregoing expression 
for qfj over the entire hemisphere gives the known total energy emission: 

LZT r qf$ sin e ae a+ = , uT4 /021 lo*/' cos B sin e ae d+ 

This justifies the inclusion of the factor of I / T  in Eq. 16.4-1. 
We are now in a position to get the net heat transfer rate from body 1 to body 2, 

where these are black bodies of any shape and orientation (see Fig. 16.4-2). We do this by 
getting the net heat transfer rate between a pair of surface elements dA, and dA, that can 
"see" each other, and then integrating over all such possible pairs of areas. The elements 
dAl and dA2 are joined by a straight line of length r,,, which makes an angle 8, with the 
normal to dA, and an angle 82 with the normal to dA,. 

We start by writing an expression for the energy radiated from dA, into a solid angle 
sin O1 dB1 d+, about r,,. We choose this solid angle large enough that dA2 will lie entirely 
within the "beam" (see Fig. 16.4-2). According to Lambert's cosine law, the energy radi- 
ated per unit time will be 

(9 cos B,)dA, sin el do, d+, 

' H. Lambert, Photometria, Augsburg (1760). 
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Fig. 16.4-2. Radiant interchange 
between two black bodies. 

Of the energy leaving dAl at an angle O,, only the fraction given by the following ratio 
will be intercepted by dA,: 

area of dA2 projected onto a 
plane perpendicular to r,, 

- 
dA2 cos 8 2  

(16.4-4) 

i area formed by the r: sin 6 ,  dBl d 4 ,  
of the solid angle sin 61 dO, d+, 
with a sphere of radius r12 with 
center at dA, 

Multiplication of these last two expressions then gives 

This is the radiant energy emitted by dA, and intercepted by dA, per unit time. In a simi- 
lar way we can write 

UT; cos O1 cos 8, 
dQ, = - dAldA2 

21 $2 

which is the radiant energy emitted by dA2 that is intercepted by dA, per unit time. The 
net rate of energy transport from dA, to dA2 is then 

Therefore, the net rate of energy transfer from an isothermal black body 1 to another 
isothermal black body 2 is 

Here it is understood that the integration is restricted to those pairs of areas dA, and dA2 
that are in full view of each other. This result is conventionally written in the form 
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0.1 0.2 0.30.4 0.6 1.0 2 3 4  6 1 0 -  
z Dimension ratio - 
X 

Fig. 16.4-3. View factors for direct radiation between adjacent rectangles in perpendicular planes 
[H. C. Hottel, Chapter 3 in W. H. McAdams, Heat Transmission, McGraw-Hill, New York (1954), p. 681. 

where A, and A2 are usually chosen to be the total areas of bodies 1 and 2. The dimen- 
sionless quantities F,, and F,,, called view factors (or angle factors or configuration factors), 
are given by 

and the two view factors are related by A,F,, = A,F,,. The view factor F,, represents the 
fraction of radiation leaving body 1 that its directly intercepted by body 2. 

The actual calculation of view factors is a difficult problem, except for some very 
simple situations. In Fig. 16.4-3 and Fig. 16.4-4 some view factors for direct radiation are 
s h ~ w n . ~ , ~ , W h e n  such charts are available, the calculations of energy interchanges by Eq. 
16.4-9 are easy. 

In the above development, we have assumed that Lambert's law and the 
Stefan-Boltzmann law may be used to describe the nonequilibrium transport process, in 
spite of the fact that they are strictly valid only for radiative equilibrium. The errors thus 
introduced do not seem to have been studied thoroughly, but apparently the resulting 
formulas give a good quantitative description. 

H. C. Hottel and A. F. Sarofim, Radiative Transfer, McGraw-Hill, New York (1967). 
H.C. Hottel, Chapter 4 in W. H. McAdams, Heat Transmission, McGraw-Hill, New York (1954). 
' R. Siege1 and J. R. Howell, Thermal Radiation Heat Transfer, 3rd edition, Hemisphere Publishing Co., 

New York (1992). 



500 Chapter 16 Energy Transport by Radiation 

Diameter or shorter side 
Ratio, 

Distance between planes 

Fig. 16.4-4. View factors for direct radiation between opposed identical shapes 
in parallel planes. [H. C. Hottel, Chapter 3 in W. H. McAdams Heat Transmission, 
McGraw-Hill, New York (1954), Third Edition, p. 69.1 

Thus far we have concerned ourselves with the radiative interactions between two 
black bodies. We now wish to consider a set of black surfaces 1,2, . . . , n, which form the 
walls of a complete enclosure. The surfaces are maintained at temperatures TI ,  T,, . . . , 
T,, respectively. The net heat flow from any surface i to the enclosure surfaces is 

n 

Q,, = U A , ~  F,,(Tf - T$) i = 1,2,.  . . ,n  (16.4-12) 
]=I 

In writing the second form, we have used the relations 

The sums in Eqs. 16.4-13 and 14 include the term F,,, which is zero for any object that in- 
tercepts none of its own rays. The set of n equations given in Eq. 16.4-12 (or Eq. 16.4-13) 
may be solved to get the temperatures or heat flows according to the data available. 

A simultaneous solution of Eqs. 16.4-13 and 14 of special interest is that for which 
Q& - Q  4 = . . . =  

7 - Q ,  = 0. Surfaces such as 3,4, . . . , n are here called "adiabatic." In this 
situation one can eliminate the temperatures of all surfaces except 1 and 2 from the heat 
flow calculation and obtain an exact solution for the net heat flow from surface 1 to sur- 
face 2: 

Values of F,, for use in this equation are given in Fig. 16.4-4. These values apply only 
when the adiabatic walls are formed from line elements perpendicular to surfaces 1 and 2. 

The use of these view factors F and T greatly simplifies the calculations for black- 
body radiation, when the temperatures of surfaces 1 and 2 are known to be uniform. The 
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Sun Earth Fig. 16.4-5. Estimation of the solar 
constant. 

1- 92.9 million miles 

reader wishing further information on radiative heat exchange in enclosures is referred 
to the l i t e r a t~ re .~  

The radiant heat flux entering the earth's atmosphere from the sun has been termed the "solar 
constant" and is important in solar energy utilization as well as in meteorology. Designate the 

Estimation of the sun as body 1 and the earth as body 2, and use the following data to calculate the solar con- 
Solar Constant stant: Dl = 8.60 X lo5 miles; rI2 = 9.29 X lo7 miles; qfi) = 2.0 X lo7 Btu/hr. ft2 (from Example 

16.3-1). 

SOLUTION In the terminology of Eq. 16.4-5 and Fig. 16.4-5, 

dQ , 

solar constant = cos O1dAl 

This is in satisfactory agreement with other estimates that have been made. The treatment of 
r:, as a constant in the integrand is permissible here because the distance r12 varies by less 
than 0.5% over the visible surface of the sun. The remaining integral, $ cos B,dA,, is the proL 
jected area of the sun as seen from the earth, or very nearly .rrJ3:/4. 

Two black disks of diameter 2 ft are placed directly opposite one another at a distance of 4 ft. 
Disk 1 is maintained at 2000°R, and disk 2 at 1000°R. Calculate the heat flow between the two 

Radiant Heat Transfer disks (a) when no other surfaces are present, and (b) when the two disks are connected by an 
Between Disks adiabatic right-cylindrical black surface. 

SOLUTION (a) From Eq. 16.4-9 and curve 1 of Fig. 16.4-4, 

Q12 = A1F7p(T? - T;) 
= ~(0.06)(0.1712 X 10-~)[(2000)~ - ( ~ o o o ) ~ ]  

= 4.83 x lo3 Btu/hr 

(b) From Eq. 16.4-15 and curve 5 of Fig. 16.4-4, 



502 Chapter 16 Energy Transport by Radiation 

s16.5 RADIATION BETWEEN NONBLACK BODIES 
AT DIFFERENT TEMPERATURES 

In principle, radiation between nonblack surfaces can be treated by differential analysis 
of emitted rays and their successive reflected components. For nearly black surfaces this 
is feasible, as only one or two reflections need be considered. For highly reflecting sur- 
faces, however, the analysis is complicated, and the distributions of emitted and re- 
flected rays with respect to angle and wavelength are not usually known with enough 
accuracy to justify a detailed calculation. 

A reasonably accurate treatment is possible for a small convex surface in a large, 
nearly isothermal enclosure (i.e., a "cavity"), such as a steam pipe in a room with walls 
at constant temperature. The rate of energy emission from a nonblack surface 1 to the 
surrounding enclosure 2 is given by 

and the rate of energy absorption from the surroundings by surface 1 is 

Here we have made use of the fact that the radiation impinging on surface 1 is very 
nearly cavity radiation or black-body radiation corresponding to temperature T,. Since 
A, is convex, it intercepts none of its own rays; hence F,, has been set equal to unity. The 
net radiation rate from A, to the surroundings is therefore 

1 S usu- In Eq. 16.5-3, e, is the value of the emissivity of surface 1 at TI. The absorptivity a i 
ally estimated as the value of e at T,. 

Next we consider an enclosure formed by n gray, opaque, diffuse-reflecting surfaces 
A,, A,, A3,. . . , A,, at temperatures TI, T,, T,, . . . , T,. Following oppenheiml we define 
the radiosity Ji for each surface A, as the sum of the fluxes of reflected and emitted radiant 
energy from Ai. Then the net radiant flow from Ai to A, is expressed as 

that is, by Eq. 16.4-9 with substitution of radiosities J, in place of the black-body emissive 
powers ac. 

The definition of Ji gives, for an opaque surface, 

in which li is the incident radiant flux on A,. Elimination of li in favor of the net radiant 
flux Qi,/Ai from Ai into the enclosure gives 

whence 

Finally, a steady-state energy balance on each surface gives 

Here Q, is the rate of heat addition to surface A, by nonradiative means. 

' A. K. Oppenheim, Tmns. ASME, 78,725-735 (1956); for earlier work, see G. Poljak, Tech. Phys. 
USSR, 1,555-590 (1935). 
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Fig. 16.5-1. Radiation between two infinite, parallel gray 
Surface 2 at surfaces. 

temperature T2 
with emissivity e2 

Surface 1 at 
temperature TI 

with emissivity el 

Radiation potential: U T ~  h h CTT; 

~I~~ = I - I *  

I I 

I - e l  I 1 I 1-ez Radiation resistance: - 1  - I - 
elAl I A1F12 I e2-42 

I 1 I 
I or - I 
I A2F21 I 

Fig. 16.5-2. Equivalent cir- 

dll cuit for system shown in 
Fig. 16.5-1. 

Equations analogous to Eqs. 16.5-4,7, and 8 arise in the analysis of direct-current cir- 
cuits, from Ohm's law of conduction and Kirchhoff's law of charge conservation. Hence 
we have the following analogies: 

I I 

Electrical 

Current 
Voltage 
Resistance 

Radiative 

This analogy allows easy diagramming of equivalent circuits for visualization of simple 
enclosure radiation problems. For example, the system in Fig. 16.5-1 gives the equivalent 
circuit shown in Fig. 16.5-2 so that the net radiant heat transfer rate is 

The shortcut solution summarized in Eq. 16.4-15 has been similarly generalized to 
non-black-walled enclosures giving 

in place of Eq. 16.5-8, for an enclosure with Qi = 0 for i = 2, 3,. . . , n. The result is like 
that in Eq. 16.5-9, except that F1, must be used instead of F1, to include indirect paths 
from A, to A,, thus giving a larger heat transfer rate. 

Develop an expression for the reduction in radiant heat transfer between two infinite parallel 
gray planes having the same area, A, when a thin parallel gray sheet of very high thermal 

Radiation Shields conductivity is placed between them as shown in Fig. 16.5-3. 
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SOLUTION 

Fig. 16.5-3. Radiation shield. 

The radiation rate between planes 1 and 2 is given by 

since both planes have the same area A and the view factor is unity. Similarly the heat trans- 
fer between planes 2 and 3 is 

These last two equations may be combined to eliminate the temperature of the radiation 
shield, T,, giving 

Then, since Q,, = Q2, = Q,,, we get 

Finally, the ratio of radiant energy transfer with a shield to that without one is 

EXAMPLE 16.5-2 

Radiation and Free- 
Convection Heat Losses 
from a Horizontal Pipe 

Predict the total rate of heat loss, by radiation and free convection, from a unit length of hori- 
zontal pipe covered with asbestos. The outside diameter of the insulation is 6 in. The outer 
surface of the insulation is at 560°R, and the walls and air in the room are at 540°R. 

SOLUTION 

Let the outer surface of the insulation be surface 1 and the walls of the room be surface 2. 
Then Eq. 16.15-3 gives 

Q12 = 4Fl2(e1T? - 4 T ; )  (16.5-16) 
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Since the pipe surface is convex and completely enclosed by surface 2, F,, is unity. From Table 
16.2-1, we find e, = 0.93 at 560"R and a, = 0.93 at 540 R. Substitution of numerical values into 
Eq. 16.5-12 then gives for 1 ft of pipe: 

By adding the convection heat loss from Example 14.5-1, we obtain the total heat loss: 

Note that in this situation radiation accounts for more than half of the heat loss. If the fluid 
were not transparent, the convection and radiation processes would not be independent, and 
the convective and radiative contributions could not be added directly. 

A body directly exposed to a clear night sky will be cooled below ambient temperature by ra- 
diation to outer space. This effect can be used to freeze water in shallow trays well insulated 

Combined Radiation from the ground. Estimate the maximum air temperature for which freezing is possible, ne- 
and Convection glecting evaporation. 

SOLUTION As a first approximation, the following assumptions may be made: 

a. All heat received by the water is by free convection from the surrounding air, which is 
assumed to be quiescent. 

b. The heat effect of evaporation or condensation of water is not significant. 

c. Steady state has been achieved. 

d. The pan of water is square in cross section. 

e. Back radiation from the atmosphere is neglected. 

The maximum permitted air temperature at the water surface is T ,  = 492"R. The rate of heat 
loss by radiation is 

in which L is the length of one edge of the pan. 
To get the heat gain by convection, we use the relation 

in which h is the heat transfer coefficient for free convection. For cooling atmospheric air by a 
horizontal square facing upward, the heat transfer coefficient is given by2 

in which h is expressed in Btu/hr. ft2. F and the temperature is given in degrees Rankine. 
When the foregoing expressions for heat loss by radiation and heat gain by free convec- 

tion are equated, we get 

95L2 = 0.2L2(Tair - 492)5/4 (16.5-22) 

From this we find that the maximum ambient air temperature is 630°R or 170°F. Except under 
desert conditions, back radiation and moisture condensation from the surrounding air greatly 
lower the required air temperature. 

W. H. McAdams, in Chemical Engineers' Handbook (J.  H.  Perry, Ed.), McGraw-Hill, New York 
(1950), 3rd edition, p. 474. 
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516.6 RADIANT ENERGY TRANSPORT IN ABSORBING MEDIA3 

The methods given in the preceding sections are applicable only to materials that are 
completely transparent or completely opaque. To describe energy transport in nontrans- 
parent media, we write differential equations for the local rate of change of energy as 
viewed from both the material and radiation standpoint. That is, we regard a material 
medium traversed by electromagnetic radiation as two coexisting "phases": a "material 
phase," consisting of all the mass in the system, and a "photon phase," consisting of the 
electromagnetic radiation. 

In Chapter 11 we have already given an energy balance equation for a system con- 
taining no radiation. Here we extend Eq. 11.2-1 for the material phase to take into ac- 
count the energy that is being interchanged with the photon phase by emission and 
absorption processes: 

Here we have introduced % and d, which are the local rates of photon emission and ab- 
sorption per unit volume, respectively. That is, % represents the energy lost by the mate- 
rial phase resulting from the emission of photons by molecules, and d represents the 
local gain of energy by the material phase resulting from photon absorption by the mole- 
cules (see Fig. 16.6-1). The q in Eq. 16.6-1 is the conduction heat flux given by Fourier's 
law. 

For the "photon phase," we may write an equation describing the local rate of 
change of radiant energy density dr': 

in which q"' is the radiant energy flux. This equation may be obtained by writing a radi- 
ant energy balance on an element of volume fixed in space. Note that there is no convec- 

I 

Photon 1 - I 
I 
I 

L/) Photon 

I 
Photon I 

I emission I 
I 
I 

I 
I 
I 
I 
I Fig. 16.6-1. Volume element over which energy 
I - - - - - - - - - - - - - - - - - - - - - - A balances are made; circles represent molecules. 

G. C. Pomraning, Radiation Hydrodynamics, Pergamon Press, New York (1973); R. Siege1 and 
J. R. Howell, Themzal Radiation Heat Transfer, 3rd edition, Hemisphere Publishing Co., New York (1992). 
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tive term in Eq. 16.6-2, since the photons move independently of the local material veloc- 
ity. Note further that the term (8 - d) appears with opposite signs in Eqs. 16.6-1 and 2, 
indicating that a net gain of radiant energy occurs at the expense of molecular energy. 
Equation 16.6-2 can also be written for the radiant energy within a frequency range v to 
v + dv: 

This expression is obtained by differentiating Eq. 16.6-2 with respect to v. 
For the purpose of simplifying the discussion, we consider a steady-state nonflow 

system in which the radiation travels only in the positive z direction. Such a system can 
be closely approximated by passing a collimated light beam through a solution at tem- 
peratures sufficiently low that the emission by the solution is unimportant. (If emissions 
were important, it would be necessary to consider radiation in all directions.) These are 
the conditions commonly encountered in spectrophotometry. For such a system, Eqs. 
16.6-1 and 2 become 

In order to use these equations, we need information about the volumetric absorption 
rate d. For a unidirectional beam a conventional expression is 

in which ma is known as the extinction coeficient. Basically, this states that the rate of pho- 
ton absorption is proportional to the concentration of photons. 

A monochromatic radiant beam of frequency v, focused parallel to the z-axis, passes through 
an absorbing fluid. The local rate of energy absorption is given by mad:), in which m,, is the 

Absorption of a extinction coefficient for radiation of frequency v. Determine the distribution of the radiant 
Monochromatic flux q!)(z) in the system. 
Radiant Beam 

SOLUTION 

We neglect refraction and scattering of the incident beam. Also, we assume that the liquid is 
cooled so that re-radiation can be neglected. Then Eq. 16.6-5 becomes for steady state 

Integration with respect to z gives 

This is Lambert's law of absorption: widely used in spectrophotometry. For any given pure ma- 
terial, m,, depends in a characteristic way on v. The shape of the absorption spectrum is there- 
fore a useful tool for qualitative analysis. 

J. H. Lambert, Photometria, Augsburg (1760). 
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QUESTIONS FOR DISCUSSION 

PROBLEMS 

The "named laws" in this chapter are important. What is the physical content of the laws as- 
sociated with the following scientists' names: Stefan and Boltzmann, Planck, Kirchhoff, Lam- 
bert, Wien? 
How are the Stefan-Boltzmann law and the Wien displacement law related to the Planck 
black-body distribution law? 
Do black bodies exist? Why is the concept of a black body useful? 
In specular (mirrorlike) reflection, the angle of incidence equals the angle of reflection. How 
are these angles related for diffuse reflection? 
What is the physical significance of the view factor, and how can it be calculated? 
What are the units of q'", qt', and qf)? 
Under what conditions is the effect of geometry on radiant heat interchange completely ex- 
pressible in terms of view factors? 
Which of the equations in this chapter show that the apparent brightness of a black body with 
a uniform surface temperature is independent of the position (distance and direction) from 
which it is viewed through a transparent medium? 
What relation is analogous to Eq. 16.3-2 for an ideal monatomic gas? 
Check the dimensional consistency of Eq. 16.3-9. 

16A.1. Approximation of a black body by a hole in a 
sphere. A thin sphere of copper, with its internal surface 
highly oxidized, has a diameter of 6 in. How small a hole 
must be made in the sphere to make an opening that will 
have an absorptivity of 0.99? 
Answer: Radius = 0.70 in. 

16A.2. Efficiency of a solar engine. A device for utilizing 
solar energy, developed by ~bbot,' consists of a parabolic 
mirror that focuses the impinging sunlight onto a Pyrex tube 
containing a high-boiling, nearly black liquid. This liquid is 
circulated to a heat exchanger in which the heat energy is 
transferred to superheated water at 25 atm pressure. Steam 
may be withdrawn and used to run an engine. The most effi- 
cient design requires a mirror 10 ft in diameter to generate 
2 hp, when the axis of the mirror is pointed directly toward 
the sun. What is the overall efficiency of the device? 
Answer: 15% 

16A.3. Radiant heating requirement. A shed is rectangu- 
lar in shape, with the floor 15 ft by 30 ft and the roof 7.5 ft 
above the floor. The floor is heated by hot water running 
through coils. On cold winter days the exterior walls and 
roof are about -10°F. At what rate must heat be supplied 
through the floor in order to maintain the floor temperature 
at 75"F? (Assume that all surfaces of the system are black.) 

16A.4. Steady-state temperature of a roof. Estimate the 
maximum temperature attained by a level roof at 45" north 
latitude on June 21 in clear weather. Radiation from sources 

' C. G. Abbot, in Solar Energy Research (F.  Daniels and 
J. A. Duffie, eds.), University of Wisconsin Press, Madison (1955), 
pp. 91-95; see also U.S. Patent No. 2,460,482 (Feb. 1,1945). 

other than the sun may be neglected, and a convection heat 
transfer coefficient of 2.0 Btu/hr fi? F may be assumed. A 
maximum temperature of 100°F may be assumed for the 
surrounding air. The solar constant of Example 16.4-1 may 
be used, and the absorption and scattering of the sun's rays 
by the atmosphere may be neglected. 
(a) Solve for a perfectly black roof. 
(b) Solve for an aluminum-coated roof, with an absorptiv- 
ity of 0.3 for solar radiation and an ernissivity of 0.07 at the 
temperature of the roof. 

16A.5. Radiation errors in temperature measurements. 
The temperature of an air stream in a duct is being mea- 
sured by means of a thermocouple. The thermocouple 
wires and junction are cylindrical, 0.05 in. in diameter, and 
extend across the duct perpendicular to the flow with the 
junction in the center of the duct. Assuming a junction emis- 
sivity e = 0.8, estimate the temperature of the gas stream 
from the following data obtained under steady conditions: 

Thermocouple junction temperature = 500°F 

Duct wall temperature = 300°F 

Convection heat transfer coefficient 
from wire to air = 50 Btu/hr. fi? . F 

The wall temperature is constant at the value given for 20 
duct diameters upstream and downstream of the thermo- 
couple installation. The thermocouple leads are positioned 
so that the effect of heat conduction along them on the 
junction temperature may be neglected. 

16A.6. Surface temperatures on the Earth's moon. 
(a) Estimate the surface temperature of our moon at the 
point nearest the sun by a quasi-steady-state radiant en- 
ergy balance, regarding the lunar surface as a gray sphere. 
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Neglect radiation and reflection from the planets. The 
solar constant at Earth is given in Example 16.4-1. 
(b) Extend part (a) to give the lunar surface temperature as 
a function of angular displacement from the hottest point. 

16B.1. Reference temperature for effective emissivity. 
Show that, if the emissivity increases linearly with the tem- 
perature, Eq. 16.5-3 may be written as 

Q12 = e ? d l ( G  - 2-3 (16B.1-1) 

in which ey is the emissivity of surface 1 evaluated at a ref- 
erence temperature T o  given by 

16B.2. Radiation across an annular gap. Develop an ex- 
pression for the radiant heat transfer between two long, 
gray coaxial cylinders 1 and 2. Show that 

where A, is the surface area of the inner cylinder. 

16B.3. Multiple radiation shields. 
(a) Develop an equation for the rate of radiant heat transfer 
through a series of n very thin, flat, parallel metal sheets, 
each having a different emissivity e, when the first sheet is 
at temperature T, and the nth sheet is at temperature T,. 
Give your result in terms of the radiation resistances 

for the successive pairs of planes. Edge effects and conduc- 
tion across the air gaps between the sheets are to be ne- 
glected. 
(b) Determine the ratio of the radiant heat transfer rate for 
n identical sheets to that for two identical sheets. 
(c) Compare your results for three sheets with that ob- 
tained in Example 16.5-1. 

The marked reduction in heat transfer rates produced 
by a number of radiation shields in series has led to the use 
of multiple layers of metal foils for high-temperature insu- 
lation. 

16B.4. Radiation and conduction through absorbing 
media. A glass slab, bounded by planes z = 0 and z = 6, is 
of infinite extent in the x and y directions. The tempera- 
tures of the surfaces at z = 0 and z = S are maintained at To 
and T,, respectively. A uniform monochromatic radiant 
beam of intensity q(' in the z direction impinges on the face 
at z = 0. Emission within the slab, reflection, and incident 
radiation in the negative z direction can be neglected. 
(a) Determine the temperature distribution in the slab, as- 
suming m, and k to be constants. 
(b) How does the distribution of the conductive heat flux 
q, depend on m,? 

16B.5. Cooling of a black body in vacuo. A thin black 
body of very high thermal conductivity ha: a volume V, 
surface area A, density p, and heat capacity C,. At time t = 
0, this body at temperature TI is placed in a black enclo- 
sure, the walls of which are maintained permanently at 
temperature T2 (with T2 < TI). Derive an expression for the 
temperature T of the black body as a function of time. 

16B.6. Heat loss from an insulated pipe. A Schedule 40 
two-inch horizontal steel pipe (inside diameter 2.067 in., 
wall thickness 0.154 in.; k = 26 Btu/hr - ft . F) carrying 
steam is insulated with 2 in. of 85% magnesia (k = 0.35 
Btu/hr . ft F) and tightly wrapped with a layer of clean 
aluminum foil (e = 0.05). The pipe is surrounded by air at 
1 atm and 80°F and its inner surface is at 250°F. 
(a) Compute the conductive heat flow per unit length, 
Q"""~'/L, through the pipe wall and insulation for as- 
sumed temperatures, To, of 100°F and 250°F at the outer 
surface of the aluminum foil. 
(b) Compute the radiative and free-convective heat losses, 
Q ( ~ ~ ~ ) / L  and Q""""~/L, for the same assumed outer surface 
temperatures To. 
(c) Plot or interpolate the foregoing results to obtain the 
steady-state values of T,  and Q"""~'/L = Q(rad)/L + Q(~O""' /L. 

16C.1. Integration of the view-factor integral for a pair 
of disks (Fig. 16C.1). Two parallel, perfectly black disks of 
radius R are placed a distance H apart. Evaluate the view- 
factor integrals for this case and show that 

in which B = R/H. 

I I Fig. 16.C-1. Two perfectly 
+R+ black disks. 

16D.1. Heat loss from a wire carrying an electric cur- 
rent.3 An electrically heated wire of length L loses heat to 
the surroundings by radiative heat transfer. If the ends of 
the wire are maintained at a constant temperature To, ob- 
tain an expression for the axial variation in wire tempera- 
ture. The wire can be considered to be radiating into a 
black enclosure at temperature To. 

C. Christiansen, Wiedernann's Ann. d. Physik, 19,267-283 
(1883); see also M. Jakob, Heat Transfer, Vol. 11, Wiley, New York 
(19571, p. 14. 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 
2nd edition, Oxford University Press (1959), pp. 154-156. 
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Chapter 17 

Diffusivity and the Mechanisms 
of Mass Transport 

Fick's law of binary diffusion (Molecular Mass Transport) 

Temperature and pressure dependence of diffusivities 

Theory of diffusion in gases at low density 

Theory of diffusion in binary liquids 

Theory of diffusion in colloidal suspensions 

Theory of diffusion of polymers 

Mass and molar transport by convection 

Summary of mass and molar fluxes 

The Maxwell-Stefan equations for multicomponent diffusion in 
gases at low density 

In Chapter 1 we began by stating Newton's law of viscosity, and in Chapter 9 we began 
with Fourier's law of heat conduction. In this chapter we start by giving Fick's law of dif- 
fusion, which describes the movement of one chemical species A through a binary mix- 
ture of A and B because of a concentration gradient of A. 

The movement of a chemical species from a region of high concentration to a region 
of low concentration can be observed by dropping a small crystal of potassium perman- 
ganate into a beaker of water. The KMnO, begins to dissolve in the water, and very near 
the crystal there is a dark purple, concentrated solution of KMnO,. Because of the con- 
centration gradient that is established, the KMnO, diffuses away from the crystal. The 
progress of the diffusion can then be followed by observing the growth of the dark pur- 
ple region. 

In 517.1 we give Fick's law for binary diffusion and define the diffusivity BAB for the 
pair A-B. Then we discuss briefly the temperature and pressure dependence of the diffu- 
sivity. After that we give a summary of the theories available to predict the diffusivity 
for gases, liquids, colloids, and polymers. At the end of the chapter we discuss the trans- 
port of mass of a chemical species by convection, thus paralleling the treatments in 
Chapters 1 and 9 for momentum and heat transfer. We also introduce molar units and 
the notation needed for describing diffusion in these units. Finally, we give the 
Maxwell-Stefan equations for multicomponent gases at low densities. 

Before starting the discussion we establish the following conventions. For multicom- 
ponent diffusion, we designate the species with lower-case Greek letters a, P, y, . . . and 
their concentrations with the corresponding subscripts. For bina y diffusion we use the 
capital italic letters A and B. For self-difusion (diffusion of chemically identical species) 
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we label the species A and A*. The "tagged" species A" may differ physically from A by 
virtue of radioactivity or other nuclear properties such as the mass, magnetic moment, or 
spin.' The use of this system of notation enables one to see at a glance the type of system 
to which a given formula applies. 

517.1 FICK'S LAW OF BINARY DIFFUSION 
(MOLECULAR MASS TRANSPORT) 

Consider a thin, horizontal, fused-silica plate of area A and thickness Y. Suppose that ini- 
tially (for time t < 0) both horizontal surfaces of the plate are in contact with air, which 
we regard as completely insoluble in silica. At time t = 0, the air below the plate is sud- 
denly replaced by pure helium, which is appreciably soluble in silica. The helium slowly 
penetrates into the plate by virtue of its molecular motion and ultimately appears in the 
gas above. This molecular transport of one substance relative to another is known as dif- 
fusion (also known as mass diffusion, concentration diffusion, or ordinary diffusion). The air 
above the plate is being replaced rapidly, so that there is no appreciable buildup of he- 
lium there. We thus have the situation represented in Fig. 17.1-1; this process is analo- 
gous to those described in Fig. 1.1-1 and Fig. 9.1-1 where viscosity and thermal 
conductivity were defined. 

In this system, we will call helium "species A and silica "species B." The concentra- 
tions will be given by the "mass fractions" w, and w,. The mass fraction w, is the mass of 
helium divided by the mass of helium plus silica in a given microscopic volume element. 
The mass fraction w~ is defined analogously. 

Thickness of I 
slab of fused silica = Y 

(substance B )  I 

Fig. 17.1-1. Build-up to the 
steady-state concentration pro- 
file for the diffusion of helium 
(substance A) through fused sil- 
ica (substance B). The symbol w~ 
stands for the mass fraction of 
helium, and w,, is the solubility 
of helium in fused silica, ex- 
pressed as the mass fraction. See 
Figs. 1.1-1 and 9.1-1 for the anal- 
ogous momentum and heat 
transport situations. 

Y Large t y X O,=O UA = W~~ 

' E. 0. Stejskal and J. E. Tanner, J. Chem. Phys., 42,288-292 (1965); P. Stilbs, Puog. NMR Spectuos, 19, 
1 4 5  (1987); P. T. Callaghan and J. StepiSnik, Adv. M a p .  Opt. Reson. 19,325388 (1996). 
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For time t less than zero, the mass fraction of helium, w,, is everywhere equal to 
zero. For time t greater than zero, at the lower surface, y = 0, the mass fraction of helium 
is equal to w,,. This latter quantity is the solubility of helium in silica, expressed as mass 
fraction, just inside the solid. As time proceeds the mass fraction profile develops, with 
w, = w,, at the bottom surface of the plate and w, = 0 at the top surface of the plate. As 
indicated in Fig. 17.1-1, the profile tends toward a straight line with increasing t. 

At steady state, it is found that the mass flow w,, of helium in the positive y direc- 
tion can be described to a very good approximation by 

That is, the mass flow rate of helium per unit area (or mass flux) is proportional to the 
mass fraction difference divided by the plate thickness. Here p is the density of the sil- 
ica-helium system, and the proportionality factor 9lAB is the difusivity of the silica-he- 
lium system. We now rewrite Eq. 17.1-1 for a differential element within the slab: 

Here wA,/A has been replaced by jAy, the molecular mass flux of helium in the positive y 
direction. Note that the first index, A, designates the chemical species (in this case, he- 
lium), and the second index indicates the direction in which diffusive transport is taking 
place (in this case, the y direction). 

Equation 17.1-2 is the one-dimensional form of Fick's first law of diffusion.' It is valid 
for any binary solid, liquid, or gas solution, provided that jAy is defined as the mass flux 
relative to the mixture velocity v,. For the system examined in Fig. 17.1-1, the helium is 
moving rather slowly and its concentration is very small, so that v, is negligibly different 
from zero during the diffusion process. 

In general, for a binary mixture 

Thus v is an average in which the species velocities, v, and v,, are weighted according to 
the mass fractions. This kind of velocity is referred to as the mass average velocity. The species 
velocity VA is not the instantaneous molecular velocity of a molecule of A, but rather the 
arithmetic average of the velocities of all the molecules of A within a tiny volume element. 

The mass flux j,, is then defined, in general, as 

The mass flux of B is defined analogously. As the two chemical species interdiffuse there 
is, locally, a shifting of the center of mass in the y direction if the molecular weights of A 
and B differ. The mass fluxes j4 and jBy are so defined that jAy + jBy = 0. In other words, 
the fluxes jA, and jBy are measured with respect to the motion of the center of mass. This 
point will be discussed in detail in ss17.7 and 8. 

If we write equations similar to Eq. 17.1-2 for the x and z directions and then com- 
bine all three equations, we get the vector form of Fick's law: 

A. Fick, Ann. der Physik, 94/59-86 (1855). Fick's second law, the diffusional analog of the heat 
conduction equation in Eq. 11.2-10, is given in Eq. 19.1-18. Adolf Eugen Fick (1829-1901) was a medical 
doctor who taught in Ziirich and Marburg, and later became the Rector of the University of Wiirzburg. 
He postulated the laws of diffusion by analogy with heat conduction, not by experiment. 
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A similar relation can be written for species B: 

j~ = - P ~ B A ~ W B  (17.1-6) 

It is shown in Example 17.1-2 that 9,, = 9,,. Thus for the pair A-B, there is just one dif- 
fusivity; in general it will be a function of pressure, temperatu~e, and composition. 

The mass diffusivity 9,,, the thermal diffusivity a = k/pC,, and the momentum dif- 
fusivity (kinematic viscosity) v = p/p  all have dimensions of (length)'/time. The ratios 
of these three quantities are therefore dimensionless groups: 

,, cpEl. 
The Prandtl number: P r = - = -  

a k 
(17.1-7) 

The Schmidt number:' v El. sc=-=-  
A p9Afl 

The Lewis number:' 

These dimensionless groups of fluid properties play a prominent role in dimensionless 
equations for systems in which competing transport processes occur. (Note: Sometimes 
the Lewis number is defined as the inverse of the expression above.) 

In Tables 17.1-1,2,3, and 4 some values of 9,, in cm2/s are given for a few gas, liq- 
uid, solid, and polymeric systems. These values can be converted easily to m2/s by mul- 
tiplication by lop4. Diffusivities of gases at low density are almost independent of w,, 
increase with temperature, and vary inversely with pressure. Liquid and solid diffusivi- 
ties are strongly concentration-dependent and generally increase with temperature. 
There are numerous experimental methods for measuring diffusivities, and some of 
these are described in subsequent  chapter^.^ 

For gas mixtures, the Schmidt number can range from about 0.2 to 3, as can be seen in 
Table 17.1-1. For liquid mixtures, values up to 40,000 have been ~bserved.~ 

Up to this point we have been discussing isotropic fluids, in which the speed of dif- 
fusion does not depend on the orientation of the fluid mixture. For some solids and 
structured fluids, the diffusivity will have to be a tensor rather than a scalar, so that 
Fick's first law has to be modified thus: 

in which AAD is the (symmetric) dimsivity t e~so r .~ ,~  According to this equation, the mass 
flux is not necessarily collinear with the mass fraction gradient. We do not pursue this 
subject further here. 

These groups were named for: Ernst Heinrich Wilhelm Schmidt (1892-1975), who taught at 
the universities in Gdansk, Braunschweig, and Munich (where he was the successor to Nusselt); 
Warren Kendall Lewis (1882-1975), who taught at MIT and was a coauthor of a pioneering textbook, 
W. H. Walker, W. K. Lewis, and W. H. McAdams, Principles of Chemical Engineering, McGraw-Hill, 
New York (1923). 

For an extensive discussion, see W. E. Wakeham, A. Nagashima, and J. V. Sengers, Measurement 
of the Transport Properties of Fluids: Experimental Thermodynamics, Vol. IlI, CRC Press, Boca Raton, Fla. 
(1991). 

D. A. Shaw and T. J. Hanratty, AIChE Journal, 23,28-37,160-169 (1977); P. Harriott and R. M. 
Hamilton, Chem. Eng. Sci., 20,1073-1078 (1965). 

For flowing polymers, theoretical expressions for the diffusion tensor have been derived using 
kinetic theory; see H. C. Ottinger, AIChE Journal, 35,279-286 (1989), and C. F. Curtiss and R. B. Bird, 
Adv. Polym. Sci., 1-101 (1996), §§6 and 15. 

M. E. Glicksman, Diffusion in Solids: Field Theory, Solid State Principles, and Applications, Wiley, 
New York (2000). 
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Table 17.1-1 Experimental Diffusivitiesa and Limiting Schmidt 
Numbersb of Gas Pairs at 1 Atmosphere Pressure 

Gas pair Temperature 9 AB Sc 
A-B (K) (cm2/s) x ~ + 1  x B + l  

a Unless otherwise indicated, the values are taken from J. 0. Hirschfelder, 
C. F. Curtiss, and R. B. Bird, Molecular T h e o y  of Gases and Liquids, 2nd corrected 
printing, Wiley, New York (1964), p. 579. All values are given for 1 atmosphere 
pressure. 

Calculated using the Lennard-Jones parameters of Table E.1. The parameters 
for sulfur hexafluoride were obtained from second virial coefficient data. 

' Values of aAB for the water and ammonia mixtures are taken from the 
tabulation of R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases 
and Liquids, 4th edition, McGraw-Hill, New York (1987). 

Values of %,, for the hydrocarbon-hydrocarbon pairs are taken from S. Gotoh, 
M. Manner, J. P. Sdrensen, and W. E. Stewart, J .  Chem. Eng. Data, 19,169-171 
(1974). 
"Values of p for water and ammonia were calculated from functions provided 
by T. E. Daubert, R. P. Danner, H. M. Sibul, C. C. Stebbins, J. L. Oscarson, 
R. L. Rowley, W. V. Wilding, M. E. Adams, T. L. Marshall, and N. A. Zundel, 
DIPPR@, Data Compilation of Pure Compound Properties, Design Institute for 
Physical Property Datao, AIChE, New York, N.Y. (2000). 



518 Chapter 17 Diffusivity and the Mechanisms of Mass Transport 

Table 17.1-2 Experimental Diffusivities in the Liquid state"' 

Water 

Ethanol Water 

Chlorobenzene Bromobenzene 10.10 0.0332 
0.2642 
0.5122 
0.7617 
0.9652 

39.92 0.0332 
0.2642 
0.5122 
0.7617 
0.9652 
0.131 
0.222 
0.358 
0.454 
0.524 
0.026 
0.266 
0.408 
0.680 
0.880 
0.944 

a The data for the first two pairs are taken from a review article by P. A. Johnson and A. L. Babb, Chem. 
Reus., 56,387453 (1956). Other summaries of experimental results may be found in: P. W. M. Rutten, 
Diffusion in Liquids, Delft University Press, Delft, The Netherlands (1992); L. J. Gosting, Adv. in Protein 
Chem., Vol. X I ,  Academic Press, New York (1956); A. Vignes, I. E. C. Funliamentals, 5,189-199 (1966). 

The ethanol-water data were taken from M. T. Tyn and W. F. Calus, J. Chem. Eng. Data, 20,310-316 
(1975). 

Table 17.1-3 Experimental Diffusivities in the Solid Statea 

Si02 
Pyrex 

" It is presumed that in each of the above pairs, component A is present 
only in very small amounts. The data are taken from R. M. Barrer, Diffusion 
in and through Solids, Macmillan, New York (1941), pp. 141,222, and 275. 
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Table 17.1-4 Experimental Diffusivities of Gases in Polymers." 
Diffusivities, 9AB, are given in units of lop6  (cm2/s). The values 
for N2 and O2 are for 298K, and those for C02 and H2 are for 
198K. 

Polybutadiene 1.1 1.5 1.05 9.6 
Silicone rubber 15 25 15 75 
Trans-l,4-polyisoprene 0.50 0.70 0.47 5.0 
Polystyrene 0.06 0.11 0.06 4.4 

" Excerpted horn D. W. van Krevelen, Properties of Polymers, 3rd edition, 
Elsevier, Amsterdam (1990), pp. 544-545. Another relevant reference is 
S. Pauly, in Polymer Handbook, 4th edition (J. Brandrup and E. H. 
Immergut, eds.), Wiley-Interscience, New York (1999), Chapter VI. 

In this section we have discussed the diffusion that occurs as a result of a concen- 
tration gradient in the system. We refer to this kind of diffusion as concentration diffusion 
or ordinay diffusion. There are, however, other kinds of diffusion: thermal diflusion, 
which results from a temperature gradient; pressure diffusion, resulting from a pressure 
gradient; and forced diffusion, which is caused by unequal external forces acting on the 
chemical species. For the time being, we consider only concentration diffusion, and we 
postpone discussion of the other mechanisms to Chapter 24. Also, in that chapter we 
discuss the use of activity, rather than concentration, as the driving force for ordinary 
diffusion. 

Calculate the steady-state mass flux jAy of helium for the system of Fig. 17.1-1 at 500K. The 
partial pressure of helium is 1 atm at y = 0 and zero at the upper surface of the plate. The 

Difision of thickness Y of the pyrex plate is mm, and its density p'B' is 2.6 g/cm3. The solubility and 
through Pyrex Glass diffusivity of helium in pyrex are reported7 as 0.0084 volumes of gaseous helium per volume 

of glass, and 9,, = 0.2 X cm2/s, respectively. Show that the neglect of the mass average 
velocity implicit in Eq. 17.1-1 is reasonable. 

SOLUTION The mass concentration of helium in the glass at the lower surface is obtained from the solu- 
bility data and the ideal gas law: 

The mass fraction of helium in the solid phase at the lower surface is then 

C. C. Van Voorhis, Phys. Rev. 23,557 (1924), as reported by R. M. Barrer, Diffusion in and through 
Solids, corrected printing, Cambridge University Press (1951). 



520 Chapter 17 Diffusivity and the Mechanisms of Mass Transport 

We may now calculate the flux of helium from Eq. 17.1-1 as 

Next, the velocity of the helium can be obtained from Eq. 17.1-4: 

At the lower surface of the plate (y = 0) this velocity has the value 

- 1.05 X 10-I' g/cm2 s 
v ~ y l y = u  - + v,, = 1.98 X lop5 cm/s + vYo (17.1-15) 

5.3 x lop7 g/cm3 

The corresponding value v,, of the mass average velocity of the glass-helium system at y = 0 
is then obtained from Eq. 17.1-3 

Thus it is safe to neglect vy in Eq. 17.1-14, and the analysis of the experiment in Fig. 17.1-1 at 
steady state is accurate. 

Show that only one diffusivity is needed to describe the diffusional behavior of a binary 
mixture. 

The Equivalence of 
9,, and 9, SOLUTION 

We begin by writing Eq. 17.1-6 as follows: 

The second form of this equation follows from the fact that w~ + w, = 1. We next use the vec- 
tor equivalents of Eqs. 17.1-3 and 4 to write 

Interchanging A and B in this expression shows that j A  = -jB. Combining this with the sec- 
ond form of Eq. 17.1-17 then gives 

Comparing this with Eq. 17.1-5 gives 9BA = BAR. We find that the order of subscripts is unim- 
portant for a binary system and that only one diffusivity is required to describe the diffu- 
sional behavior. 

However, it may well be that the diffusivity for a dilute solution of A in B and that for a 
dilute solution of B in A are numerically different. The reason for this is that the diffusivity is 
concentration-dependent, so that the two limiting values mentioned above are the values of 
the diffusivity BRA = 91AB at two different concentrations. 



517.2 Temperature and Pressure Dependence of Diffusivities 521 

517.2 TEMPERATURE AND PRESSURE 
DEPENDENCE OF DIFFUSIVITIES 

In this section we discuss the prediction of the diffusivity 9,, for binary systems by cor- 
responding-states methods. These methods are also useful for extrapolating existing 
data. Comparisons of many alternative methods are available in the literature.'f2 

For binary gas mixtures at low pressure, %,, is inversely proportional to the pressure, 
increases with increasing temperature, and is almost independent of the composition for a 
given gas pair. The following equation for estimating '3,, at low pressures has been devel- 
oped3 from a combination of kinetic theory and corresponding-states arguments: 

Here %,, [ = I  cm2/s, p [ = I  atm, and T [=I  K. Analysis of experimental data gives the di- 
mensionless constants a = 2.745 x lop4 and b = 1.823 for nonpolar gas pairs, excluding 
helium and hydrogen, and a = 3.640 x lop4 and b = 2.334 for pairs consisting of H,O 
and a nonpolar gas. Equation 17.2-1 fits the experimental data at atmospheric pressure 
within an average deviation of 6 to 8%. If the gases A and B are nonpolar and their 
Lennard-Jones parameters are known, the kinetic-theory method described in the next 
section usually gives somewhat better accuracy. 

At high pressures, and in the liquid state, the behavior of %,, is more complicated. 
The simplest and best understood situation is that of self-diffusion (interdiffusion of la- 
beled molecules of the same chemical species). We discuss this case first and then extend 
the results approximately to binary mixtures. 

A corresponding-states plot of the self-diffusivity %AA* for nonpolar substances is 
given in Fig. 17.2-1.4 This plot is based on self-diffusion measurements, supplemented by 
molecular dynamics simulations and by kinetic theory for the low-pressure limit. The or- 
dinate is c5JAA* at pressure p and temperature T, divided by cgAA+ at the critical point. 
This quantity is plotted as a function of the reduced pressure p, = p/p, and the reduced 
temperature T, = T/T,. Because of the similarity of species A and the labeled species A", 
the critical properties are all taken as those of species A. 

From Fig. 17.2-1 we see that c9,* increases strongly with temperature, especially 
for liquids. At each temperature c9,,$ decreases toward zero with increasing pressure. 
With decreasing pressure, ~ 9 ~ "  increases toward a low-pressure limit, as predicted by 
kinetic theory (see 517.3). The reader is warned that this chart is tentative, and that the 
lines, except for the low-density limit, are based on data for a very few substances: Ar, 
Kr, Xe, and CH,. 

The quantity (cBAA.), may be estimated by one of the following three methods: 

(i) Given &AA* at a known temperature and pressure, one can read ( c ~ A A * ) ~  from 
the chart and get (&,,*), = c % ~ ~ * / ( c ~ ~ ~ * ) ~ .  

R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th edition, 
McGraw-Hill, New York (19879, Chapter 11. 

E. N. Fuller, P. D. Shettler, and J. C. Giddings, Ind. Eng. Chem., 58, No. 5,19-27 (1966); Erratum: 
ibid. 58, No. 8,81 (1966). This paper gives a useful method for predicting binary gas diffusivities from the 
molecular formulas of the two species. 

J. C. Slattery and R. B. Bird, AIChE Journal, 4,137-142 (1958). 
Other correlations for self-diffusivity at elevated pressures have appeared in Ref. 3 and in 

L. S. Tee, G. F. Kuether, R. C. Robinson, and W. E. Stewart, API Proceedings, Division of Refining, 235-243 
(1966); R. C. Robinson and W. E. Stewart, IEC Fundamentals, 7,90-95 (1968); J .  L. Bueno, J. Dizy, 
R. Alvarez, and J. Coca, Trans. Insf. Chem. Eng., 68, Part A, 392-397 (1990). 
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Fig. 17.2-1. A corresponding- 
states plot for the reduced 
self-diffusivity. Here ( ~ 5 3 ~ ~ s ) ~  = 

(p9,,,), for Ar, Kr, Xe, and CH, 
is plotted as a function of re- 
duced temperature for several 
values of the reduced pressure. 
This chart is based on diffusiv- 
ity data of J. J. van Loef and 
E. G. D. Cohen, Pkysica A, 156, 
522-533 (1989), the compress- 
ibility function of B. I. Lee and 
M. G. Kesler, AICkE Journal, 21, 
510-527 (1975), and Eq. 17.3-11 
for the low-pressure limit. 

0.6 0.8 1.0 1.5 2 3 4 5  

Reduced temperature, T,  = T / T ,  

(ii) One can predict a value of &hAA* in the low-density region by the methods 
given in 517.3 and then proceed as in (i). 

(iii) One can use the empirical formula (see Problem 17A.9): 

This equation, like Eq. 17.2-1, should not be used for helium or hydrogen isotopes. Here 
c [ = I  g-mole/cm3, 9 ~ ~ ~ *  [ = I  cm2/s, T, [= I  K, and p, [ = I  atm. 

Thus far the discussion of high-density behavior has been concerned with self-diffu- 
sion. We turn now to the binary diffusion of chemically dissimilar species. In the absence 
of other information it is suggested that Fig. 17.2-1 may be used for crude estimation of 
cg,,, with pCA and TcA replaced everywhere by qpcAF?cB and v'Z respectively (see 
Problem 17A.9 for the basis for this empiricism). The ordinate of the plot is then inter- 
preted as ( ~ 9 ~ ~ ) ~  = ~ 9 ~ ~ / ( ~ 9 ~ ~ ) ~  and Eq. 17.2-2 is replaced by 

With these substitutions, accurate results are obtained in the low-pressure limit. At 
higher pressures, very few data are available for comparison, and the method must be 
regarded as provisional. 

The results in Fig. 17.2-1, and their extensions to binary systems, are expressed in 
terms of caAA* and c9,, rather than 9,. and BA,. This is done because the c-multiplied 
diffusion coefficients are more frequently required in mass transfer calculations, and 
their dependence on pressure and temperature is simpler. 
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EXAMPLE 17.2-1 

Estimation of 
Diffusivity a t  Low 
Density 

EXAMPLE 17.2-2 

Estimation of Self- 
Diffusivity a t  High 
Density 

Estimate BAB for the system CO-C02 at 296.1K and 1 atm total pressure. 

SOLUTION 

The properties needed for Eq. 17.2-1 are (see Table E.l): 

Label Species M T, (K) p, (atm) 

Therefore, 

Substitution of these values into Eq. 17.2-1 gives 

This gives QAB = 0.152 cm2/s, in agreement with the experimental value.5 This is unusually 
good agreement. 

This problem can also be solved by means of Fig. 17.2-1 and Eq. 17.2-3, together with the 
ideal gas law p = cRT. The result is BAB = 0.140 cm2/s, in fair agreement with the data. 

Estimate c 9 3 , q A x  for C1402 in ordinary C02 at 171.7 atm and 373K. It is known6 that QAA* = 
0,113 cm2/s at 1.00 atm and 298K, at which condition c = p/ RT = 4.12 X g-mole/cm3. 

SOLUTION 

Since a measured value of 9 A A X  is given, we use method (i). The reduced conditions of the 
measurement are T,  = 298/304.2 = 0.980 and p, = 1.00/72.9 = 0.014. Then from Fig. 17.2-1 we 
get the value ( C Q ~ ~ ) ~  = 0.98. Hence 

At the conditions of prediction (T, = 373/304.2 = 1.23 and p, = 171.7/72.9 = 2.36), we read 
(aAA*), = 1.21. The predicted value is then 

The data of O'Hern and Martin7 give a,,* = 5.89 X g-mole/cm . s at these conditions. 
This good agreement is not unexpected, inasmuch as their low-pressure data were used in the 
estimation of (dBAA.),. 

B. A. Ivakin, P. E. Suetin, Sov. Phys. Tech. Phys. (English translation), 8,748-751 (1964). 
E. B. Wynn, Phys. Rev., 80,1024-1027 (1950). 
H. A. O'Hern and J. J. Martin, Ind. Eng. Chern., 47,2081-2086 (1955). 
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EXAMPLE 17.2-3 

Estimation of Bina y 
Dif i s iv i t y  at  High 
Density 

This problem can also be solved by method (iii) without an experimental value of c9,,*. 
Equation 17.4-2 gives directly 

The resulting predicted value of &,,. is 5.1 X lop6 g-mole/cm . s. 

Estimate c9,, for a mixture of 80 mole% CH, and 20 mole% C2H6 at 136 atm and 313K. It is 
known that, at 1 atm and 293K, the molar density is c = 4.17 X g-mole/cm3 and gAB = 

0.163 cm2/s. 

SOLUTION 

Figure 17.2-1 is used, with method (i). The reduced conditions for the known data are 

From Fig. 17.2-1 at these conditions we obtain = 1.21. The critical value ( ~ 9 , ~ ) ~  is 
therefore 

c9,, (4.17 X 10-~)(0.163) 
(&A,), = - - - 

(BAB)~ 1.21 
= 5.62 X g-mol/cm . s (17.2-10) 

Next we calculate the reduced conditions for the prediction (Tr = 1.30, p, = 2.90) and read the 
value (cg,,), = 1.31 from Fig. 17.2-1. The predicted value of c9,, is therefore 

Experimental measurements8 give c9,, = 6.0 X so that the predicted value is 
23% high. Deviations of this magnitude are not unusual in the estimation of c9,, at high 
densities. 

An alternative solution may be obtained by method (iii). Substitution into Eq. 17.4-3 
gives 

Multiplication by (caAB), at the desired condition gives 

This is in closer agreement with the measured value.8 

V. J. Berry, Jr., and R. C. Koeller, AIChE Journal, 6,274-280 (1960). 
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$17.3 THEORY OF DIFFUSION IN GASES AT LOW DENSITY 

The mass diffusivity BAB for binary mixtures of nonpolar gases is predictable within 
about 5% by kinetic theory. As in the earlier kinetic theory discussions in 951.4 and 9.3, 
we start with a simplified derivation to illustrate the mechanisms involved and then pre- 
sent the more accurate results of the Chapman-Enskog theory. 

Consider a large body of gas containing molecular species A and A*, which are iden- 
tical except for labeling. We wish to determine the self-diffusivity 9,* in terms of the 
molecular properties on the assumption that the molecules are rigid spheres of equal 
mass m, and diameter dA. 

Since the properties of A and A* are nearly the same, we can use the following re- 
sults of the kinetic theory for a pure rigid-sphere gas at low density in which the gradi- 
ents of temperature, pressure, and velocity are small: 

ii = @ = mean molecular speed relative to u (17.3-1) 

Z = inii = wall collision frequency per unit area in a stationary gas (17.3-2) 

A = = mean free path 
f ind2n 

The molecules reaching any plane in the gas have, on the average, had their last collision 
at a distance a from the plane, where 

2 a = $i (17.3-4) 

In these equations n is the number density (total number of molecules per unit volume). 
To predict the self-diffusivity BAA*, we consider the motion of species A in the y di- 

rection under a mass fraction gradient dw,/dy (see Fig. 17.3-I), where the fluid mixture 
moves in the y direction at a finite velocity mass average velocity vy throughout. The 
temperature T and the total molar mass concentration p are considered constant. We as- 
sume that Eqs. 17.3-1 to 4 remain valid in this nonequilibrium situation. The net mass 
flux of species A crossing a unit area of any plane of constant y is found by writing an ex- 
pression for the mass of A crossing the plane in the positive y direction and subtracting 
the mass of A crossing in the negative y direction: 

Here the first term is the mass transport in the y direction because of the mass motion of 
the fluid-that is, the convective transport-and the last two terms give the molecular 
transport relative to vy. 

Y 
Mole-fraction 
profile oA(y) 

// Molecule arriving at y 
after collision at y -a. 
The fraction of such 

\ molecules that are of 
species A is uAl - a Fig. 17.3-1. Molecular transport 

of species A from the plane at 
(y - a) to the plane at y. 
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It is assumed that the concentration profile wA(y) is very nearly linear over distances 
of several mean free paths. Then we may write 

Combination of the last two equations then gives for the combined mass flux at plane y: 

This is the convective mass flux plus the molecular mass flux, the latter being given by Eq. 
17.1-1. Therefore we get the following expression for the self-diffusivity: 

Finally, making use of Eqs. 17.3-1 and 3, we get 

which can be compared with Eq. 1.4-9 for the viscosity and Eq. 9.3-12 for the thermal 
conductivity. 

The development of a formula for %AB for rigid spheres of unequal masses and di- 
ameters is considerably more difficult. We simply quote the result' here: 

That is, l/mA is replaced by the arithmetic average of l / m A  and l/mB, and dA by the 
arithmetic average of dA and dB. 

The preceding discussion shows how the diffusivity can be obtained by mean free 
path arguments. For accurate results the Chapman-Enskog kinetic theory should be 
used. The Chapman-Enskog results for viscosity and thermal conductivity were given in 
551.4 and 9.3, respectively. The corresponding formula for c9,, 

Or, if we approximate c by the ideal gas law p = cRT, we get for 9,, 

In the second line of Eqs. 17.3-11 and 12, 9JAB [=] cm2/s, OAB [=I  A, T [=I K, and p [=I atm. 

A similar result is given by R. D. Present, Kinetic Theory of Gases, McGraw-Hill, New York (1958), p. 55. 
S. Chapman and T. G. Cowling, The MathematicaI Theoy  of Non-Unifovm Gases, 3rd edition, 

Cambridge University Press (19701, Chapters 10 and 14. 
J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, 2nd corrected 

printing, Wiley, New York (19641, p. 539. 
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The dimensionless quantity a9,,,-the "collisional integral" for diffusion-is a func- 
tion of the dimensionless temperature KT/&,,. The parameters aAB and EAB are those ap- 
pearing in the Lennard-Jones potential between one molecule of A and one of B (cf. Eq. 
1.4-1 0): 

This function In,,,, is given in Table E.2 and Eq. E.2-2. From these results one can com- 
pute that 9JAB increases roughly as the 2.0 power of T at low temperatures and as the 1.65 
power of T at very high temperatures; see the p, -+ 0 curve in Fig. 17.2-1. For rigid 
spheres, would be unity at all temperatures and a result analogous to Eq. 17.3-10 
would be obtained. 

The parameters o,, and EAB could, in principle, be determined directly from accurate 
measurements of 9,, over a wide range of temperatures. Suitable data are not yet avail- 
able for many gas pairs, and one may have to resort to using some other measurable 
property, such as the viscosity4 of a binary mixture of A and B. In the event that there are 
no such data, then we can estimate a,, and E,, from the following combining rules:5 

for nonpolar gas pairs. Use of these combining rules enables us to predict values of 9,, 
within about 6% by use of viscosity data on the pure species A and B, or within about 
10% if the Lennard-Jones parameters for A and B are estimated from boiling point data 
by use of Eq. 1.4-12.~ 

For isotopic pairs, u,,* = UA = a,, and EM. = .FA = that is, the intermolecular 
force fields for the various pairs A-A*, A"-A*, and A-A are virtually identical, and the 
parameters a, and may be obtained from viscosity data on pure A. If, in addition, MA 
is large, Eq. 17.3-11 simplifies to 

I 

The corresponding equation for the rigid-sphere model is given in Eq. 17.3-9. 
Comparison of Eq. 17.3-16 with Eq. 1.4-14 shows that the self-diffusivity BAA* and 

the viscosity p (or kinematic viscosity v) are related as follows for heavy isotopic gas 
pairs at low density: 

in which 0, = 1.1I1,,,* over a wide range of KT/&,, as may be seen in Table E.2. Thus 
9AA* = 1.32~ for the self-difusivify. The relation between v and the binary difusivity '?JAB is 
not so simple, because v may vary considerably with the composition. The Schmidt 
number Sc = p/p9,, is in the range from 0.2 to 5.0 for most gas pairs. 

Equations 17.3-11, 12, 16, and 17 were derived for monatomic nonpolar gases but 
have been found useful for polyatomic nonpolar gases as well. In addition, these equa- 
tions may be used to predict QAB for interdiffusion of a polar gas and a nonpolar gas by 
using combining laws different7 from those given in Eq. 17.3-14 and 15. 

* S. Weissman and E. A. Mason, J. Chem. Pkys., 37,1289-1300 (1962); S. Weissman, J. Ckem. Pkys., 40, 
3397-3406 (1964). 

J. 0. Hirschfelder, R. B. Bird, and E. L. Spotz, Ckem. Revs., 44,205-231 (1949); S. Gotoh, M .  Manner, 
J. P. Sdrensen, and W. E. Stewart, I. Ckem. Eng. Data, 19,169-171 (1974). 

ti R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th edition, 
McGraw-Hill, New York (1987). 

J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theoy  of Gases and Liquids, 2nd corrected 
printing, Wiley, New York (1964), #.6b and p. 1201. Polar gases and gas mixtures are discussed by E. A. 
Mason and L. Monchick, J. Chem. Pkys. 36,2746-2757 (1962). 
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Predict the value of Eb,, for the system CO-CO, at 296.1K and 1.0 atm total pressure. 

Computation of Mass SOLUTION 
Diffusiviiyfor From Table E.l we obtain the following parameters: 
Density Gases 

co: 
co,: 
The mixture parameters are then estimated from Eqs. 17.3-14 and 15: 

The dimensionless temperature is then K T / s ~ ~  = (296.1)/(144.6) = 2.048. From Table E.2 we 
can find the collision integral for diffusion, flgpB = 1.067. Substitution of the preceding values 
in Eq. 17.3-12 gives 

s17.4 THEORY OF DIFFUSION IN BINARY LIQUIDS 

The kinetic theory for diffusion in simple liquids is not as well developed as that for di- 
lute gases, and it cannot presently give accurate analytical predictions of diffusivities.'-3 
As a result our understanding of liquid diffusion depends primarily on the rather crude 
hydrodynamic and activated-state models. These in turn have spawned a number of em- 
pirical correlations, which provide the best available means for prediction. These corre- 
lations permit estimation of diffusivities in terms of more easily measured properties 
such as viscosity and molar volume. 

The hydrodynamic theory takes as its starting point the Nernst-Einstein equation: 
which states that the diffusivity of a single particle or solute molecule A through a sta- 
tionary medium B is given by 

= KT(~A/FA) (17.4-1) 

in which uA/FA is the "mobility" of a particle A (that is, the steady-state velocity attained 
by the particle under the action of a unit force). The origin of Eq. 17.4-1 is discussed in 
$17.5 in connection with the Brownian motion of colloidal suspensions. If the shape and 
size of A are known, the mobility can be calculated by the solution of the creeping-flow 
equation of motion5 (Eq. 3.5-8). Thus, if A is spherical and if one takes into account the 
possibility of "slip" at the fluid-solid interface, one obtains6 

R. J. Bearman and J. G. Kirkwood,]. Chem. Phys., 28,136-145 (1958). 
R. J. Bearman, J .  Phys. Chem., 65,1961-1968 (1961). 
C. F. Curtiss and R. B. Bird, J .  Chem. Phys., 111,10362-10370 (1999). 
See 517.7 and E. A. Moelwyn-Hughes, Physical Chemistry, 2nd edition, corrected printing, Maanillan, 

New York (1964), pp. 62-74. See also R. J. Silbey and R. A. Alberty, Physical Chemisty, 3rd edtion, Wiley, 
New York (2001), 520.2. Apparently the Nemst-Einstein equation cannot be generalized to polymeric fluids 
with appreciable velocity gradients, as has been noted by H. C. &linger, AKhE Journal, 35,279-286 (1989). 

S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth- 
Heinemann, Boston (1991 ). 

H. Lamb, Hydrodynamics, 6th edition, Cambridge University Press (1932), reprinted (1997), 5337. 
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in which p, is the viscosity of the pure solvent, RA is the radius of the solute particle, and 
PA, is the "coefficient of sliding friction" (formally the same as the p/c of problem 2B.9). 
The limiting cases of DAB = and DAB = 0 are of particular interest: 

a. f iAB = ~4 (no-slip condition) 

In this case Eq. 17.4-2 becomes Stokes' law (Eq. 2.6-15) and Eq. 17.4-1 becomes 

which is usually called the Stokes-Einstein equation. This equation applies well to the dif- 
fusion of very large spherical molecules in solvents of low molecular weight7 and to sus- 
pended particles. Analogous expressions developed for nonspherical particles have been 
used for estimating the shapes of protein  molecule^.^,' 

b. fiAB = 0 (complete slip condition) 

In this case Eq. 17.4-1 leads to (see Eq. 4B.3-4) 

If the molecules A and B are identical (that is, for self-diffusion) and if they can be as- 
sumed to form a cubic lattice with the adjacent molecules just touching, then 2RA = 

and 

Equation 17.4-5 has been found'' to agree with self-diffusion data for a number of liq- 
uids, including polar and associated substances, liquid metals, and molten sulfur, to 
within about 12%. The hydrodynamic model has proven less useful for binary diffusion 
(that is, for A not identical to B) although the predicted temperature and viscosity depen- 
dences are approximately correct. 

Keep in mind that the above formulas apply only to dilute solutions of A in B. Some 
attempts have been made, however, to extend the hydrodynamic model to solutions of 
finite concentrations." 

The Eyring activated-state theory attempts to explain transport behavior via a quasi- 
crystalline model of the liquid state.12 It is assumed in this theory that there is some uni- 
molecular rate process in terms of which diffusion can be described, and it is further 
assumed that in this process there is some configuration that can be identified as the "ac- 
tivated state." The Eyring theory of reaction rates is applied to this elementary process in 
a manner analogous to that described in s1.5 for estimation of liquid viscosity. A modifi- 

- - 

' A. Polson, J .  Pkys. Colloid Ckem., 54,649-652 (1950). 
". J. V. Tyrrell, Diffusion and Heat Flow in Liquids, Butterworths, London (1961), Chapter 6. 
' Creeping motion around finite bodies in a fluid of infinite extent has been reviewed by J. Happel 

and H. Brenner, Low Reynolds Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1965); see 
also S. Kim and S. J. Karrila, Microkydrodynarnics: Principles and Selected Applications, Butterworth- 
Heinemann, Boston (1991). G. K. Youngren and A. Acrivos, I. Ckem. Pkys. 63,3846-3848 (1975) have 
calculated the rotational friction coefficient for benzene, supporting the validity of the no-slip condition 
at molecular dimensions. 

'O J. C. M. Li and P. Chang, J.  C k m .  Phys., 23,518-520 (1955). 
I '  C. W. Pyun and M. Fixman, J. Clzem. Pkys., 41,937-944 (1964). 
'' S. Glasstone, K. J. Laidler, and H. Eyring, Tkeoy of Rate Processes, McGraw-Hill, New York (1941), 

Chapter IX. 
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EXAMPLE 17.4-1 

Estimation of Liquid 
Diffusivity 

cation of the original Eyring model by Ree, Eyring, and  coworker^'^ yields an expression 
similar to Eq. 17.4-5 for traces of A in solvent B: 

Here 6 is a "packing parameter," which in the theory represents the number of nearest 
neighbors of a given solvent molecule. For the special case of self-diffusion, 5 is found to 
be very close to 27r, so that Eqs. 17.4-5 and 6 are in good agreement despite the difference 
between the models from which they were developed. 

The Eyring theory is based on an oversimplified model of the liquid state, and con- 
sequently the conditions required for its validity are not clear. However, Bearman has 
shown2 that the Eyring model gives results consistent with statistical mechanics for "reg- 
ular solutions," that is, for mixtures of molecules that have similar size, shape, and inter- 
molecular forces. For this limiting situation, Bearman also obtains an expression for the 
concentration dependence of the diffusivity, 

in which 9,, and pB are the diffusivity and viscosity of the mixture at the composition 
XA, and a, is the thermodynamic activity of species A. For regular solutions, the partial 
molar volumes, VA and V,, are equal to the molar volumes of the pure components. 
Bearman suggests on the basis of his analysis that Eq. 17.4-7 should be limited to regular 
solutions, and it has in fact been found to apply well only to nearly ideal solutions. 

Because of the unsatisfactory nature of the theory for diffusion in liquids, it is neces- 
sary to rely on empirical expressions. For example, the Wilke-Chang equation14 gives the 
diffusivity for small concentrations of A in B as 

Here 6 is the molar volume of the solute A in cm3/g-mole as liquid at its normal boiling 
point, p is the viscosity of the solution in centipoises, t+!~~ is an llassociation parameter" 
for the solvent, and T is the absolute temperature in K. Recommended values of $, are: 
2.6 for water; 1.9 for methanol; 1.0 for benzene, ether, heptane, and other unassociated 
solvents. Equation 17.4-8 is good only for dilute solutions of nondissociating solutes. For 
such solutions, it is usually good within 210%. 

Other empiricisms, along with their relative merits, have been summarized by Reid, 
Prausnitz, and Poling.I5 

Estimate 9,, for a dilute solution of TNT (2,4,6-trinitrotoluene) in benzene at 15°C. 

SOLUTION 

Use the equation of Wilke and Chang, taking TNT as component A and benzene as compo- 
nent B. The required data are 

p = 0 . 7 0 5 ~ ~  (the viscosity for pure benzene) 

VA = 140 cm3/g-mole (for TNT) 

l3 H. Eyring, D. Henderson, B. J. Stover, and E. M. Eyring, Statistical Mechanics and Dynamics, Wiley, 
New York (1964), 516.8. 
'v. R. Wilke, Chem. Eng. Pvog., 45,218-224 (1949); C. R. Wilke and P. Chang, AIChE Journal, 1, 

264-270 (1955). 
'5 R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases find Liquids, 4th edition, 

McGraw-Hill, New York (1987), Chapter 11. 
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$B = 1.0 (for benzene) 
M B  = 78.11 (for benzene) 

Substitution into Eq. 17.4-8 gives 

This result compares well with the measured value of 1.39 X cm2/s. 

517.5 THEORY OF DIFFUSION IN COLLOIDAL S U S P E N S I O N S ~ ~ ~  

Next we turn to the movement of small colloidal particles in a liquid. Specifically we 
consider a finely divided, dilute suspension of spherical particles of material A in a sta- 
tionary liquid B. When the spheres of A are sufficiently small (but still large with respect 
to the molecules of the suspending medium), the collisions between the spheres and the 
molecules of B will result in an erratic motion of the spheres. This random motion is re- 
ferred to as Brownian rnoti~n.~ 

The movement of each sphere can be described by an equation of motion, called the 
Langevin equation: 

in which u, is the instantaneous velocity of the sphere of mass m. The term -luA gives 
the Stokes' law drag force: 5 = 6rpBR, being the "friction coefficient." Finally F(t) is the 
rapidly oscillating, irregular Brownian motion force. Equation 17.5-1 cannot be "solved" 
in the usual sense, since it contains the randomly fluctuating force F(t). Equations such 
as Eq. 17.5-1 are called "stochastic differential equations." 

If it is assumed that (i) F(t) is independent of uA and that (ii) the variations in F(t) are 
much more rapid than those of u,, then it is possible to extract from Eq. 17.5-1 the proba- 
bility W(uA,t;uA0)duA that at time t the particle will have a velocity in the range of uA to 
UA + du,. Physical reasoning requires that the probability density W ( U ~ , ~ ; U ~ ~ )  approach a 
Maxwellian (equilibrium) distribution as t -+ w: 

Here, T is the temperature of the fluid in which the particles are suspended. 

A. Einstein, Ann. d. Phys, 17,549-560 (1905), 19,371-381 (1906); Investigations on the Theory of the 
Brownian Movement, Dover, New York (1956). 

S. Chandrasekhar, Rev. Mod. Phys., 15,l-89 (1943). 
W .  B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, Cambridge University Press 

(1989); H. C. Ottinger, Stochastic Processes in Polymeric Fluids, Springer, Berlin (1996). 
Named after the botanist R. Brown, Phil. Mag. (4), p. 161 (1828); Ann. d. Phys. u. Chem., 14,294-313 

(1828). Actually the phenomenon had been discovered and reported earlier in 1789 by Jan Ingenhousz 
(1730-1799) in the Netherlands. 

%s can be seen from Example 4.2-1, Stokes' law is valid only for the steady, unidirectional motion 
of a sphere through a fluid. For a sphere moving in an arbitrary manner, there are, in addition to the 
Stokes' contribution, an inertial term and a memory-integral term (the Basset force). See A. 8. Basset, 
Phil. Trans., 179,43-63 (1887); H.  Lamb, Hydrodynamics, 6th edition, Cambridge University Press (1932), 
reprinted (1997), p. 644; H. Villat and J. Kravtchenko, Lecons sur les Fluides Visqueux, Gauthier-Villars, 
Paris (1943), p. 213, Eq. (62); L. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon, New 
York (1987), p. 94. In applying the Langevin equation to polymer kinetic theory, the role of the Basset 
force has been investigated by J. D. Schieber, J. Chem. Phys., 94,7526-7533 (1991). 



532 Chapter 17 Diffusivity and the Mechanisms of Mass Transport 

Another quantity of interest that can be obtained from the Langevin equation is the 
probability, W(r,t;ro,uAo)dr, that at time t the particle will have a position in the range r to 
r + dr if its initial position and velocity were ro and UAO. For long times, specifically t >> 
m/{, this probability is given by 

However, this expression turns out to have just the same form as the solution of Fick's 
second law of diffusion (see Eq. 19.1-18 and Problem 20B.5) for the diffusion from a 
point source. One simply has to identify W with the concentration cA, and K T / ~  with B,,. 
In this way Einstein (see Ref. 1 on page 531) arrived at the following expression for the 
diffusivity of a dilute suspension of spherical colloid particles: 

Thus, is related to the temperature and the friction coefficient 5 (the reciprocal of the 
friction coefficient is called the "mobility"). Equation 17.5-4 was already given in Eq. 
17.4-3 for the interdiffusion of liquids. 

s17.6 THEORY OF DIFFUSION OF POLYMERS 

For a dilute solution of a polymer A in a low-molecular-weight solvent B, there is a de- 
tailed theory,' in which the polymer molecules are modeled as bead-spring chains (see 
Fig. 8.6-2). Each chain is a linear arrangement of N beads and N - 1 Hookean springs. 
The beads are characterized by a friction coefficient 6, which describes the Stokes' law 
resistance to the bead motion through the solvent. The model further takes into account 
the fact that, as a bead moves around, it disturbs the solvent in the neighborhood of all 
the other beads; this is referred to as hydrodynamic interaction. The theory ultimately 
predicts that the diffusivity should be proportional to N-I'2 for large N. Since the num- 
ber of beads is proportional to the polymer molecular weight M, the following result is 
obtained: 

The inverse square-root dependence is rather well borne out by experiment.' If hydrody- 
namic interaction among beads were not included, then one would predict %,, - 1 /M. 

The theory of self-diffusion in an undiluted polymer has been studied from several 
points of  vie^.^,^ These theories, which are rather crude, lead to the result that 

' J. G. Kirkwood, Macromolecules, Gordon and Breach, New York (1967), pp. 13,41,76-77,95, 
101-102. The original Kirkwood theory has been reexamined and slightly improved by H. C. &tinger, J. 
Chem. Phys., 87,3156-3165 (1987). 

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeuic Liquids, Vol. 2, 
Kinetic Theory, 2nd edition, Wiley, New York (19871, pp. 174-175. 

P.-G. de Gennes and L. Lbger, Ann. Rev. Phys. Chem., 49-61 (1982); P.-G. de Gennes, Physics Today, 
36,3539 (1983). De Gennes introduced the notion of reptation, according to which the polymer molecules 
move back and forth along their backbones in a snake-like Brownian motion. 

R. B. Bird, C. F. Curtiss, R. C. Armstrong, and 0. Hassager, Dynamics of Polymeric Liquids, Vol. 2,  
Kinetic Theory, 2nd edition, Wiley, New York (1987), pp. 326-327; C. F. Curtiss and R. B. Bird, Puoc. Nat. 
Acad. Sci., 93,7440-7445 (1996). 
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Experimental data agree more or less with this result," but the exponent on the molecular 
weight may be as great as 3 for some polymers. 

Although a very general theory for diffusion of polymers has been de~eloped,~ not 
very much has been done with it. So far it has been used to show that, in flowing dilute 
solutions of flowing polymers, the diffusivity tensor (see Eq. 17.1-1 0) becomes anisotropic 
and dependent on the velocity gradients. It has also been shown how to generalize the 
Maxwell-Stefan equations (see 517.9 and s24.1) for multicomponent polymeric liquids. 
Further advances in this subject can be expected through use of molecular  simulation^.^ 

517.7 MASS AND MOLAR TRANSPORT BY CONVECTION 

In 517.1, the discussion of Fick's (first) law of diffusion was given in terms of mass units: 
mass concentration, mass flux, and the mass average velocity. In this section we extend the 
previous discussion to include molar units. Thus most of this section deals with questions 
of notation and definitions. One might reasonably wonder whether or not this dual set of 
notation is really necessary. Unfortunately, it really is. When chemical reactions are in- 
volved, molar units are usually preferred. When the diffusion equations are solved to- 
gether with the equation of motion, mass units are usually preferable. Therefore it is 
necessary to acquire familiarity with both. In this section we also introduce the concept of 
the convective flux of mass or moles. 

Mass and Molar Concentrations 

Earlier we defined the mass concentration p, as the mass of species a per unit volume of 
solution. Now we define the molar concentration c, = p,/M, as the number of moles of a 
per unit volume of solution. 

Similarly, in addition to the mass fraction o, = pJp, we will use the mole fraction x, = 

c,/c. Here p = Zap, is the total mass of all species per unit volume of solution, and c = 

Z,c, is the total number of moles of all species per unit volume of solution. By the word 
"solution" we mean a one-phase gaseous, liquid, or solid mixture. In Table 17.7-1 we 
summarize these concentration units and their interrelation for multicomponent systems. 

It is necessary to emphasize that p, is the mass concentration of species a in a mix- 
ture. We use the notation p'"i for the density of pure species a when the need arises. 

Mass Average and Molar Average Velocity 

In a diffusing mixture, the various chemical species are moving at different velocities. By v,, 
the "velocity of species a," we do not mean the velocity of an individual molecule of species 
a. Rather, we mean the average of all the velocities of molecules of species a within a small 
volume. Then, for a mixture of N species, the local mass average velocity v is defined as 

P. F. Green, in Diffusion in Polymers (P. Neogi, ed.), Dekker, New York (1996), Chapter 6. 
According to T. P. ~ o d g e ,  Phys. Rev. Letters, 86,3218-3221 (1999), measurements on undiluted polymers 
show that the exponent on the molecular weight should be about 2.3. 

". F. Curtiss and R. B. Bird, Adv. Polym. Sci., 125,l-101 (1996) and J. Chem. Phys., 111,10362-10370 
(1999). 

D. N. Theodorou, in Diffusion in Polymers (P. Neogi, ed.), Dekker, New York (19961, Chapter 2. 
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Table 17.7-1 Notation for Concentrations 

Basic definitions: 

Po = mass concentration of species a (A) 
N 

p = 2 pa = mass density of solution 
a=l 

ma = p,/p = mass fraction of species a (C) 

Ca = molar concentration of species a 
A' 

c = 2 c, = molar density of solution 
a=l 

x, = c,/c = mole fraction of species a 

M = p / c  = molar mean molecular weight of solution (GI 

Algebraic relations: 

Differential relations: 

"Equations (P) and (Q), simplified for binary ystems, are 

Note that pv is the local rate at which mass passes through a unit cross section placed 
perpendicular to the velocity v. This is the local velocity one could measure by means of 
a Pitot tube or by laser-Doppler velocimetry, and corresponds to the v used in the equa- 
tion of motion and in the energy equation in the preceding chapters for pure fluids. 

Similarly, one may define a local molar average velocity v* by 

Note that cv* is the local rate at which moles pass through a unit cross section placed 
perpendicular to the molar velocity v*. Both the mass average velocity and the molar 
average velocity will be used extensively throughout the remainder of this book. Still 
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Table 17.7-2 Notation for Velocities in Multicomponent Systems 

Basic definitions: 

V, velocity of species a with respect to fixed coordinates (A) 
N 

v = 2 O,V, mass average velocity 
a=l 

N 

V* = x X,V, molar average velocity 
a=l 

(C) 

v, - v diffusion velocity of species a with respect to the mass average 
velocity v (D) 

va - v* diffusion velocity of species a with respect to the molar average 
velocity v* (E) 

Additional relations: 

other average velocities are sometimes used, such as the volume average velocity (see 
Problem 17C.1). In Table 17.7-2 we give a summary of the various relations among 
these velocities. 

Molecular Mass and Molar Fluxes 

In 517.1 we defined the molecular mass flux of a as the flow of mass of a through a unit 
area per unit time: j, = p,(v, - v). That is, we include only the velocity of species a rela- 
tive to the mass average velocity v. Similarly, we define the molecular molar flux of 
species a as the number of moles of a flowing through a unit area per unit time: J: = 

cA(vA - vr). Here we include only the velocity of species a relative to the molar average 
velocity v*. 

Then in 517.1 we presented Fick's (first) law of diffusion, which describes how the 
mass of species A in a binary mixture is transported by means of molecular motions. 
This law can also be expressed in molar units. Hence we have the pair of relations for bi- 
nary systems: 

The differences v~ - v and v, - v* are sometimes referred to as diffusion velocities. Equa- 
tion 17.7-4 can be derived from Eq. 17.7-3 by using some of the relations in Tables 17.7-1 
and 2. 

Convective Mass and Molar Fluxes 

In addition to transport by molecular motion, mass may also be transported by the bulk 
motion of the fluid. In Fig. 9.7-1 we show three mutually perpendicular planes of area d S  
at a point P where the fluid mass average velocity is v. The volume rate of flow across the 
plane perpendicular to the surface element dS  perpendicular to the x-axis is v,dS. The 
rate at which mass of species a is being swept across the same surface element is then 
p,v,dS. We can write similar expressions for the mass flows of species a across the sur- 
face elements perpendicular to the y- and z-axes as p,v,dS and p,v,dS, respectively. If we 
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now multiply each of these expressions by the corresponding unit vector, add them, and 
divide by dS, we get 

as the convective mass flux vector, which has units of kg/m2 . s. 
If one goes back and repeats the story of the preceding paragraph, but using every- 

where molar units and the molar average velocity v*, then we get 

as the convective molar flux vector, which has units of kg-mole/m2 s. 
To get the convective mass and molar fluxes across a unit surface whose normal unit 

vector is n, we form the dot products (n . p,v) and (n . c,v*), respectively. 

517.8 SUMMARY OF MASS AND MOLAR FLUXES 

In Chapters 1 and 9 we introduced the combined momentum flux tensor + and the com- 
bined energy flux vector e, which we found useful in setting up the shell balances and 
equations of change. We give the corresponding definitions here for the mass and molar 
flux vectors. We add together the molecular mass flux vector and the convective mass 
flux vector to get the combined mass flux vector, and similarly for the combined molar flux 
vector: 

Com bined mass flux: 
Combined molar flux: 

In the first three lines of Table 17.8-1 we summarize the definitions of the mass and 
molar fluxes discussed so far. In the shaded squares we also give the definitions of the 
fluxes j: (mass flux with respect to the molar average velocity) and J, (molar flux with re- 
spect to mass average velocity). These "hybrid" fluxes should normally not be used. 

In the remainder of Table 17.8-1 we give a summary of other useful relations, such 
as the sums of the fluxes and the interrelations among the fluxes. By using Eqs. 0) and 
(M) we can rewrite Eqs. 17.8-1 and 2 as 

When simplified for binary systems, these relations can be combined with Eqs. 17.7-3 
and 17.7-4, to get Eqs. (C) and (D) of Table 17.8-2, which are equivalent forms of Fick's 
(first) law. The forms given in Eqs. (E) and (F) of Table 17.8-2, in terms of the relative ve- 
locities of the species, are interesting because they involve neither v nor vr. 

In Chapter 18 we will write Fick's law exclusively in the form of Eq. (D) of Table 
17.8-2. It is this form that has generally been used in chemical engineering. In many 
problems something is known about the relation between NA and N, from the stoi- 
chiometry or from boundary conditions. Therefore N, can be eliminated from Eq. (D), 
giving a direct relation between NA and VxA for the particular problem. 

In s1.7 we pointed out that the total molecular momentum flux through a surface of 
orientation n is the vector In m]. In 59.7 we mentioned the analogous quantity for the mol- 
ecular heat flux-namely, the scalar (n . q). The analogous mass transport quantities are 
the scalars (n * j,) and (n . J:), which give the total mass and molar fluxes through a surface 
of orientation n. Similarly, for the combined fluxes through a surface of orientation n, we 
have for momentum [n +I, for energy (n e), and for species (n . n,) and (n . N,). 
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Table 17.8-1 Notation for Mass and Molar Fluxes* 

*Entries in the shaded boxes, involving the "hybrid fluxes" j,$ and J,, are seldom needed; they are included only for the sake of 
completeness. 

Quantity 

Velocity of species a 
(cm/s) 

Table 17.8-2 Equivalent Forms of Fick's (First) Law of Binary Diffusion 

With respect to 
stationary axes 

V, (A) 

Flux Gradient 

With respect to mass 
average velocity v 

v, - v (B) 

Form of Fick's Law 

With respect to molar 
average velocity v* 

v, - v* (C) 



538 Chapter 17 Diffusivity and the Mechanisms of Mass Transport 

517.9 THE MAXWELL-STEFAN EQUATIONS FOR 
MULTICOMPONENT DIFFUSION IN GASES 
AT LOW DENSITY 

For multicomponent diffusion in gases at low density it has been shown1r2 that to a very good 
approximation 

XaXp 1 
Vx, = - C - (v, - vp) = - 2 - (xpNa - x,Np) a = 1,2,3 , .  . . , N (17.9-1) 

p=1 Bop p=1 c%p 

The 9Iap here are the binary diffusivities calculated from Eq. 17.3-11 or Eq. 17.3-12. There- 
fore, for an N-component system, ~ N ( N  - 1) binary diffusivities are required. 

Equations 17.9-1 are referred to as the Maxwell-Stefan equations, since Maxwell3 
suggested them for binary mixtures on the basis of kinetic theory, and Stefanhener- 
alized them to describe the diffusion in a gas mixture with N species. Later Curtiss 
and Hirschfelder obtained Eqs. 17.9-1 from the multicomponent extension of the 
Chapman-Enskog theory. 

For dense gases, liquids, and polymers it has been shown that the Maxwell-Stefan 
equations are still valid, but that the strongly concentration-dependent diffusivities ap- 
pearing therein are not the binary diff~sivities.~ 

There is an important difference between binary diffusion and multicomponent dif- 
f ~ s i o n . ~  In binary diffusion the movement of species A is always proportional to the neg- 
ative of the concentration gradient of species A. In multicomponent diffusion, however, 
other interesting situations can arise: (i) reverse diffusion, in which a species moves 
against its own concentration gradient; (ii) osmotic diffusion, in which a species diffuses 
even though its concentration gradient is zero; (iii) dimsion barrier, when a species does 
not diffuse even though its concentration gradient is nonzero. In addition, the flux of a 
species is not necessarily collinear with the concentration gradient of that species. 

QUESTIONS FOR DISCUSSION 

How is the binary diffusivity defined? How is self-diffusion defined? Give typical orders of 
magnitude of diffusivities for gases, liquids, and solids. 
Summarize the notation for the molecular, convective, and total fluxes for the three transport 
processes. How does one calculate the flux of mass, momentum, and energy across a surface 
with orientation n? 
Define the Prandtl, Schmidt, and Lewis numbers. What ranges of Pr and Sc can one expect to 
encounter for gases and liquids? 
How can you estimate the Lennard-Jones potential for a binary mixture, if you know the pa- 
rameters for the two components of the mixture? 
Of what value are the hydrodynamic theories of diffusion? 
What is the Langevin equation? Why is it called a "stochastic differential equation"? What in- 
formation can be obtained from it? 

' C. F. Curtiss and J. 0. Hirschfelder, J. Chem. Phys., 17,550-555 (1949). 
For applications to engineering, see E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 2nd 

edition, Cambridge University Press (1997); R. Taylor and R. Krishna, Multicomyonent Mass Transfer, 
Wiley, New York (1993). 
9. C. Maxwell, Phil. Mag., XIX, 19-32 (1860); XX, 21-32,33-36 (1868). 
9. Stefan, Sitzungsber. h i s .  Akad. Wiss. Wien, LXIII(2), 63-124 (1871); LXV(2), 323-363 (1872). 

C. F. Curtiss and R. 6. Bird, Ind. Eng. Chern. Res., 38,2515-2522 (1999); 40,1791 (2001); J. Chem. 
Phys., 111,10362-10370 (1999). 

H. L. Toor, MChE Journal, 3,198-207 (1959). 
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7. Compare and contrast the relation between binary diffusivity and viscosity for gases and for 
liquids. 

8. How are the Maxwell-Stefan equations for multicomponent diffusion in gases related to the 
Fick equations for binary systems? 

9. In a multicomponent mixture, does the vanishing of N, imply the vanishing of Vx,? 

PROBLEMS 17A.1. Prediction of a low-density binary diffusivity. Estimate BAB for the system methane-ethane 
at 293K and 1 atm by the following methods: 
(a) Equation 17.2-1. 
(b) The corresponding-states chart in Fig. 17.2-1 along with Eq. 17.2-3. 
(c) The Chapman-Enskog relation (Eq. 17.3-12) with Lennard-Jones parameters from 
Appendix E. 
(dl The Chapman-Enskog relation (Eq. 17.3-12) with the Lennard-Jones parameters esti- 
mated from critical properties. 
Answers (all in cm2/s): (a) 0.152; (b) 0.138; (c) 0.146; (d) 0.138. 

17A.2. Extrapolation of binary diffusivity to a very high temperature. A value of 9,, = 0.151 cm2/s 
has been reported1 for the system C0,-air at 293K and 1 atm. Extrapolate 9AR to 1500K by the 
following methods: 
(a) Equation 17.2-1. 
(b) Equation 17.3-10. 
(c) Equations 17.3-12 and 15, with Table E.2, 

What do you conclude from comparing these results with the experimental value' of 
2.45 cm2/s? 
Answers (all in cm2/s): (a) 2.96; (b) 1.75; (c) 2.51 

17A.3. Self-diffusion in liquid mercury. The diffusivity of H~~~~ in normal liquid Hg has been mea- 
sured: along with viscosity and volume per unit mass. Compare the experimentally mea- 
sured with the values calculated with Eq. 17.4-5. 

17A.4. Schmidt numbers for binary gas mixtures at low density. Use Eq. 17.3-11 and the data 
given in Problem 1A.4 to compute Sc = p/pBAB for binary mixtures of hydrogen and Freon- 
12 at x, = 0.00,0.25,0.50,0.75, and 1.00, at 25°C and 1 atm. 
Sample answers: At xA = 0.00, Sc = 3.43; at x, = 1.00, Sc = 0.407 

17A.5. Estimation of diffusivity for a binary mixture at high density. Predict for an equimo- 
lar mixture of N, and C2H6 at 288.2K and 40 atm. 
(a) Use the value of 9,, at 1 atrn from Table 17.1-1, along with Fig. 17.2-1. 
(b) Use Eq. 17.2-3 and Fig. 17.2-1. 
Answers: (a) 5.8 X lop6 g-mole/cm . s; (b) 5.3 X g-mole/cm. s 

' Ts. M. Klibanova, V. V. Pomerantsev, and D. A. Frank-Kamenetskii, I .  Tech. Phys. (USSR), 12,14-30 
(1942), as quoted by C. R. Wilke and C. Y. Lee, Ind. Eng. Chem., 47,1253 (1955). 

R. E. Hoffman, 1. Chem. Phys., 20,1567-1570 (1952). 
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Diffusivity and Schmidt number for chlorine-air mixtures. 
(a) Predict $?JAB for chlorine-air mixtures at 75°F and 1 atrn. Treat air as a single substance 
with Lennard-Jones parameters as given in Appendix E. Use the Chapman-Enskog theory re- 
sults in 517.3. 
(b) Repeat (a) using Eq. 17.2-1. 
(c) Use the results of (a) and of Problem 1A.5 to estimate Schmidt numbers for chlorine-air 
mixtures at 297K and 1 atm for the following mole fractions of chlorine: 0,0.25,0.50,0.75, and 
1.00. 
Answers: (a) 0.121 cm2/s; (b) 0.124 cm2/s; (c) Sc = 1.27,0.832,0.602,0.463,0.372 

The Schmidt number for self-diffusion. 
(a) Use Eqs. 1.3-lb and 17.2-2 to predict the self-diffusion Schmidt number Sc = p/p$?JAA* at 
the critical point for a system with MA = MA*. 
(b) Use the above result, along with Fig. 1.3-1 and Fig. 17.2-1, to predict Sc = p/p9IAA' at the 
following states: 

Phase Gas Gas Gas Liquid Gas Gas 

Tr 0.7 1.0 5.0 0.7 1.0 2.0 
P r  0.0 0.0 0.0 saturation 1.0 1.0 

Correction of high-density diffusivity for temperature. The measured value3 of for a 
mixture of 80 mole% CH, and 20 mole% C,H, at 313K and 136 atm is 6.0 X g-mol/cm. s 
(see Example 17.2-3). Predict c9AB for the same mixture at 136 atm and 351K, using Fig. 17.2-1. 
Answer: 6.3 X lop6 g-mole/cm. s 
Ob~erved:~ 6.33 X g-mol/cm - s 

Prediction of critical c9,, values. Figure 17.2-1 gives the low-pressure limit (c$?JAA,), = 1.01 
at T, = 1 and p, + 0. At this limit, Eq. 17.2-13 gives 

1.01(~9~,.), = 2.2646 x lo-' JT,, (L + l) 1 (17A.9-1) 
MA MA* dA+ a9,AA* 

Here the argument of f19, is reported%s = 1.225 for Ar, Kr, and Xe. We use the 
value 1 /O.77 from Eq. 1.4-11a as a representative average over many fluids. 
(a) Combine Eq. 17A.9-1 with the relations 

and Table E.2 to obtain Eq. 17.2-2 for (dBAA*), 
(b) Show that the approximations 

V,,== CAB== 

for Lennard-Jones parameters for the A-B interaction give 

when the molecular parameters of each species are predicted according to Eqs. 1.4-lla, c. 
Combine these expressions with Eq. 17A.9-1 (with AX replaced by B and TcA by m) to 
obtain Eq. 17.2-3 for (cQ,,),. The corresponding replacement of p, and T, in Fig. 17.2-1 by 

and amounts to regarding the A-B collisions as dominant over collisions of 
like molecules in determining the value of 

V. J. Berry and R. C. Koeller, AIChE Journal, 6,274-280 (1960). 
J. J. van Loef and E. G. D. Cohen, Physica A, 156,522-533 (1989). 
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Estimation of liquid diffusivities. 
(a) Estimate the diffusivity for a dilute aqueous solution of acetic acid at 12.5"C, using the 
Wilke-Chang equation. The density of pure acetic acid is 0.937 g/cm3 at its boiling point. 
(b) The diffusivity of a dilute aqueous solution of methanol at 15OC is about 1.28 X 10-' cm/s. 
Estimate the diffusivity for the same solution at 100°C. 
Answer: (b) 6.7 X cm/s 

Interrelation of composition variables in mixtures. 
(a) Using the basic definitions in Eqs. (A) to (G) of Table 17.7-1, verify the algebraic relations 
in Eqs. (HI to (0). 
(b) Verify that, in Table 17.7-1, Eqs. (P) and (Q) simplify to Eqs. (P') and (Q') for binary 
mixtures. 
(c) Derive Eqs. (P') and (Q') from Eqs. (N) and (0). 

Relations among fluxes in multicomponent systems. Verify Eqs. (K), (O), (T), and (X) of 
Table 17.8-1 using only the definitions of concentrations, velocities, and fluxes. 

Relations between fluxes in binary systems. The following equation is useful for interrelat- 
ing expressions in mass units and those in molar units in two-component systems: 

Verify the correctness of this relation. 

Equivalence of various forms of Fick's law for binary mixtures. 
(a) Starting with Eq. (A) of Table 17.8-2, derive Eqs. (B), (D), and (F). 
(b) Starting with Eq. (A) of Table 17.8-2, derive the folowing flux expressions: 

What conclusions can be drawn from these two equations? 
(c) Show that Eq. (F) of Table 17.8-2 can be written as 

Mass flux with respect to volume average velocity. Let the volume average velocity in an 
N-component mixture be defined by 

in which V,  is the partial molar volume of species a. Then define 

j! = p h ,  - vm) (17C.1-2) 

as the mass flux with respect to the volume average velocity. 
(a) Show that for a binary system of A and B, 

To do this you will need to use the identity cAVA + cBVB = 1 .  Where does this come from? 
(b) Show that Fick's first law then assumes the form 

To verifv this vou will need the relation V,vcA + V,VC, = 0. What is the origin of this? 
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17C.2. Mass flux with respect to the solvent velocity. 
(a) In a system with N chemical species, choose component N to be the solvent. Then define 

to be the mass flux with respect to the solvent velocity. Verify that 

jf = ja - (pa/~N)jN 
(b) For a binary system (labeling B as the solvent), show that 

How does this result simplify for a very dilute solution of A in solvent B? 

17C.3. Determination of Lennard-Jones potential parameters from diffusivity data of a binary gas 
mixture. 
(a) Use the following data5 for the system H,O-0, at 1 atm pressure to determine (TAB and 
&AB/K: 

9AB (cm2/s) 0.47 0.69 0.94 1.22 1.52 1.85 2.20 2.58 

One way to do this is as follows: (i) Plot the data as ~ o ~ ( T ~ ' ~ / % ~ ~ )  versus log Ton a thin sheet 
of graph paper. (ii) Mot versus KT/GAB on a separate sheet of graph paper to the same 
scale. (iii) Superpose the first plot on the second, and from the scales of the two overlapping 
plots, determine the numerical ratios (T/(KT/E,,)) and ((T~'~/%,,)/&,,,). (iv) Use these two 
ratios and Eq. 17.3-11 to solve for the two parameters (TAB and g A B / ~ .  

' R. E. Walker and A. A. Westenberg, J. Chem. Phys., 32,436442 (1960); R. M. Fristrom and 
A. A. Westenberg, Flame Stuuctuue, McGraw-Hill, New York (19651, p. 265. 



Chapter 18 

Concentration Distributions in 
Solids and in Laminar Flow 

Shell mass balances; boundary conditions 

Diffusion through a stagnant gas film 

Diffusion with a heterogeneous chemical reaction 

Diffusion with a homogeneous chemical reaction 

Diffusion into a falling liquid film (gas absorption) 

Diffusion into a falling liquid film (solid dissolution) 

Diffusion and chemical reaction inside a porous catalyst 

Diffusion in a three-component gas system 

In Chapter 2 we saw how a number of steady-state viscous flow problems can be set up 
and solved by making a shell momentum balance. In Chapter 9 we saw further how 
steady-state heat-conduction problems can be handled by means of a shell energy balance. 
In this chapter we show how steady-state diffusion problems may be formulated by shell 
mass balances. The procedure used here is virtually the same as that used previously: 

a. A mass balance is made over a thin shell perpendicular to the direction of mass 
transport, and this shell balance leads to a first-order differential equation, which 
may be solved to get the mass flux distribution. 

b. Into this expression we insert the relation between mass flux and concentration 
gradient, which results in a second-order differential equation for the concentra- 
tion profile. The integration constants that appear in the resulting expression are 
determined by the boundary conditions on the concentration and/or mass flux at 
the bounding surfaces. 

In Chapter 17 we pointed out that several kinds of mass fluxes are in common use. 
For simplicity, we shall in this chapter use the combined flux NA-that is, the number of 
moles of A that go through a unit area in unit time, the unit area being fixed in space. We 
shall relate the molar flux to the concentration gradient by Eq. (D) of Table 17.8-2, which 
for the z-component is 

combined moIecuIar convective 
flux flu flux 

Before Eq. 18.0-1 is used, we usually have to eliminate NBZ. This can be done only if 
something is known beforehand about the ratio Nh/NAZ. In each of the binary diffusion 
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problems discussed in this chapter, we begin by specifying this ratio by physical or 
chemical reasoning. 

In this chapter we study diffusion in both nonreacting and reacting systems. When 
chemical reactions occur, we distinguish between two reaction types: homogeneous, in 
which the chemical change occurs in the entire volume of the fluid, and heterogeneous, in 
which the chemical change takes place only in a restricted region, such as the surface of a 
catalyst. Not only is the physical picture different for homogeneous and heterogeneous 
reactions, but there is also a difference in the way the two types of reactions are described 
mathematically. The rate of production of a chemical species by homogeneous reaction ap- 
pears as a source term in the differential equation obtained from the shell balance, just as 
the thermal source term appears in the shell energy balance. The rate of production by a 
heterogeneous reaction, on the other hand, appears not in the differential equation, but 
rather in the boundary condition at the surface on which the reaction occurs. 

In order to set up problems involving chemical reactions, some information has to 
be available about the rate at which the various chemical species appear or disappear by 
reaction. This brings us to the vast subject of chemical kinetics, that branch of physical 
chemistry that deals with the mechanisms of chemical reactions and the rates at which 
they occur.' In this chapter we assume that the reaction rates are described by means of 
simple functions of the concentrations of the reacting species. 

At this point we need to mention the notation to be used for the chemical rate con- 
stants. For homogeneous reactions, the molar rate of production of species A may be 
given by an expression of the form 

Homogeneous reaction: R - k"' n 
A - ~ C A  (18.0-2) 

in which RA [=I  moles/cm3 . s and cA [=I  moles/cm3. The index n indicates the "order" 
of the rea~tion;~ for a first-order reaction, kp [ = I  l /s.  For heterogeneous reactions, the 
molar rate of production at the reaction surface may often be specified by a relation of 
the form 

Heterogeneous reaction: N A Z I  surface = k;c]12 Isuriace (18.0-3) 

in which NAZ [=I  moles/cm2 . s and c, [ = I  moles/cm3. Here k',' [ = I  cm/s. Note that the 
triple prime on the rate constant indicates a volume source and the double prime a sur- 
face source. 

We begin in 518.1 with a statement of the shell balance and the kinds of boundary 
conditions that may arise in solving diffusion problems. In 518.2 a discussion of diffu- 
sion through a stagnant film is given, this topic being necessary to the understanding of 
the film models of diffusional operations in chemical engineering. Then, in 5518.3 and 
18.4 we given some elementary examples of diffusion with chemical reaction-both het- 
erogeneous and homogeneous. These examples illustrate the role that diffusion plays in 
chemical kinetics and the important fact that diffusion can significantly affect the rate of 
a chemical reaction. In 5518.5 and 6 we turn our attention to forced-convection mass 
transfer-that is, diffusion superimposed on a flow field. Although we have not in- 

' R. J. Silbey and R. A. Alberty, Physical Chemistry, 3rd edition, Wiley, New York (2001), Chapter 18. 
Not all rate expressions are of the simple form of Eq. 18.0-2. The reaction rate may depend in a 

complicated way on the concentration of all species present. Similar remarks hold for Eq. 18.0-3. For 
detailed information on reaction rates see Table of Chemical Kinetics, Homogeneous Reactions, National 
Bureau of Standards, Circular 510 (1951), Supplement No. 1 to Circular 510 (1956). This reference is 
now being supplemented by a data base maintained by NIST at "http://kinetics.nist.gov/." For 
heterogeneous reactions, see R. Mezaki and H. Inoue, Rate Equations of Solid-Catalyzed Renctions, U .  of 
Tokyo Press, Tokyo (1991). See also C. G. Hill, Chemical Engineering Kinetics and Reactor Design: An  
Introduction, Wiley, New York (1977). 
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cluded an example of free-convection mass transfer, it would have been possible to par- 
allel the discussion of free-convection heat transfer given in 510.9. Next, in 518.7 we dis- 
cuss diffusion in porous catalysts. Finally, in the last section we extend the evaporation 
problem of 518.2 to a three-component system. 

818.1 SHELL MASS BALANCES; BOUNDARY CONDITIONS 

The diffusion problems in this chapter are solved by making mass balances for one or 
more chemical species over a thin shell of solid or fluid. Having selected an appropriate 
system, the law of conservation of mass of species A in a binary system is written over 
the volume of the shell in the form 

rate of rate of rate of production of 
(18.1-1) 

homogeneous reaction 

The conservation statement may, of course, be expressed in terms of moles. The chemical 
species A may enter or leave the system by diffusion (i.e., by molecular motion) and also 
by virtue of the overall motion of the fluid (i.e., by convection), both of these being in- 
cluded in NA. In addition, species A may be produced or consumed by homogeneous 
chemical reactions. 

After a balance is made on a shell of finite thickness by means of Eq. 18.1-1, we then 
let the thickness become infinitesimally small. As a result of this process a differential 
equation for the mass (or molar) flux is generated. If, into this equation, we substitute the 
expression for the mass (or molar) flux in terms of the concentration gradient, we get a 
differential equation for the concentration. 

When this differential equation has been integrated, constants of integration appear, 
and these have to be determined by the use of boundary conditions. The boundary con- 
ditions are very similar to those used in heat conduction (see §10.1): 

a. The concentration at a surface can be specified; for example, xA = x,,. 

b. The mass flux at a surface can be specified; for example, NAz = N,,. If the ratio 
NB,/NAz is known, this is equivalent to giving the concentration gradient. 

c. If diffusion is occurring in a solid, it may happen that at the solid surface sub- 
stance A is lost to a surrounding stream according to the relation 

in which NAO is the molar flux at the surface, CAO is the surface concentration, cAb is 
the concentration in the bulk fluid stream, and the proportionality constant kc is a 
"mass transfer coefficient." Methods of correlating mass transfer coefficients are 
discussed in Chapter 22. Equation 18.1-2 is analogous to "Newton's law of cool- 
ing" given in Eq. 10.1-2. 

d. The rate of chemical reaction at the surface can be specified. For example, if sub- 
stance A disappears at a surface by a first-order chemical reaction, then NA@ = 

k;cA0. That is, the rate of disappearance at a surface is proportional to the surface 
concentration, the proportionality constant k; being a first-order chemical rate 
coefficient. 

$18.2 DIFFUSION THROUGH A STAGNANT GAS FILM 

Let us now analyze the diffusion system shown in Fig. 18.2-1 in which liquid A is evapo- 
rating into gas B. We imagine there is some device that maintains the liquid level at z = 

2,.  Right at the liquid-gas interface, the gas-phase concentration of A, expressed as mole 
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Fig. 18.2-1. Steady-state diffusion of A 
through stagnant B with the liquid- 
vapor interface maintained at a fixed 
position. The graph shows how the 
concentration profiles deviate from 
straight lines because of the convective 
contribution to the mass flux. 

fraction, is xAl. This is taken to be the gas-phase concentration of A corresponding to 
equilibrium1 with the liquid at the interface. That is, xAl is the vapor pressure of A di- 
vided by the total pressure, p F p / p ,  provided that A and B form an ideal gas mixture and 
that the solubility of gas B in liquid A is negligible. 

A stream of gas mixture A-B of concentration XA2 flows slowly past the top of the 
tube, to maintain the mole fraction of A at x,, for z= z2. The entire system is kept at con- 
stant temperature and pressure. Gases A and B are assumed to be ideal. 

We know that there will be a net flow of gas upward from the gas-liquid interface, 
and that the gas velocity at the cylinder wall will be smaller than that in the center of the 
tube. To simplify the problem, we neglect this effect and assume that there is no depen- 
dence of the z-component of the velocity on the radial coordinate. 

When this evaporating system attains a steady state, there is a net motion of A away 
from the interface and the species B is stationary. Hence the molar flux of A is given by 
Eq. 17.0-1 with NBz = 0. Solving for NAz, we get 

A steady-state mass balance (in molar units) over an increment Az of the column states 
that the amount of A entering at plane z equals the amount of A leaving at plane z + Az: 

Here S is the cross-sectional area of the column. Division by SAz and taking the limit as 
Az + 0 gives 

L. J. Delaney and L. C. Eagleton [AICkE Journal, 8,418420 (196211 conclude that, for evaporating 
systems, the interfacial equilibrium assumption is reasonable, with errors in the range of 1.3 to 7.0% 
possible. 
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Substitution of Eq. 18.2-1 into Eq. 18.2-3 gives 

For an ideal gas mixture the equation of state is p = cRT, so that at constant temperature 
and pressure c must be a constant. Furthermore, for gases aAB is very nearly indepen- 
dent of the composition. Therefore, can be moved to the left of the derivative opera- 
tor to get 

This is a second-order differential equation for the concentration profile expressed as 
mole fraction of A. Integration with respect to z gives 

A second integration then gives 

If we replace C, by -In K, and C2 by -In K,, Eq. 18.2-7 becomes 

The two constants of integration, K, and K,, may then be determined from the boundary 
conditions 

B.C. 1: 
B.C. 2: 

at z = z,, xA = xA, 
at z = z2, x, = x ~ 2  

When the constants have been obtained, we get finally 

The profiles for gas B are obtained by using xB = 1 - x,. The concentration profiles are 
shown in Fig. 18.2-1. It can be seen there that the slope dxA/dz is not constant although 
N, is; this could have been anticipated from Eq. 18.2-1. 

Once the concentration profiles are known, we can get average values and mass 
fluxes at surfaces. For example, the average concentration of B in the region between 2, 

and z, is obtained as follows: 

in which 5 = (z - z,)/(z, - z,) is a dimensionless length variable. This average may be 
rewritten as 

That is, the average value of xB is the logarithmic mean, (x,),,, of the terminal concen- 
trations. 
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Main fluid stream - 
in turbulent flow 

Fig. 18.2-2. Film model for mass transfer; component A 
is diffusing from the surface into the gas stream through 
a hypothetical stagnant gas film. 

The rate of mass transfer at the liquid-gas interface-that is, the rate of evapora- 
tion-may be obtained from Eq. 18.2-1 as follows: 

By combining Eqs. 18.2-13 and 14 we get finally 

This expression gives the evaporation rate in terms of the characteristic driving force 
XAl - x ~ 2 .  

By expanding the solution in Eq. 18.2-15 in a Taylor series, we can get (see 5C.2 and 
Problem 18B.18) 

The expression in front of the bracketed expansion is the result that one would get if the 
convection term were entirely omitted in Eq. 18.0-1. The bracketed expansion then gives 
the correction resulting from including the convection term. Another way of interpreting 
this expression is that the simple result corresponds to joining the end points of the x, 
curve in Fig. 18.2-1 by a straight line, and the complete result corresponds to using the 
curve of x, versus z.  If the terminal mole fractions are small, the correction term in brack- 
ets in Eq. 18.2-16 is only slightly greater than unity. 

The results of this section have been used for experimental determinations of gas 
diffusivities.' Furthermore, these results find use in the "film models" of mass transfer. 
In Fig. 18.2-2 a solid or liquid surface is shown along which a gas is flowing. Near the 
surface is a slowly moving film through which A diffuses. This film is bounded by the 
surfaces z = z, and z = z2 In this "model" it is assumed that there is a sharp transition 
from a stagnant film to a well-mixed fluid in which the concentration gradients are negli- 
gible. Although this model is physically unrealistic, it has nevertheless proven useful as 
a simplified picture for correlating mass transfer coefficients. 

* C. Y. Lee and C. R. Wilke, Ind. Eng. Chem., 46,2381-2387 (1954). 
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Fig. 18.2-3. Evaporation with quasi-steady-state dif- 
fusion. The liquid level goes down very slowly as the 
liquid evaporates. A gas mixture of composition xA2 
flows across the top of the tube. 

Liquid A 

We want now to examine a problem that is slightly different from the one just discussed. In- 
stead of maintaining the liquid-gas interface at a constant height, we allow the liquid level to 

Diffusion with a subside as the evaporation proceeds, as shown in Fig. 18.2-3. Since the liquid retreats very 
Moving Interface slowly, we can use a quasi-steady state method with confidence. 

SOLUTION First we equate the molar rate of evaporation of A from the liquid phase with the rate at 
which moles of A enter the gas phase: 

Here p(A' is the density of pure liquid A and MA is the molecular weight. On the right side of Eq. 
18.2-17 we have used the steady-state evaporation rate evaluated at the current liquid column 
height (this is the quasi-steady-state approximation). This equation can be integrated to give 

in which h(t) = zl(0) - z,(t) is the distance that the interface has descended in time t, and 
H = 2, - q(0) is the initial height of the gas column. When we abbreviate the right side of 
Eq. 18.2-18 by iCt, the equation can be integrated and then solved for h to give 

One can use this experiment to get the diffusivity from measurements of the liquid level as a 
function of time. 

Determination of 
Diffusivity 

The diffusivity of the gas pair 0,-CC1, is being determined by observing the steady-state 
evaporation of carbon tetrachloride into a tube containing oxygen, as shown in Fig. 18.2-1. 
The distance between the CCl, liquid level and the top of the tube is 2, - z, = 17.1 cm. The 
total pressure on the system is 755 mm Hg, and the temperature is 0°C. The vapor pressure of 
CCl, at that temperature is 33.0 mm Hg. The cross-sectional area of the diffusion tube is 0.82 
cm2. It is found that 0.0208 cm3 of CCl, evaporate in a 10-hour period after steady state has 
been attained. What is the diffusivity of the gas pair 02-CCl,? 

SOLUTION Let A stand for CCl, and B for 02. The molar flux of A is then 
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Then from Eq. 18.2-14 we get 

This method of determining gas-phase diffusivities suffers from several defects: the cooling 
of the liquid by evaporation, the concentration of nonvolatile impurities at the interface, the 
climbing of the liquid up the walls of the tube, and the curvature of the meniscus. 

(a) Derive expressions for diffusion through a spherical shell that are analogous to Eq. 18.2-11 
(concentration profile) and Eq. 18.2-14 (molar flux). The system under consideration is shown 

Diffusion through a in pin. 18.2-4. 
Nonisothermal 
Spherical Film 

SOLUTION 

- 
(b) Extend these results to describe the diffusion in a nonisothermal film in which the tem- 
perature varies radially according to 

where TI is the temperature at r = r,. Assume as a rough approximation that varies as the 
$-power of the temperature: 

in which is the diffusivity at T = TI. Problems of this kind arise in connection with dry- 
ing of droplets and diffusion through gas films near spherical catalyst pellets. 

The temperature distribution in Eq. 18.2-22 has been chosen solely for mathematical sim- 
plicity. This example is included to emphasize that, in nonisothermal systems, Eq. 18.0-1 is 
the correct starting point rather than NAz = -gAB(dcA/dz) + xA(NAz + NBz), as has been given 
in some textbooks. 

(a) A steady-state mass balance on a spherical shell leads to 

Fig. 18.2-4. Diffusion through a hypotheti- 
cal spherical stagnant gas film surrounding 
a droplet of liquid A. 
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We now substitute into this equation the expression for the molar flux NAr, with NB, set equal 
to zero, since B is insoluble in liquid A.  his-gives 

For constant temperature the product c 9 A B  is constant, and Eq. 
give the concentration distribution 

From Eq. 18.2-26 we can then get 

(18.2-25) 

18.2-25 may be integrated to 

which is the molar flow of A across any spherical surface of radius r between r1 and r,. 

(b) For the nonisothermal problem, combination of Eqs. 18.2-22 and 23 gives the variation of 
diffusivity with position: 

When this expression is inserted into Eq. 18.2-25 and c is set equal to p/RT, we get 

After integrating between Y, and r,, we obtain (for n # -2) 

For n = 0, this result simplifies to that in Eq. 18.2-27. 

518.3 DIFFUSION WITH A HETEROGENEOUS 
CHEMICAL REACTION 

Let us now consider a simple model for a catalytic reactor, such as that shown in Fig. 
18.3-la, in which a reaction 2A + B is being carried out. An example of a reaction of this 
type would be the solid-catalyzed dimerization of CH,CH = CH,. 

We imagine that each catalyst particle is surrounded by a stagnant gas film 
through which A has to diffuse to reach the catalyst surface, as shown in Fig. 18.3-lb 
At the catalyst surface we assume that the reaction 2A + B occurs instantaneously, 
and that the product B then diffuses back out through the gas film to the main turbu- 
lent stream composed of A and B. We want to get an expression for the local rate of 
conversion from A to B when the effective gas-film thickness and the main stream 
concentrations x,,, and x,, are known. We assume that the gas film is isothermal, al- 
though in many catalytic reactions the heat generated by the reaction cannot be 
neglected. 

For the situation depicted in Fig. 18.3-lb, there is one mole of B moving in the minus 
z direction for every two moles of A moving in the plus z direction. We know this from 
the stoichiometry of the reaction. Therefore we know that at steady state 
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Gas A - Gases 
A and B 
-f 

\ Spheres with coating 1 
of catalytic material I 

(a) I = L  

Edge of hypothetical 
/ stagnant gas film 

Fig. 18.3-1. (a) Schematic 
diagram of a catalytic 
reactor in which A is 
being converted to B. 
(b) Idealized picture 
(or "rn~clel'~) of the dif- 
fusion problem near the 
surface of a catalyst 
particle. 

at any value of z. This relation may be substituted into Eq. 18.0-1, which may then be 
solved for NAZ to give 

Hence, Eq. 18.0-1 plus the stoichiometry of the reaction have led to an expression for Nh 
in terms of the concentration gradient. 

We now make a mass balance on species A over a thin slab of thickness Az in the gas 
film. This procedure is exactly the same as that used in connection with Eqs. 18.2-2 and 3 
and leads once again to the equation 

Insertion of the expression for NAt, developed above, into this equation gives (for con- 
stant %,,) 

Integration twice with respect to z gives 

It is somewhat easier to find the integration constants K,  and K,  than C1 and C2. The 
boundary conditions are 

B.C. 1: 

B.C. 2: 

The final result is then 
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for the concentration profile in the gas film. Equation 18.3-2 may now be used to get the 
molar flux of reactant through the film: 

The quantity N, may also be interpreted as the local rate of reaction per unit area of cat- 
alytic surface. This information can be combined with other information about the cat- 
alytic reactor sketched in Fig. 18.3-l(a) to get the overall conversion rate in the entire 
reactor. 

One point deserves to be emphasized. Although the chemical reaction occurs instan- 
taneously at the catalytic surface, the conversion of A to B proceeds at a finite rate be- 
cause of the diffusion process, which is "in series" with the reaction process. Hence we 
speak of the conversion of A to B as being difision controlled. 

In the example above we have assumed that the reaction occurs instantaneously at 
the catalytic surface. In the next example we show how to account for finite reaction ki- 
netics at the catalytic surface. 

Rework the problem just considered when the reaction 2A -+ B is not instantaneous at the cat- 
alytic surface at z = 6. Instead, assume that the rate at which A disappears at the catalyst- 

with a coated surface is proportional to the concentration of A in the fluid at the interface, 
Heterogeneous 
Reaction NAz = k;cA = k;cxA (18.3-10) 

in which k; is a rate constant for the pseudo-first-order surface reaction. 

SOLUTION We proceed exactly as before, except that B.C. 2 in Eq. 18.3-7 must be replaced by 

B.C. 2': 

NA, being, of course, a constant at steady state. The determination of the integration constants 
from B.C. 1 and B.C. 2' leads to 

From this we evaluate (dxA/dz)l,=, and substitute it into Eq. 18.3-2, to get 

This is a transcendental equation for NAz as a function of xA,, k;, &IAB, and 6. When k; is large, 
the logarithm of 1 - :(~,,/k:c) may be expanded in a Taylor series and all terms discarded 
but the first. We then get 

N A ~  = 2c9~d6 in( ) (k, large) (18.3-14) 
1 + 9,,/k; '~ 1 - PA, 

Note once again that we have obtained the rate of the combined reaction and diffusion process. 
Note also that the dimensionless group 9A,/k;6 describes the effect of the surface reaction ki- 
netics on the overall diffusion-reaction process. The reciprocal of this group is known as the 
second Damkohler number' Da" = k;6/gA,. Evidently we get the result in Eq. 18.3-9 in the limit 
as Dan -+ w. 

' G. Damhohler, Z. Elektrochem., 42,846-862 (1936). 
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Gas A 

Fig. 18.4-1. Absorption of A by B with a 
homogeneous reaction in the liquid phase. 

518.4 DIFFUSION WITH A HOMOGENEOUS 
CHEMICAL REACTION 

As the next illustration of setting up a mass balance, we consider the system shown in 
Fig. 18.4-1. Here gas A dissolves in liquid B in a beaker and diffuses isothermally into the 
liquid phase. As it diffuses, A also undergoes an irreversible first-order homogeneous re- 
action: A + B + AB. An example of such a system is the absorption of CO, by a concen- 
trated aqueous solution of NaOH. 

We treat this as a binary solution of A and B, ignoring the small amount of AB that is 
present (the pseudobinay assumption). Then the mass balance on species A over a thick- 
ness Az of the liquid phase becomes 

in which kq' is a first-order rate constant for the chemical decomposition of A, and S is the 
cross-sectional area of the liquid. The product kq'cA represents the moles of A consumed 
by the reaction per unit volume per unit time. Division of Eq. 18.4-1 by SAz and taking 
the limit as Az -+ 0 gives 

If the concentration of A is small, then we may to a good approximation write Eq. 18.0-1 as 

since the total molar concentration c is virtually uniform throughout the liquid. Combin- 
ing the last two equations gives 

This is to be solved with the following boundary conditions: 

B.C. I: 
B.C. 2: 

at z = 0, C~ = C ~ O  

at z = L, NA, = 0 (or dcn/dz = 0) 

The first boundary condition asserts that the concentration of A at the surface in the liq- 
uid remains at a fixed value c,,. The second states that no A diffuses through the bottom 
of the container at z = L. 

If Eq. 18.4-4 is multiplied by then it can be written in dimensionless vari- 
ables in the form of Eq. C.l-4 
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where r = cA/cAO is a dimensionless concentration, 5 = z/L is a dimensionless length, 
and 4 = d k;"L2/91AB is a dimensionless group, known as the Thiele modulus.' This group 
represents the relative influence of the chemical reaction kycAO and diffusion c ~ ~ ~ ~ ~ / L ~ .  
Equation 18.4-7 is to be solved with the dimensionless boundary conditions that at 5 = 0, 
r = 1, and at 5 = 1, dr/dc = 0. The general solution is 

I' = C, cosh $5 + C, sinh +c (18.4-8) 

When the constants of integration are evaluated, we get 

cosh 4 cosh $5 - sinh 4 sinh 45 cosh[+(l - 5)1 r = - - (18.4-9) 
cosh $ cosh 4 

Then reverting to the original notation 

The concentration profile thus obtained is plotted in Fig. 18.4-1. 
Once we have the complete concentration profile, we may evaluate other quantities, 

such as the average concentration in the liquid phase 

Also, the molar flux at the plane z = 0 can be found to be 

This result shows how the chemical reaction influences the rate of absorption of gas A by 
liquid B. 

The reader may wonder how the solubility cAo and the diffusivity QAB can be de- 
termined experimentally if there is a chemical reaction taking place. First, k r  can 
be measured in a separate experiment in a well-stirred vessel. Then, in principle, cAO 
and 9 A R  can be obtained from the measured absorption rates for various liquid 
depths L. 

Estimate the effect of chemical reaction rate on the rate of gas absorption in an agitated tank 
(see Fig. 18.4-2). Consider a system in which the dissolved gas A undergoes an irreversible 

Gas with first order reaction with the liquid B; that is, A disappears within the liquid phase at a rate 
Chemical Reaction in proportional to the local concentration of A. An example of such a system is the absorption of 
an Agitated Tank2 SO, or H2S in aqueous NaOH solutions. 

E. W. Thiele, Ind. Eng. Chem., 31,916-920 (1939). Ernest William Thiele (pronounced "tee-lee") 
(1895-1993) is noted for his work on catalyst effectiveness factors and his part in the development of the 
"McCabe-Thiele" diagram. After 35 years with Standard Oil of Indiana, he taught for a decade at Notre 
Dame University. 

E. N. Lightfoot, AIChE Journal, 4,499-500 (1958), 8,710-712 (1962). 
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SOLUTION 

Surface area 
of all the 

bubbles is S 

0 0 

Laminar Flow 

Fig. 18.4-2. Gas-absorption apparatus. 

An exact analysis of this situation is not possible because of the complexity of the gas-absorp- 
tion process. However, a useful semiquantitative understanding can be obtained by the 
analysis of a relatively simple model. The model we use involves the following assumptions: 

Each gas bubble is surrounded by a stagnant liquid film of thickness 6 ,  which is small 
relative to the bubble diameter. 

A quasi-steady concentration profile is quickly established in the liquid film after the 
bubble is formed. 

The gas A is only sparingly soluble in the liquid, so that we can neglect the convection 
term in Eq. 18.0-1. 

The liquid outside the stagnant film is at a concentration CA& which changes so slowly 
with respect to time that it can be considered constant. 

The differential equation describing the diffusion with chemical reaction is the same as 
that in Eq. 18.4-4, but the boundary conditions are now 

B.C. 1: 

B.C. 2: 

The concentration cA, is the interfacial concentration of A in the liquid phase, which is as- 
sumed to be at equilibrium with the gas phase at the interface, and cA, is the concentration of 
A in the main body of the liquid. The solution of Eq. 18.4-4 with these boundary conditions is 

c, - sinh 4 cosh +[ + ( B  - cosh 4 sinh 4[) -- 
CAO sinh 4 (18.4-15) 

in which = z / S ,  B = cA8/cA0, and 4 = k',"6'/aAB. This result is plotted in Fig. 18.4-3. 

Gas in 
bubble 

Liquid-gas - 
interface 

Main body 
of liquid 

C~~ 

Fig. 18.4-3. Predicted concentration profile in the 
liquid film near a bubble. 
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Fig. 18.4-4. Gas absorption 
accompanied by an irreversible 
first-order reaction. 

Next we use assumption (d) above and equate the amount of A entering the main body 
of liquid at z = S over the total bubble surface S in the tank to the amount of A consumed in 
the bulk of the liquid by chemical reaction: 

Substitution of cA from Eq. 18.4-15 into Eq. 18.4-16 gives an expression for B: 

B = 
1 

cash 4 + (V/SS)Q, sinh + 
When this result is substituted into Eq. 18.4-15, we obtain an expression for cA/cAO in terms of 
Q, and V/SS. 

From this expression for the concentration profile we can then get the total rate of ab- 
sorption with chemical reaction from NA, = -91AB(dcA/dz) evaluated at z = 0, thus: 

3= N~zlz=o~ - + cosh + - 1 
cA091AB - - sinh Q, ( cosh + (V/SS)4 sinh + ) (18.4-18) 

The result is plotted in Fig. 18.4-4. 
It is seen here that the dimensionless absorption rate per unit area of interface, I?, in- 

creases with + for all finite values of V/SS. At very low values of +-that is, for very slow re- 
actions-I? approaches zero. For this limiting situation the liquid is nearly saturated with 
dissolved gas, and the "driving force" for absorption is very small. At large values of 4 the di- 
mensionless surface mass flux N increases rapidly with 4 and becomes very nearly indepen- 
dent of V/SS. Under the latter circumstances, the reaction is so rapid that almost all of the 
dissolving gas is consumed within the film. Then B is very nearly zero, and the bulk of the liq- 
uid plays no significant role. In the limit as 4 becomes very large, I? approaches +. 

Somewhat more interesting behavior is observed for intermediate values of +. It may be 
noted that, for moderately large V/SS, there is a considerable range of + for which fi is very 
nearly unity. In this region the chemical reaction is fast enough to keep the bulk of the solu- 
tion almost solute free, but slow enough to have little effect on solute transport in the film. 
Such a situation will arise when the ratio V / S S  of bulk to film volume is sufficient to offset the 
higher volumetric reaction rate in the film. The absorption rate is then equal to the physical 
absorption rate (that is, the rate for k'," = 0) for a solute-free tank. This behavior is frequently 
observed in practice, and operation under such conditions has proven a useful means of char- 
acterizing the mass transfer behavior of a variety of gas absorbers.' 
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Fig. 18.5-1. Absorption of A into a falling film of 
liquid B. 

518.5 DIFFUSION INTO A FALLING LIQUID 
FILM (GAS ABSORPTION)' 

In this section we present an illustration of forced-convection mass transfer, in which vis- 
cous flow and diffusion occur under such conditions that the velocity field can be con- 
sidered virtually unaffected by the diffusion. Specifically, we consider the absorption of 
gas A by a laminar falling film of liquid B. The material A is only slightly soluble in B, so 
that the viscosity of the liquid is unaffected. We shall make the further restriction that 
the diffusion takes place so slowly in the liquid film that A will not "penetrate" very far 
into the film-that is, that the penetration distance will be small in comparison with the 
film thickness. The system is sketched in Fig. 18.5-1. An example of this kind of system 
occurs in the absorption of 0, in H,O. 

Let us now set up the differential equations describing the diffusion process. First, 
we have to solve the momentum transfer problem to obtain the velocity profile vz(x) for 
the film; this has already been worked out in 52.2 in the absence of mass transfer at the 
fluid surface, and we know that the result is 

provided that "end effects" are ignored. 
Next we have to establish a mass balance on component A. We note that cA will be 

changing with both x and z. Hence, as the element of volume for the mass balance, we 
select the volume formed by the intersection of a slab of thickness Az with a slab of thick- 
ness Ax. Then the mass balance on A over this segment of a film of width W becomes 

Dividing by W Ax Az and performing the usual limiting process as the volume element 
becomes infinitesimally small, we get 

S. Lynn, J. R. Straatemeier, and H. Kramers, Chem. Engr. Sci., 4,4947 (1955). 
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Into this equation we now insert the expression for NA, and NA,, making appropriate 
simplifications of Eq. 18.0-1. For the molar flux in the z direction, we write, assuming 
constant c, 

We discard the dashed-underlined term, since the transport of A in the z direction will 
be primarily by convection. We have made use of Eq. (M) in Table 17.8-1 and the fact 
that v is almost the same as vW in dilute solutions. The molar flux in the x direction is 

~ C A  ~ C A  
NAx = - + xA(NAx + NBx) -QAB -- (18.5-5) 

dx -----------..----- dx 
Here we neglect the dashed-underlined term because in the x direction A moves pre- 
dominantly by diffusion, there being almost no convective transport normal to the wall 
on account of the very slight solubility of A in B. Combining the last three equations, we 
then get for constant 9,, 

Finally, insertion of Eq. 18.5-1 for the velocity distribution gives 

as the differential equation for cA(x, z). 
Equation 18.5-7 is to be solved with the following boundary conditions: 

B.C. 1: atz=O, cA=O (18.5-8) 

B.C. 2: at x = 0, c, = c,, (18.5-9) 

B.C. 3: ~ C A  a t x = 6 ,  - = O  dx (18.5-10) 

The first boundary condition corresponds to the fact that the film consists of pure B at the 
top (Z = O), and the second indicates that at the liquid-gas interface the concentration of A 
is determined by the solubility of A in B (that is, cAo). The third boundary condition states 
that A cannot diffuse through the solid wall. This problem has been solved analytically in 
the form of an infinite series? but we do not give that solution here. Instead, we seek only 
a limiting expression valid for "short contact times," that is, for small values of L/vm,,. 

If, as indicated in Fig. 18.5-1, the substance A has penetrated only a short distance 
into the film, then the species A "has the impression" that the film is moving throughout 
with a velocity equal to v,,,. Furthermore if A does not penetrate very far, it does not 
"sense" the presence of the solid wall at x = 6. Hence, if the film were of infinite thick- 
ness moving with the velocity v,,,, the diffusing material "would not know the differ- 
ence." This physical argument suggests (correctly) that we will get a very good result if 
we replace Eq. 18.5-7 and its boundary conditions by 

B.C. 1: 

B.C. 2: 
B.C. 3: 

R. L. Pigford, PhD thesis, University of Illinois (1941). 
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An exactly analogous problem occurred in Example 4.1-1, which was solved by the 
method of combination of variables. It is therefore possible to take over the solution to 
that problem just by changing the notation. The solution is" 

Then the total molar flow of A across the surface at x = 0 (i.e., being absorbed by a liquid 
film of length L and width W) is 

C A X X 
- = 1 - erf = erfc c~~ d49ABz/vrnax v4%ABz/vmax 

The same result is obtained by integrating the product vm,,cA over the flow cross section 
at z = L (see Problem 18C.3). 

Equation 18.5-18 shows that the mass transfer rate is directly proportional to the 
square root of the diffusivity and inversely proportional to the square root of the "expo- 
sure time," texP = L/vrnax. This approach for studying gas absorption was apparently first 
proposed by Higbie.5 

The problem discussed in this section illustrates the "penetration model" of mass 
transfer. This model is discussed further in Chapters 20 and 22. 

(18.5-16) 

Estimate the rate at which gas bubbles of A are absorbed by liquid B as the gas bubbles rise at 
their terminal velocity v, through a clean quiescent liquid. 

Gas Absorption from 
Rising Bubbles 

In these expressions "erf x" and "erfc x" are the "error function" and the "complemen- 
tary error function" of x, respectively. They are discussed in gC.6 and tabulated in stan- 
dard reference works4 

Once the concentration profiles are known, the local mass flux at the gas-liquid in- 
terface may be found as follows: 

The solution is worked out in detail by the method of combination of variables in Example 4.1-1. 
M. Abramowitz and I. A. Stegun, Handbook ofMathematica1 Functions, Dover, New York, 9th printing 

(1973), pp. 310 et seq. 
R. Higbie, Trans. AIChE, 31,365-389 (1935). Ralph Wilmarth Higbie (190&1941), a graduate of the 

University of Michigan, provided the basis for the "penetration model" of mass transfer. He worked at 
E. I. du Pont de Nemours & Co., Inc., and also at Eagle-Picher Lead Co.; then he taught at the University 
of Arkansas and the University of North Dakota. 
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SOLUTION 

Liquid B Fig. 18.5-2. Absorption of gas A into liquid B. 
3 

Gas bubbles of moderate size, rising in liquids free of surface-active agents, undergo a 
toroidal circulation (Rybczynski-Hadamard circulation) as shown in Fig. 18.5-2. The liquid 
moves downward relative to each rising bubble, enriched in species A near the interface in 
the manner of the falling film in Fig. 18.5-1. The depth of penetration of the dissolved gas into 
the liquid is slight over the major part of the bubble, because of the motion of the liquid rela- 
tive to the bubble and because of the smallness of the liquid-phase diffusivity 9AB. Thus, as a 
rough approximation, we can use Eq. 18.5-18 to estimate the rate of gas absorption, replacing 
the exposure time t,,, = L/v,,, for the falling film by D / v ,  for the bubble, where D is the in- 
stantaneous bubble diameter. This gives an estimate5 of the molar absorption rate, averaged 
over the bubble surface, as 

I 

Here cAO is the solubility of gas A in liquid B at the interfacial temperature and partial pres- 
sure of gas A. Interestingly, the result in Eq. 18.5-19 turns out to be correct for potential flow 
of the liquid around the bubble (see Problem 4B.5). This equation has been approximately 
confirmed6 for gas bubbles 0.3 to 0.5 cm in diameter rising through carefully purified water. 

This system has also been analyzed for creeping flow7 and the result is (see Example 
20.3-1) 

instead of Eq. 18.5-19. 
Trace amounts of surface-active agents cause a marked decrease in absorption rates from 

small bubbles, by forming a "skin" around each bubble and thus effectively preventing inter- 
nal circulation. The molar absorption rate in the small-diffusivity limit then becomes propor- 
tional to the $ power of the diffusivity, as for a solid sphere (see $3522.2 and 3). 

A similar approach has been used successfully for predicting mass transfer rates during 
drop formation at a capillary tip.8 

D. Hammerton and F. H. Garner, Trans. Inst. Chem. Engrs. (London), 32, S18-524 (1954). 
V .  G .  Levich, Pkysicockemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), p. 408, 

E q .  72.9. This reference gives many additional results, including liquid-liquid mass transfer and 
surfactant effects. 

H. Groothuis and H. Kramers, Chem. Eng. Sci., 4,17-25 (1955). 
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Fig. 18.6-1. Solid A dissolving into a falling film 
of liquid B, moving with a fully developed para- 

Near wall Parabolic bolic velocity profile. 
velocity 

profile of 
fluid B 

Slightly soluble 
wall made of A 

L 
I 

C A ~  = saturation 
concentration 

918.6 DIFFUSION INTO A FALLING LIQUID FILM 
(SOLID DISSOLUTION)1 

We now turn to a falling film problem that is different from the one discussed in the pre- 
vious section. Liquid B is flowing in laminar motion down a vertical wall as shown in 
Fig. 18.6-1. The film begins far enough up the wall so that v, depends only on y for z 0. 
For 0 < z < L the wall is made of a species A that is slightly soluble in B. 

For short distances downstream, species A will not diffuse very far into the falling 
film. That is, A will be present only in a very thin boundary layer near the solid surface. 
Therefore the diffusing A molecules will experience a velocity distribution that is charac- 
teristic of the falling film right next to the wall, y = 0. The velocity distribution is given 
in Eq. 2.2-18. In the present situation cos 8 = 1, and x = 6 - y, and 

At and adjacent to the wall ( ~ / 6 ) ~  << (y/6), so that for this problem the velocity is, to a 
very good approximation, v, = (pg6/p)y = ay. This means that Eq. 18.5-6, which is ap- 
plicable here, becomes for short distances downstream 

~ C A  d2cA ay- = 9,,- 
a2 ay2 

where a = pg6/p. This equation is to be solved with the boundary conditions 

B.C. 1: 

B.C. 2: 
B.C. 3: 

In the second boundary condition, c,, is the solubility of A in B. The third boundary con- 
dition is used instead of the correct one (dc,/dy = 0 at y = 6), since for short contact 
times we feel intuitively that it will not make any difference. After all, since the mole- 

H. Kramers and P. J. Kreyger, Chem. Eng. Sci., 6 ,4248  (1956); see also R. L. Pigford, Chem. Eng. 
Puog. Symposium Series No. 17, Vol. 51, pp. 79-92 (1955) for the analogous heat-conduction problem. 
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cules of A penetrate only slightly into the film, they cannot get far enough to "see" the 
outer boundary of the film, and hence they cannot distinguish between the true bound- 
ary condition and the approximate boundary condition that we use. The same kind of 
reasoning was encountered in Example 12.2-2 and Problem 12B.4. 

The form of the boundary conditions in Eqs. 18.6-3 to 5 suggests the method of com- 
bination of variables. Therefore we try cA/cAO = f($, where 7 = ~ ( a / 9 9 ~ , z ) ' / ~ .  This com- 
bination of the independent variables can be shown to be dimensionless, and the factor 
of "9" is included to make the solution look neater. 

When this change of variable is made, the partial differential equation in Eq. 18.6-2 
reduces to an ordinary differential equation 

with the boundary conditions f(0) = 1 and f (w )  = 0. 
This second-order equation, which is of the form of Eq. C.1-9, has the solution 

The constants of integration can then be evaluated using the boundary conditions, and 
one obtains finally 

I I 

for the concentration profiles, in which ~ ( 2 )  = 0.8930 . . . is the gamma function of $. Next 
the local mass flux at the wall can be obtained as follows 

Then the molar flow of A across the entire mass transfer surface at y = 0 is 

where I?($) = 4 r($) = 1.1907. . . . 
The problem discussed in 518.5 and the one discussed here are examples of two types 

of asymptotic solutions that are discussed further in 920.2 and 520.3 and again in Chapter 
22. It is therefore important that these two problems be thoroughly understood. Note that 
in s18.5, wA K ( Q A B ~ ) 1 / 2 ,  whereas in this section wA cc (%AB~)2 '3 .  The differences in the ex- 
ponents reflect the nature of the velocity gradient at the mass transfer interface: in 518.5, 
the velocity gradient was zero, whereas in this section, the velocity gradient is nonzero. 

518.7 DIFFUSION AND CHEMICAL REACTION 
INSIDE A POROUS CATALYST 

Up to this point we have discussed diffusion in gases and liquids in systems of simple 
geometry. We now wish to apply the shell mass balance method and Fick's first law to 
describe diffusion within a porous catalyst pellet. We make no attempt to describe the 
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I Concentration at  

concentrations 
CAR and CB K 

CAR 

lyst 

Fig. 18.7-1. A spherical catalyst that 
is porous. For a magnified version 
of the inset, see Fig. 18.7-2. 

r \ Solid 

Fig. 18.7-2. Pores in the catalyst, in 
which diffusion and chemical reac- 
tion occur. 

diffusion inside the tortuous void passages in the pellet. Instead, we describe the "aver- 
a g e d  diffusion of the reactant in terms of an "effective diff~sivity."',~,~ 

Specifically, we consider a spherical porous catalyst particle of radius R, as shown in 
Fig. 18.7-1. This particle is in a catalytic reactor, where it is submerged in a gas stream 
containing the reactant A and the product B. In the neighborhood of the surface of the 
particular catalyst particle under consideration, we presume that the concentration is cA, 
moles of A per unit volume. Species A diffuses through the tortuous passages in the cata- 
lyst and is converted to B on the catalytic surfaces, as sketched in Fig. 18.7-2. 

We start by making a mass balance for species A on a spherical shell of thickness Ar 
within a single catalyst particle: 

Here NAr(, is the number of moles of A passing in the r direction through an imaginary 
spherical surface at a distance r from the center of the sphere. The source term X ,  . 
4m2Ar  is the molar rate of production of A by chemical reaction in the shell of thickness 
Ar. Dividing by 437 Ar and letting Ar -+ 0 gives 

or, using the definition of the first derivative, 

This limiting process is clearly in conflict with the fact that the porous medium is granu- 
lar rather than continuous. Consequently, in Eq. 18.7-3 the symbols NAu and RA cannot be 
interpreted as quantities having a meaningful value at a point. Rather we have to inter- 
pret them as quantities averaged over a small neighborhood of the point in question-a 
neighborhood small with respect to the dimension R, but large with respect to the di- 
mensions of the passages within the porous particle. 

' E. W. Thiele, Ind. Eng. Chem., 31,916-920 (1939). 
' R. Aris, Chem. Eng. Sci., 6,265-268 (1957). 

A. Wheeler, Advances in Catalysis, Academic Press, New York (1950), Vol. 3, pp. 250-326. 
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We now define an "effective diffusivity" for species A in the porous medium by 

in which cA is the concentration of the gas A contained within the pores. The effective 
diffusivity 9, must be measured experimentally. It depends generally on pressure and 
temperature and also on the catalyst pore structure. The actual mechanism for diffusion 
in pores is complex, since the pore dimensions may be smaller than the mean free path 
of the diffusing molecules. We do not belabor the question of mechanism here but as- 
sume only that Eq. 18.7-4 can adequately represent the diffusion process (see 524.6). 

When the preceding expression is inserted into Eq. 18.7-3, we get, for constant 
diffusivity 

We now consider the situation where species A disappears according to a first-order 
chemical reaction on the catalytic surfaces that form all or part of the "walls" of the 
winding passages. Let a be the available catalytic surface per unit volume (of solids + 
voids). Then RA = -k','acA, and Eq. 18.7-5 becomes (see Eq. C.l-6) 

This equation is to be solved with the boundary conditions that cA = cA, at r = R, and 
that cA is finite at r = 0. 

Equations containing the operator (1/r2)(d/dr)[r2(d/dr)l can frequently be solved by 
using a "standard trick-namely, a change of variable cA/cA, = (1 /r)f(r). The equation 
for f(r) is then 

This is a standard second-order differential equation, which can be solved in terms of ex- 
ponential~ or hyperbolic functions. When it is solved and the result divided by r we get 
the following solution of Eq. 18.7-6 in terms of hyperbolic functions (see 5C.5): 

Application of the boundary conditions gives finally 

In studies on chemical kinetics and catalysis one is frequently interested in the molar 
flux NAX or the molar flow WAR at the surface r = R: 

When Eq. 18.7-9 is used in this expression, we get 

This result gives the rate of conversion (in moles/sec) of A to B in a single catalyst particle 
of radius R in terms of the parameters describing the diffusion and reaction processes. 
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If the catalytically active surface were all exposed to the stream of concentration c,,, 
then the species A would not have to diffuse through the pores to a reaction site. The 
molar rate of conversion would then be given by the product of the available surface and 
the surface reaction rate: 

WAR,, = ( $ d 3 ) ( a ) (  -k;cAR> (18.7-12) 

Taking the ratio of the last two equations, we get 

TIA=-=-(4 W ~ R  coth 4 - 1) 
w ~ ~ , ~  42 

in which 4 = -R is the Thiele modulus,l encountered in s18.4. The quantity 7, is 
called the efectiveness factor.'-4 It is the quantity by which WAR,, has to be multiplied to ac- 
count for the intraparticle diffusional resistance to the overall conversion process. 

For nonspherical catalyst particles, the foregoing results may be applied approxi- 
mately by reinterpreting R. We note that for a sphere of radius R the ratio of volume to 
external surface is R/3.  For nonspherical particles, we redefine R in Eq. 18.7-13 as 

where Vp and S, are the volume and external surface of a single catalyst particle. The ab- 
solute value of the conversion rate is then given approximately by 

in which the quantity A = -(V,/S,) is a generalized m o d ~ l u s . ~ , ~  
The particular utility of the quantity A may be seen in Fig. 18.7-3. It is clear that 

when the exact theoretical expressions for 17, are plotted as functions of A, the curves 

Fig. 18.7-3. Effectiveness 
factors for porous solid 
catalysts of various shapes 
[R. Aris, Chem. Eng. Sci., 6, 

%. A. Hougen and K. M. Watson, Chemical Process Principles, Wiley, New York (1947), Part 111, Chapter 
XU(. See also CPP Charts, by 0. A. Hougen, K. M. Watson, and R. A. Ragatz, Wiley, New York (1960), Fig. E. 
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have common asymptotes for large and small A and do not differ from one another very 
much for intermediate values of A. Thus Fig. 18.7-3 provides a justification for the use of 
Eq. 18.7-16 to estimate r ] ,  for nonspherical particles. 

$18.8 DIFFUSION IN A THREE-COMPONENT GAS SYSTEM 

Up to this point the systems we have discussed have been binary systems, or ones that 
could be approximated as two-component systems. To illustrate the setting up of multi- 
component diffusion problems for gases, we rework the initial evaporation problem of 
518.2 when liquid water (species 1) is evaporating into air, regarded as a binary mixture 
of nitrogen (2) and oxygen (3) at 1 atrn and 352K. We take the air-water interface to be at 
z = 0 and the top end of the diffusion tube to be at z = L. We consider the vapor pressure 
of water to be known, so that x, is known at z = 0 (that is, x,, = 341/760 = 0.449), and 
the mole fractions of all three gases are known at z = L: x,, = 0.10, x,, = 0.75, x,, = 0.15. 
The diffusion tube has a length L = 11.2 cm. 

The conservation of mass leads, as in 518.2, to the following expressions: 

From this it may be concluded that the molar fluxes of the three species are all constants 
at steady state. Since species 2 and 3 are not moving, we conclude that N2, and N3, are 
both zero. 

Next we need the expressions for the molar fluxes from Eq. 17.9-1. Since x, + x2 + 
x, = 1, we need only two of the three available equations, and we select the equations for 
species 2 and 3. Since N2, = 0 and N,, = 0, these equations simplify considerably: 

Note that the diffusivity Enz3 does not appear here, because there is no relative motion of 
species 2 and 3. These equations can be integrated from an arbitrary height z to the top of 
the tube at L, to give for constant ~ 9 , ~  

Integration then gives 

and the mole fraction profile of water vapor in the diffusion column will be 
I I 

When we apply the boundary condition at z = 0, we get 

which is a transcendental equation for N,,. 
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According to Reid, Prausnitz, and poling,' 9,, = 0.364 cm2/s and Q13 = 0.357 cm2/s 
at 352K and 1 atm. At these conditions c = 3.46 X lov5 g-moles/cm3. To get a quick solu- 
tion to Eq. 18.8-9, we take both diffusivities to be equal2 to 0.36 cm2/s. Then we get 

0.449 = 1 - 0.90 exp - 
Nlz(l 1.2) ( (3.462 X 10-~)(0.36) 

from which we find that N,, = 5.523 X g-moles/cm2 s. This can be used as a first 
guess in solving Eq. 18.8-9 more exactly, if desired. Then the entire profiles can be calcu- 
lated from Eqs. 18.8-6 to 8. 

QUESTIONS FOR DISCUSSION 

1. What arguments are used in this chapter for eliminating NB from Eq. 18.0-l? 
2. Suggest ways in which the diffusivity gAB could be measured by means of the examples in 

this chapter. Summarize possible sources of error. 
3. In what limit do the concentration curves in Fig. 18.2-1 become straight lines? 
4. Distinguish between homogeneous and heterogeneous reactions. Which ones are described 

by boundary conditions and which ones manifest themselves in the differential equations? 
5. Discuss the term "diffusion-controlled reaction." 
6. What kind of "device" would you suggest in the first sentence of 518.2 for maintaining the 

level of the interface constant? 
7. Why is the left-hand term in Eq. 18.2-15 called the "evaporation rate"? 
8. Explain carefully how Eq. 18.2-19 is set up. 
9. Criticize Example 18.2-3. To what extent is it ''just a schoolbook problem"? What do you learn 

from the problem? 
10. In what sense can the quantity NAz in Eq. 18.3-9 be interpreted as a local rate of chemical reac- 

tion? 
11. How does the size of a bubble change as it moves upward in a liquid? 
12. In what connection have you encountered Eq. 18.5-11 before? 
13. What happens if you try to solve Eq. 18.7-8 by using exponentials instead of hyperbolic func- 

tions? How can we make the simpler choice ahead of time? 
14. Compare and contrast the systems discussed in §§18.5 and 6 as regards the physical prob- 

lems, the mathematical methods used to solve them, and the final expressions for the molar 
fluxes. 

PROBLEMS 18A.1 Evaporation rate. For the system shown in Fig. 18.2-1, what is the evaporation rate in g/hr of 
CC1,N02 (chloropicrin) into air at 25OC? Make the customary assumption that air is a "pure 
substance." 

Total pressure 770 mm Hg 
Diffusivity (CC13N02-air) 0.088 cm2/s 
Vapor pressure of CC1,N02 23.81 mm Hg 
Distance from Liquid level to top of tube 11.14 cm 
Density of CC1,N02 1.65 g/cm3 
Surface area of liquid exposed for evaporation 2.29 cm2 
Answer: 0.0139 g/hr 

R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th edition, 
McGraw-Hill, New York (1987), p. 591. 

The solution to ternary diffusion problems in which two of the binary diffusivities are equal was 
discussed by H. L. Toor, AlChE Journal, 3,198-207 (1957). 
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+ R  = 1.4cm Fig. 18A.4. Schematic drawing of a wetted-wall - Water film runs column. 
down the wall 

* Film thickness 6 

- Surface concentration 
assumed equal to the 

saturation concentration 

Sublimation of small iodine spheres in still air. A sphere of iodine, 1 cm in diameter, is 
placed in still air at 40°C and 747 mm Hg pressure. At this temperature the vapor pressure of 
iodine is about 1.03 mm Hg. We want to determine the diffusivity of the iodine-air system by 
measuring the sublimation rate. To help determine reasonable experimental conditions, 
(a) Estimate the diffusivity for the iodine-air system at the temperature and pressure given 
above, using the intermolecular force parameters in Table E.1. 
(b) Estimate the rate of sublimation, basing your calculations on Eq. 18.2-27. (Hint: Assume r, 
to be very large.) 

This method has been used for measuring the diffusivity, but it is open to question be- 
cause of the possible importance of free convection. 

Answer: (a) 9dIldir = 0.0888 cm2/s; (b) W12 = 1.06 X lo-* g-mole/hr 

Estimating the error in calculating the absorption rate. What is the maximum possible error 
in computing the absorption rate from Eq. 18.5-18, if the solubility of A in B is known within 
+5% and the diffusivity of A in B is known within ?15%? Assume that the geometric quanti- 
ties and the velocity are known very accurately. 

Chlorine absorption in a falling film (Fig. 18A.4). Chlorine is being absorbed from a gas in a 
small experimental wetted-wall tower as shown in the figure. The absorbing fluid is water, 
which is moving with an average velocity of 17.7 cm/s. What is the absorption rate in g- 
moles/hr, if the liquid-phase diffusivity of the chlorine-water system is 1.26 X lop5 cm2/s, 
and if the saturation concentration of chlorine in water is 0.823 g chlorine per 100 g water 
(these are the experimental values at 16OC). The dimensions of the column are given in the fig- 
ure. (Hint: Ignore the chemical reaction between chlorine and water.) 
Answer: 0.273 g-moles/hr 

Measurement of diffusivity by the point-source method (Fig. 18C.1).' We wish to design a 
flow system to utilize the results of Problem 18C.1 for the measure of B,,. The approaching 

' This is the most precise method yet developed for measurements of diffusivity at high 
temperatures. For a detailed description of the method, see R. E. Walker and A. A. Westenberg, 1. Chem. 
Phys., 29,1139-1146,1147-1153 (1958). For a summary of measured values and comparisons with the 
Chapman-Enskog theory, see R. M. Fristrom and A. A. Westenberg, Flame Structure, McGraw-Hill, New 
York (1965), Chapter XIII. 
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stream of pure B will be directed vertically upward, and the gas composition will be mea- 
sured at several points along the z-axis. 
(a) Calculate the gas-injection rate W, in g-moles/s required to produce a mole fraction x~ = 
0.01 at a point 1 cm downstream of the source, in an ideal gaseous system at 1 atm and 800°C, 
if v, = 50 cm/s and 9,, = 5 cm2/s. 
(b) What is the maximum permissible error in the radial position of the gas-sampling probe, 
if the measured composition x, is to be within 1% of the centerline value? 

18A.6. Determination of diffusivity for ether-air system. The following data on the evaporation of 
ethyl ether, with liquid density of 0.712 g/cm3, have been tabulated by ~ o s t . ~  The data are for 
a tube of 6.16 mm diameter, a total pressure of 747 mm Hg, and a temperature of 22°C. 

Decrease of the ether level 
(measured from the open 
end of the tube), in mm 

from 9 to 11 
from 14 to 16 
from 19 to 21 
from 24 to 26 
from 34 to 36 
from 44 to 46 

Time, in seconds, required 
for the indicated 
decrease of level 

590 
895 

1185 
1480 
2055 
2655 

The molecular weight of ethyl ether is 74.12, and its vapor pressure at 22°C is 480 mm Hg. It 
may be assumed that the ether concentration at the open end of the tube is zero. Jost has 
given a value of %,, for the ether-air system of 0.0786 cm2/s at 0°C and 760 mm Hg. 
(a) Use the evaporation data to find %,, at 747 mm Hg and 22"C, assuming that the arith- 
metic average gas-column lengths may be used for z, - z, in Fig. 18.2-1. Assume further that 
the ether-air mixture is ideal and that the diffusion can be regarded as binary. 
(b) Convert the result to 9,, at 760 mm Hg and P C  using Eq. 17-2-1. 

18A.7. Mass flux from a circulating bubble. 
(a) Use Eq. 18.5-20 to estimate the rate of absorption of CO, (component A) from a carbon 
dioxide bubble 0.5 cm in diameter rising through pure water (component B )  at 18°C and at a 
pressure of 1 atm. The following data3 may be used: 9,, = 1.46 X 10-%m2/s, c,, = 0.041 g- 
mole/liter, v, = 22 cm/s. 
(b) Recalculate the rate of absorption, using the experimental results of Hammerton and Gar- 
ner: who obtained a surface-averaged kc of 117 cm/hr (see Eq. 18.1-2). 
Answers: (a) 1.17 X lop6 g-mol/cm2 s; (b) 1.33 X lop6 g-mol/cm2 s. 

18B.1. Diffusion through a stagnant film-alternate derivation. In 918.2 an expression for the 
evaporation rate was obtained in Eq. 18.2-14 by differentiating the concentration profile 
found a few lines before. Show that the same results may be derived without finding the con- 
centration profile. Note that at steady state, NA, is a constant according to Eq. 18.2-3. Then Eq. 
18.2-1 can be integrated directly to get Eq. 18.2-14. 

W. Jost Difision, Academic Press, New York (19521, pp. 411413. 
G. Tammann and V. Jessen, Z. anorg. allgem. Chem., 179,125-144 (1929); F. H. Garner and 

D. Hammerton, Chem. Eng. Sci., 3,l-11 (1954). 
D. Hammerton and F. H. Garner, Trans. Inst. Chem. Engrs. (London), 32, S18-S24 (1954). 



Problems 571 

18B.2. Error in neglecting the convection term in evaporation. 
(a) Rework the problem in the text in s18.2 by neglecting the term xA(NA + NJ in Eq. 18.0-1. 
Show that this leads to 

This is a useful approximation if A is present only in very low concentrations. 
(b) Obtain the result in (a) from Eq. 18.2-14 by making the appropriate approximation. 
(c) What error is made in the determination of 9,, in Example 18.2-2 if the result in (a) is used? 
Answer: 0.78% 

18B.3. Effect of mass transfer rate on the concentration profiles. 
(a) Combine the result in Eq. 18.2-11 with that in Eq. 18.2-14 to get 

(b) Obtain the same result by integrating Eq. 18.2-1 directly, using the fact that NA, is constant. 
(c) Note what happens when the mass transfer rate becomes small. Expand Eq. 18B.3-1 in a 
Taylor series and keep two terms only, as is appropriate for small Nh. What happens to the 
slightly curved lines in Fig. 18.2-1 when NA, is very small? 

18B.4. Absorption with chemical reaction. 
(a) Rework the problem discussed in the text in s18.4, but take z = 0 to be the bottom of the 
beaker and z = L at the gas-liquid interface. 
(b) In solving Eq. 18.4-7, we took the solution to be of the sum of two hyperbolic functions. 
Try solving the problem by using the equally valid solution I? = C, exp(c$t) + C2 exp(-&I. 
(c) In what way do the results in Eqs. 18.4-10 and 12 simplify for very large L? For very small 
L? Interpret the results physically. 

18B.5. Absorption of chlorine by cyclohexene. Chlorine can be absorbed from C1,-air mixtures by 
olefins dissolved in CCl,. It was found5 that the reaction of C1, with cyclohexene (C6HI0) is 
second order with respect to Cl, and zero order with respect to C,H1,. Hence the rate of disap- 
pearance of C1, per unit volume is k;"ci (where A designates C12). 

Rework the problem of 518.4 where B is a C,Hl0-CC1, mixture, assuming that the diffu- 
sion can be treated as pseudobinary. Assume that the air is essentially insoluble in the 
C,Hl0-CC1, mixture. Let the liquid phase be sufficiently deep that L can be taken to be infinite. 
(a) Show that the concentration profile is given by 

(b) Obtain an expression for the rate of absorption of C1, by the liquid. 
(c) Suppose that a substance A dissolves in and reacts with substance B so that the rate of dis- 
appearance of A per unit volume is some arbitrary function of the concentration, f(cA). Show 
that the rate of absorption of A is given by 

Use this result to check the result of (b). 

G. H. Roper, Chem. Eng. Sci., 2,18-31,247-253 (1953). 
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Fig. 18B.6. Sketch of a two- 
Stopcock bulb apparatus for measuring 

? gas diffusivities. The stirrers in 
z = -L Z L O  z = L Volume V the two bulbs maintain uni- 

form concentration in the 
bulbs. 

Mole fraction of A in Entire gaseous Mole fraction of A in 
left bulb is x i  = 1 - x i  system is at right bulb is x i  ( t )  

constant p and T 

18B.6. Two-bulb experiment for measuring gas diffusivity-quasi-steady-state analysis6 (Fig. 18B.6). 
One way of measuring gas diffusivities is by means of a two-bulb experiment. The left bulb and 
the tube from z = - L to z = 0 are filled with gas A. The right bulb and the tube from z = 0 to 
z = + L  are filled with gas B. At time t = 0 the stopcock is opened, and diffusion begns; then the 
concentrations of A in the two well-stirred bulbs change. One measures x i  as a function of time, 
and from this deduces 9, , .  We wish to derive the equations describing the diffusion. 

Since the bulbs are large compared with the tube, x i  and x i  change very slowly with time. 
Hence the diffusion in the tube can be treated as a quasi-steady-state problem, with the 
boundary conditions that x, = xi  and z = -L, and that x, = xi at z = +L. 
(a) Write a molar balance on A over a segment Az of the tube (of cross-sectional area S), and 
show that NAz = C,, a constant. 
(b) Show that Eq. 18.0-1 simplifies, for this problem, to 

(c) Integrate this equation, using (a). Call the constant of integration C2. 
(d) Evaluate the constant by requiring that x, = x i  at z = + L. 
(el Next set XA = x i  (or 1 - x i )  at z = -L, and solve for Nh to get finally 

(f) Make a mass balance on substance A over the right bulb to obtain 

(g) Integrate the equation in (f) to get an expression for x,t which contains (?&A5: 

(h) Suggest a method of plotting the experimental data to evaluate 9,,. 

18B.7. Diffusion from a suspended droplet (Fig. 18.2-4). A droplet of liquid A, of radius r,, is sus- 
pended in a stream of gas B. We postulate that there is a spherical stagnant gas film of radius 
r2 surrounding the droplet. The concentration of A in the gas phase is x,, at r = r, and X A ~  at 
the outer edge of the film, r = r,. 
(a) By a shell balance, show that for steady-state diffusion r2NAr is a constant within the gas 
film, and set the constant equal to Y : N ~ ~ ~ ,  the value at the droplet surface. 
(b) Show that Eq. 18.0-1 and the result in (a) lead to the following equation for x,: 

S. P. S. Andrew, Chem. Eng. Sci., 4,269-272 (1955). 
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Fig. 18B.8. Diffusion of helium through pyrex tubing. 
The length of the tubing is L. 

(c) Integrate this equation between the limits r, and r2 to get 

What is the limit of this expression when r, -+ m? 

.8. Method for separating helium from natural gas (Fig. 18B.8). Pyrex glass is almost imperme- 
able to all gases but helium. For example, the diffusivity of He through pyrex is about 25 
times the diffusivity of Hz through pyrex, hydrogen being the closest "competitor" in the dif- 
fusion process. This fact suggests that a method for separating helium from natural gas could 
be based on the relative diffusion rates through  pyre^.^ 

Suppose a natural gas mixture is contained in a pyrex tube with dimensions shown in the 
figure. Obtain an expression for the rate at which helium will "leak" out of the tube, in terms 
the diffusivity of helium through pyrex, the interfacial concentrations of the helium in the 
pyrex, and the dimensions of the tube. 
A .  

% e - ~ ~ r e x ( c ~ e , l  - ~ ~ e , 2 )  
Answer: W,, = 2aL 

In (R2/Rl> 

18B.9. Rate of leachng (Fig. 18B.9). In studying the rate of leaching of a substance A from solid par- 
ticles by a solvent B, we may postulate that the rate-controlling step is the diffusion of A from 
the particle surface through a stagnant liquid film thickness 6 out into the main stream. The 
molar solubility of A in B is c,,, and the concentration in the main stream is c,,. 
(a) Obtain a differential equation for cA as a function of z by making a mass balance on A over 
a thin slab of thickness Az. Assume that 9AB is constant and that A is only slightly soluble in 
B. Neglect the curvature of the particle. 

Solid 
particle 

containing 
A 

Fig. 18B.9. Leaching of A by diffusion into a stagnant 
z = 0 z = 6  liquid film of B. 

Scientific American, 199,52 (1958) describes briefly the method developed by K. B. McAfee of Bell 
Telephone Laboratories. 
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(b) Show that, in the absence of chemical reaction in the liquid phase, the concentration pro- 
file is linear. 
(c) Show that the rate of leaching is given by 

18B.10 Constant-evaporating mixtures. Toluene (1) and ethanol (2) are evaporating at z = 0 in a 
vertical tube, from a binary liquid mixture of uniform composition x, through stagnant nitro- 
gen (3), with pure nitrogen at the top. The unequal diffusivities of toluene and ethanol 
through nitrogen shift the relative evaporation rates in favor of ethanol. Analyze this effect 
for an isothermal system at 60 F and 760 mm Hg total pressure, if the predicted8 diffusivities 
at 60" F are cg12 = 1.53 X BI3 = 2.98 X cg2, = 4.68 X g-moles/cm s. 
(a) Use the Maxwell-Stefan equations to obtain the steady-state vapor-phase mole fraction pro- 
files y,(z) in terms of the molar fluxes No, in this ternary system. The molar fluxes are known to 
be constants from the equations of continuity for the three species. Since nitrogen has a negligible 
solubility in the liquid at the conditions given, N,, = 0. As boundary conditions, set y1 = y2 = 0 at 
z = L, and let y, = ylo and y2 = y2, at z = 0; the latter values remain to be determined. Show that 

A suggested strategy for the calculation is as follows: (i) guess a liquid composition x,; (ii) cal- 
culate ylof y2,, and y3, using lines 2 and 3 of the table; (iii) calculate A from Eq. 18B.10-l, with 
z = 0; (iv) use the result of iii to calculate LN2,, LB, LC, and LD, and finally yl (0) for assumed 
values of LN,,; (v) interpolate the results of iv toy, (0) = y,, to obtain the correct LN,, and LN,, 
for the guessed x,. Repeat steps i-v with improved guesses for x, until N,,/(N,, + N,,) con- 
verges to x,. The final x, is the constant evaporating composition. 

(b) A constant evaporating liquid mixture is one whose composition is the same as that of the 
evaporated material, that is, for which N,,/(N1, + N,) = x,. Use the results of part (a) along 
with the equilibrium data in the table below to calculate the constant-evaporating liquid com- 
position at a total pressure of 760 mm Hg. In the table, row I gives liquid-phase compositions. 
Row I1 gives vapor-phase compositions in two-component experiments; these are expressed 
as nitrogen-free values yl/(y, + y2) for the ternary system. Row I11 gives the sum of the partial 
pressures of toluene and ethanol. 

18B.11. Diffusion with fast second-order reaction (Figs. 18.2-2 and 18B.11). A solid A is dissolving 
in a flowing liquid stream S in a steady-state, isothermal flow system. Assume in accordance 
with the film model that the surface of A is covered with a stagnant liquid film of thickness 6 
and that the liquid outside the film is well mixed (see Fig. 18.2-2). 
(a) Develop an expression for the rate of dissolution of A into the liquid if the concentration 
of A in the main liquid stream is negligible. 
(b) Develop a corresponding expression for the dissolution rate if the liquid contains a sub- 
stance B, which, at the plane z = ~ 6 ,  reacts instantaneously and irreversibly with A: A + B + 

P. (An example of such a system is the dissolution of benzoic acid in an aqueous NaOH solu- 
tion.) The main liquid stream consists primarily of B and Sf with B at a mole fraction of x,,. 

L. Monchick and E. A. Mason, J. Chem. Phys., 35,1676-1697 (1961), with S read as a,,, in Table IV; 
E. A. Mason and L. Monchick, J .  Chern. Phys., 36,2746-2757 (1962); L. S. Tee, S. Gotoh, and W. E. Stewart, 
Ind. Eng. Chern. Fundarn., 5,356-362 (1966). 

0.375 

0.277 

390 

I: x1 

11: yl /(yl + ~ 2 )  

111: pl + p2 (mm Hg) 

0.096 

0.147 

388 

0.155 

0.198 

397 

0.233 

0.242 

397 

0.274 

0.256 

395 
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z = 0 z = KS z = S  
(reaction (outer edge Fig. 18B.11. Concentration profiles for dif- 
plane) of stagnant fusion with rapid second-order reaction. 

liquid film) The concentration of product P neglected. 

(Hint: It is necessary to recognize that species A and B both diffuse toward a thin reaction 
zone as shown in Fig. 18B.11.) 

18B.12. A sectioned-cell experimentg for measuring gas-phase diffusivity (Fig. 18B.12). Liquid A is 
allowed to evaporate through a stagnant gas B at 741 mm Hg total pressure and 25°C. At that 
temperature, the vapor pressure of A is known to be 600 mm Hg. After steady state has been 

Sample ports - 
in cell section - 

Gas manifold with 
stream of pure gas B Gas manifold 

' b x 4 w -  

Liquid reservoir 

Fig. 18B.12. A sectioned-cell experiment for measuring gas diffusivities. (a) Cell configura- 
tion during the approach to steady-state. (b)  Cell configuration for gas sampling at the end of 
the experiment. 

E. J. Crosby, Experiments in Transport Phenomena, Wiley, New York (1961), Experiment 10.a. 
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attained, the cylindrical column of gas is divided into sections as shown. For a 4-section appa- 
ratus with total height 4.22 cm, the analysis of the gas samples thus obtained gives the follow- 
ing results: 

(z - 2,) in cm 
Bottom Top of Mole 

Section of section section fraction of A 

The measured evaporation rate of A at steady state is 0.0274 g-moles/hr. Ideal gas behavior 
may be assumed. 
(a) Verify the following expression for the concentration profile at steady state: 

(b) Plot the mole fraction xB in each cell versus the value of z at the midplane of the cell on 
semilogarithmic graph paper. Is a straight line obtained? What are the intercepts at z, and z,? 
Interpret these results. 
(c) Use the concentration profile of Eq. 18B.12-1 to find analytical expressions for the average 
concentrations in each section of the tube. 
(d) Find the best value of 9JA, from this experiment. 
Answer: (d) 0.155 cm2/s 

18B.13. Tarnishing of metal surfaces. In the oxidation of most metals (excluding the alkali and aIka- 
line-earth metals) the volume of oxide produced is greater than that of the metal consumed. 
This oxide thus tends to form a compact film, effectively insulating the oxygen and metal 
from each other. For the derivations that follow, it may be assumed that 
(a) For oxidation to proceed, oxygen must diffuse through the oxide film and that this diffu- 
sion follows Fick's law. 
(b) The free surface of the oxide film is saturated with oxygen from the surrounding air. 
(c) Once the film of oxide has become reasonably thick, the oxidation becomes diffusion con- 
trolled; that is, the dissolved oxygen concentration is essentially zero at the oxide-metal surface. 
(dl The rate of change of dissolved oxygen content of the film is small compared to the rate of 
reaction. That is, quasi-steady-state conditions may be assumed. 
(e) The reaction involved is ~ X O ,  + M + MO,. 
We wish to develop an expression for rate of tarnishing in terms of oxygen diffusivity 
through the oxide film, the densities of the metal and its oxide, and the stoichiometry of the 
reaction. Let c, be the solubility of oxygen in the film, cf the molar density of the film, and zf 
the thickness of the film. Show that the film thickness is 

This result, the so-called "quadratic law," gives a satisfactory empirical correlation for a num- 
ber of oxidation and other tarnishing reactions.1° Most such reactions are, however, much 
more complex than the mechanism given above.'' 

lo G. Tammann, Z. anorg. allgem. Chemie, 124,2535 (1922). 
" W. Jost, Diffusion, Academic Press, New York (1952), Chapter IX. For a discussion of the oxidation 

of silicon, see R. Ghez, A Primer of Diffusion Problems, Wiley, New York (1988), 52.3. 
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Surface z = + b Fig. 18B.14. Side view of a disk-shaped 
catalyst particle. 

Surface z = - b 

18B.14. Effectiveness factors for thin disks (Fig. 18B.14). Consider porous catalyst particles in the 
shape of thin disks, such that the surface area of the edge of the disk is small in comparison 
with that of the two circular faces. Apply the method of 518.7 to show that the steady-state 
concentration profile is 

where z and b are described in the figure. Show that the total mass transfer rate at the surfaces 
z = +bis 

1 WAI = 21rR*c,,91~h tanh hb (18B.14-2) 

in which h = m. Show that, if the disk is sliced parallel to the xy-plane into n slices, the 
total mass transfer rate becomes 

Obtain the expression for the effectiveness factor by taking the limit 

Express this result in terms of the parameter A defined in 518.6. 

18B.15. Diffusion and heterogeneous reaction in a slender cylindrical tube with a closed end (Fig. 
18B.15). A slender cylindrical pore of length L, cross-sectional area Sf and perimeter P, is in 
contact at its open end with a large body of well-mixed fluid, consisting of species A and B. 
Species A, a minor constituent of this fluid, disappears into the pore, diffuses in the z direc- 
tion and reacts on its walls. The rate of this reaction may be expressed as (n . n,)l,,,,,, = f(oA,); 
that is, at the wall the mass flux normal to the surface is some function of the mass fraction, 
W A ~ ,  of A in the fluid adjacent to the solid surface. The mass fraction w, depends on z, the dis- 
tance from the inlet. Because A is present in low concentration, the fluid temperature and density 
may be considered constant, and the diffusion flux is adequately described by jA = 

(a) Side View End View 

Fig. 18B.15. (a) Diffu- 
sion and heterogeneous 
reaction in a long, non- 
circular cylinder. (b)  Re- 
gion of thickness Az 
over which the mass 
balance is made. 
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where the diffusivity may be regarded as a constant. Because the pore is long compared to its 
lateral dimension, concentration gradients in the lateral directions may be neglected. Note the 
similarity with the problem discussed in 510.7. 
(a) Show by means of a shell balance that, at steady state, 

(b) Show that the steady-state mass average velocity v, is zero for this system. 
(c) Substitute the appropriate form of Fick's law into Eq. 18.15-1, and integrate the resulting 
differential equation for the special case that f (w,,) = k','wAo. To obtain a boundary condition 
at z = L, neglect the rate of reaction on the closed end of the cylinder; why is this a reasonable 
approximation? 
(dl Develop an expression for the total rate WA of disappearance of A in the cylinder. 
(el Compare the results of parts (c) and (d) with those of s10.7 both from the standpoint of 
the mathematical development and the nature of the assumptions made. 

188.16. Effect of temperature and pressure on evaporation rate. 
(a) In 518.2 what is the effect of a change of temperature and pressure on the quantity x,,? 
(b) If the pressure is doubled, how is the evaporation rate in Eq. 18.2-14 affected? 
(c) How does the evaporation rate change when the system temperature is raised from T to T'? 

18B.17. Reaction rates in large and small particles. 
(a) Obtain the following limits for Eq. 18.7-11: 

Interpret these results physically. 
(b) Obtain the corresponding asymptotes for the system discussed in Problem 18B.14. Com- 
pare them with the results in (a). 

18B.18. Evaporation rate for small mole fraction of the volatile liquid. In Eq. 18.2-15, expand 

in a Taylor series appropriate for small mole fractions of A. First rewrite the logarithm of the 
quotient as the difference of the logarithms. Then expand ln(1 - x,,) and ln(1 - xA2) in Taylor 
series about XAl = 1 and XA2 = 1, respectively. Verify that Eq. 18.2-16 is correct. 

18B.19. Oxygen uptake by a bacterial aggregate. Under suitable circumstances the rate of oxygen 
metabolism by bacterial cells is very nearly zero order with respect to oxygen concentration. 
We examine such a case here and focus our attention on a spherical aggregate of cells, which 
has a radius R. We wish to determine the total rate of oxygen uptake by the aggregate as a 
function of aggregate size, oxygen mass concentration po at the aggregate surface, the meta- 
bolic activity of the cells, and the diffusional behavior of the oxygen. For simplicity we con- 
sider the aggregate to be homogeneous. We then approximate the metabolic rate by an 
effective volumetric reaction rate rO2 = -k! and the diffusional behavior by Fick's law, with 
an effective pseudobinary diffusivity BO2,. Because the solubility of oxygen is very low in this 
system, both convective oxygen transport and transient effects may be neglected.12 

l2 J. A. Mueller, W. C. Boyle, and E. N. Lightfoot, Biotechnol. and Bioengr., 10,331-358 (1968). 
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(a) Show by means of a shell mass balance that the quasi-steady-state oxygen concentration 
profile is described by the differential equation 

where ,y = po2/po, 5 = v/R, and N = 

(b) There may be an oxygen-free core in the aggregate, if N is sufficiently large, such that x = 0 
for 6 < to. Write sufficient boundary conditions to integrate Eq. 18B.19-1 for this situation. To 
do this, it must be recognized that both x and d x / d &  are zero at 6 = 6,. What is the physical 
significance of this last statement? 
(c) Perform the integration of Eq. 18B.19-1 and show how 6, may be determined. 
(d) Sketch the total oxygen uptake rate and 6, as functions of N, and discuss the possibility 
that no oxygen-free core exists. 

N Answer: (c) ,y = 1 - - (1 - p) + for 6 z 6, 2 0, where 6, is determined as a func- 
tion of N from 6 

18C.1. Diffusion from a point source in a moving stream (Fig. 18C.1). A stream of fluid B in lami- 
nar motion has a uniform velocity v,. At some point in the stream (taken to be the origin of 
coordinates) species A is injected at a small rate WA g-moles/s. This rate is assumed to be suf- 
ficiently small that the mass average velocity will not deviate appreciably from v,. Species A 
is swept downstream (in the z direction), and at the same time it diffuses both axially and 
radially. 
(a) Show that a steady-state mass balance on species A over the indicated ring-shaped ele- 
ment leads to the following partial differential equation if '?JAB is assumed to be constant: 

(b) Show that Eq. 18C.1-1 can also be written as 

in which s2 = v2 + z2. 

Uniform 
stream 
velocity 

vo 

Origin of coordinates placed at 
point of iniection; WA moles 
bf A are iijected per second 4 LAZ 

Fig. 18C.1. Diffusion of A 
from a point source into a 
stream of B that moves with 

l+ a uniform velocity. 
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(c) Verify (lengthy!) that the solution 

satisfies the differential equation above. 
(d) Show further that the following boundary conditions are also satisfied by Eq. 18C.1-3: 

B.C. 1: (18C.1-4) 

B.C. 3: at r = 0, ~ C A  - 0 -- 
dr (18C.1-6) 

Explain the physical meaning of each of these boundary conditions. 
(e)  Show how data on cA(r, z )  for given vo and %,, may be plotted, when the preceding solu- 
tion applies, to give a straight line with slope v,/29JA, and intercept In 9,,. 

18C.2. Diffusion and reaction in a partially impregnated catalyst. Consider a catalytic sphere like 
that in g18.7, except that the active ingredient of the catalyst is present only in the annular re- 
gion between r = KR and r = R: 

In region I (0 < r < KR), k" - ,a - 0 

In region I1 (KR < r < R), k;'a = constant > 0 

Such a situation may arise when the active ingredient is put on the particles after pelleting, as 
is done for many commercial catalysts. 
(a) Integrate Eq. 18.7-6 separately for the active and inactive regions. Then apply the appro- 
priate boundary conditions to evaluate the integration constants, and solve for the concentra- 
tion profile in each region. Give qualitative sketches to illustrate the forms of the profiles. 
(b) Evaluate WAR, the total molar rate of conversion of A in a single particle. 

18C.3. Absorption rate in a falling film. The result in Eq. 18.5-18 may be obtained by an alternative 
procedure. 
(a) According to an overall mass balance on the film, the total moles of A transferred per unit 
time across the gas-liquid interface must be the same as the total molar rate of flow of A 
across the plane z  = L. The latter rate is calculated as follows: 

Explain this procedure carefully. 
(b) Insert the solution for cA in Eq. 18.5-15 into the result of (a) to obtain: 

In the second line, the new variable u = X / ~ ~ % , , L / V ~ , ~  has been introduced. 
(c) Change the order of integration in the double integral, to get 

Explain by means of a carefully drawn sketch how the limits are chosen for the integrals The 
integrals may now be done analytically to get Eq. 18.5-18. 
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18C.4. Estimation of the required length of an isothermal reactor (Fig. 18.3-1). Let a be the area of 
catalyst surface per unit volume of a packed-bed catalytic reactor and S be the cross-sectional 
area of the reactor. Suppose that the rate of mass flow through the reactor is w (in lb,/hr, for 
example). 
(a) Show that a steady-state mass balance on substance A over a length dl of the reactor leads to 

(b) Use the result of (a) and Eq. 18.3-9, with the assumptions of constant 6 and %,,, to obtain 
an expression for the reactor length L needed to convert an inlet stream of composition xA(0) 
to an outlet stream of composition x,(L). 
(Hint: Equation (P) of Table 17.8-1 may be useful.) 

18C.5. Steady-state evaporation. In a study of the evaporation of a mixture of methanol (1) and ace- 
tone (2) through air (31, the concentration profiles of the three species in the tube were mea- 
suredl%fter attainment of steady state. In this situation, species 3 is not moving, and species 
1 and 2 are diffusing upward, with the molar fluxes N,, and Nz2, measured in the experi- 
ments. The interfacial concentrations of these two species, x,, and x~~~ were also measured. In 
addition, the three binary diffusion coefficients were known. The interface was located at z = 

0 and the upper end of the diffusion tube was at z = L. 
(a) Show that the Maxwell-Stefan equation for species 3 can be solved to get 

in which A = Vl13 + "223, with vmpy = N , L / c ~ ~ ,  and l = z/L. 
(b) Next verify that the equation for species 2 can be solved to get 

"212 Cx30 x2 = x2,eB[ + --- (1 - eB5) + - (eA5 - eB5) 
B A - B  

where B = vlI2 + y,, and C = yl, - "223. 

(c) Compare the above equations with the published results. 
(d) How well do Eqs. 18C.5-1 and 2 fit the experimental data? 

18D.1. Effectiveness factors for long cylinders. Derive the expression for 7 7 ~  for long cylinders anal- 
ogous to Eq. 18.7-16. Neglect the diffusion through the ends of the cylinders. 

Zl(2N 
Answer: v, = --- 

No(2N' 
where I,, and I,  are "modified Bessel functions" 

18D.2. Gas absorption in a falling film with chemical reaction. Rework the problem discussed in 
518.5 and described in Fig. 18.5-1, when gas A reacts with liquid B by a first-order irreversible 
chemical reaction in the liquid phase, with rate constant k;'. Specifically, find the expression 
for the total absorption rate analogous to that given in Eq. 18.5-18. Show that the result for ab- 
sorption with reaction properly simplifies to that for absorption without reaction. 

Answer: wA = W ~ ~ Z J , , ~  JG [(; + u) e r a  + $ in which u = k;'~/o,,,,. 
k? 

l3 H. A. Wilson, Proc. Camb. Phil. Soc., 12,406423 (1904). 
l4 R. Carty and T. Schrodt, Ind. Eng. Chem., 14,276-278 (1975). 



Chapter 19 

Equations of Change for 
Multicomponent Systems 
519.1 The equations of continuity for a multicomponent mixture 

519.2 Summary of the multicomponent equations of change 

s19.3 Summary of the multicomponent fluxes 

519.4 Use of the equations of change for mixtures 

919.5 Dimensional analysis of the equations of change for binary mixtures 

In Chapter 18, problems in diffusion were formulated by making shell mass balances 
on one or more of the diffusing species. In this chapter we start by making a mass bal- 
ance over an arbitrary differential fluid element to establish the equation of continuity 
for the various species in a multicomponent mixture. Then insertion of mass flux ex- 
pressions gives the diffusion equations in a variety of forms. These diffusion equations 
can be used to set up any of the problems in Chapter 18 and more complicated ones as 
well. 

Then we summarize all of the equations of change for mixtures: the equations of 
continuity, the equation of motion, and the equation of energy. These include the equa- 
tions of change that were given in Chapters 3 and 11. Next we summarize the flux ex- 
pressions for mixtures. All these equations are given in general form, although for 
problem solving we generally use simplified versions of them. 

The remainder of the chapter is devoted to analytical solutions and dimensional 
analyses of mass transfer systems. 

519.1 THE EQUATIONS OF CONTINUITY FOR A 
MULTICOMPONENT MIXTURE 

In this section we apply the law of conservation of mass to each species a in a mixture, 
where a = 1,2,3, . . . , N. The system we consider is a volume element Ax Ay Az fixed in 
space, through which the fluid mixture is flowing (see Fig. 3.1-1). Within this mixture, re- 
actions among the various chemical species may be occurring, and we use the symbol r, 
to indicate the rate at which species a is being produced, with dimensions of mass/vol- 
ume time. 

The various contributions to the mass balance are 

rate of increase of mass of (dp,/Jt)~x ~y AZ 

a in the volume element 

rate of addition of mass of nffrlx AY 
a across face at x 
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rate of removal of mass of n,,l,+~, 4 Az 
a across face at x + Ax 

rate of production of mass of r,Ax Ay Az 
a by chemical reactions 

The combined mass flux n,, includes both the molecular flux and the convective flux. 
There are also addition and removal terms in the y and z directions. When the entire 
mass balance is written down and divided by Ax Ay Az, one obtains, after letting the size 
of the volume element decrease to zero, 

This is the equation of continuity for species a in a multicomponent reacting mixture. It de- 
scribes the change in mass concentration of species a with time at a fixed point in space 
by the diffusion and convection of a, as well as by chemical reactions that produce or 
consume a .  The quantities n,,, n,,, n,, are the Cartesian components of the mass flux vec- 
tor n, = p,v, given in Eq. (D) of Table 17.8-1. 

Equation 19.1-5 may be rewritten in vector notation as 

Alternatively we can use Eq. (S) of Table 17.8-1 to write 
I 

rate of net rate of net rate of rate of 
increase addition addition production 
of mass of mass of of mass of of mass of 
of A per A per unit A per unit A per unit 
unit volume by volume by volume by 
volume convection diffusion reaction 

Addition of all N equations in either Eq. 19.1-6 or 7 gives 

which is the equation of continuity for the mixture. This equation is identical to the equation 
of continuity for a pure fluid given in Eq. 3.1-4. In obtaining Eq. 19.1-8 we had to use Eq. 
(J) of Table 17.8-1 and also the fact that the law of conservation of total mass gives Car, = 

0. Finally we note that Eq. 19.1-8 becomes 

for a fluid mixture of constant mass density p. 
In the preceding discussion we used mass units. However, a corresponding deriva- 

tion is also possible in molar units. The equation of continuity for species a in molar 
quantities is 

' J .  Crank, The Mathematics of Diffusion, 2nd edition, Oxford University Press (1975). 
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where R, is the molar rate of production of a! per unit volume. This equation can be 
rewritten by use of Eq. (V) of Table 17.8-1 to give 

rate of net rate of rate of rate of 
increase addition addition production 
in moles in moles of of moles of of moles of 
of A per A per unit A per unit A per unit 
unit volume by volume by volume by 
volume convection diffusion reaction 

-- - - 

When all N equations in Eq. 19.1-10 or 11 are added we get 

for the equation of continuity for the mixture. To get this we used Eq. (M) of Table 17.8-1. 
We also note that the chemical reaction term does not drop out because the number of 
moles is not necessarily conserved in a chemical reaction. Finally we note that 

for a fluid mixture of constant molar density c. 
We have thus seen that the equation of continuity for species a may be written in 

two forms, Eq. 19.1-7 and Eq. 19.1-11. Using the continuity relations in Eqs. 19.1-8 and 
19.1-12 the reader may verify that the equation of continuity for species a! can be put into 
two additional, equivalent forms: 

These two equations express exactly the same physical content, but they are written in 
two different sets of notation-the first in mass quantities and the second in molar quan- 
tities. To use these equations we have to insert the appropriate expressions for the fluxes 
and the chemical reaction terms. In this chapter we give only the results for binary sys- 
tems with constant p%,,, with constant or with zero velocity. 

Binary Systems with Constant p9lAB 

For this assumption, Eq. 19.1-14 becomes, after inserting Fick's law from Eq. (A) of Table 
17.8-2, 

with a corresponding equation for species B. This equation is appropriate for describing 
the diffusion in dilute liquid solutions at constant temperature and pressure. The left side 
can be written as pDoA/Dt .  Equation 9.1-16 without the r, term is of the same form as 
Eq. 11.2-8 or 9. This similarity is quite important, since it is the basis for the analogies 
that are frequently drawn between heat and mass transport in flowing fluids with con- 
stant physical properties. 
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Binary Systems with Constant &,, 

For this assumption, Eq. 19.1-15 becomes, after inserting Fick's law from Eq. (B) of Table 
17.8-2, 

with a corresponding equation for species B. This equation is useful for low-density gases 
at constant temperature and pressure. The left side can not be written as cDx,/Dt be- 
cause of the appearance of v" rather than v. 

Binary Systems with Zero Velocity 

If there are no chemical reactions occurring, then the chemical production terms are all 
zero. If, in addition v is zero and p constant in Eq. 19.1-16, or v" is zero and c constant in 
Eq. 19.1-17, then we get 

which is called Fick's second law of diffusion, or sometimes simply the diffusion equation. 
This equation is usually used for diffusion in solids or stationary liquids (that is, v = 0 in 
Eq. 19.1-16) and for equimolar counter-diffusion in gases (that is, v" = 0 in Eq. 19.1-17). By 
equimolar counter-diffusion we mean that the net molar flux with respect to stationary 
coordinates is zero; in other words, that for every mole of A that moves, say, in the posi- 
tive z direction, there is a mole of B that moves in the negative z direction. 

Note that Eq. 19.1-18 has the same form as the heat conduction equation in Eq. 11.2-10. 
This similarity is the basis for analogies between many heat conduction and diffusion 
problems in solids. Keep in mind that many hundreds of problems described by Fick's 
second law have been solved. Solutions are tabulated in the monographs of Crank1 and 
of Carslaw and Jaeger.' 

In Tables B-10 and 11 we give Eq. 19.1-14 (multicomponent equation of continuity in 
terms of j,) and Eq. 19.1-16 (binary diffusion equation for constant p and '?JAB) in the 
three standard coordinate systems. Other forms of the equation of continuity can be pat- 
terned after these. 

In Fig. 19.1-1 we show a system in which a liquid, B, moves slowly upward through a slightly 
soluble porous plug of A. Then A slowly disappears by a first-order reaction after it has dis- 
solved. Find the steady-state concentration profile c,(~), where z is the coordinate upward 

and Chemical Reaction3 from the plug. Assume that the velocity profile is approximately flat across the tube. Assume 
further that CAO is the solubility of unreacted A in B. Neglect temperature effects associated 
with the heat of reaction. 

SOLUTION Equation 19.1-16 is appropriate for dilute liquid solutions. Dividing this equation by the mol- 
ecular weight MA and specializing for the one-dimensional steady-state problem at hand, we 
get for constant p: 

H. S. Carslaw and J. C. Jaeger, Conducfion ofHeaf in Solids, 2nd edition, Oxford University Press (1959). 
W. Jost, Diffusion, Academic Press, New York (1952), pp. 58-59. 
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Liquid Fig. 19.1-1. Simultaneous diffusion, convection, and chemi- 
B with cal reaction. 
small 

amounts 

and C 
A + C  

order 
reaction 

Porous plug 
of A (slightly 
soluble in B) 

t 
Liquid 

B 

This is to be solved with the boundary conditions that cA = c,, at z = 0 and c~ = 0 at z = m. 

Equation 19.1-19 is a standard second-order linear differential equation (Eq. C.7) for which 
there is a well-known method of solution. 

A trial function CA = eaz leads to two values of a, one of which violates the boundary con- 
dition at z = a. The final solution is then 

This example illustrates the use of the equation of continuity of A for setting up a diffusion 
problem with convection and chemical reaction. 

519.2 SUMMARY OF THE MULTICOMPONENT 
EQUATIONS OF CHANGE 

In the three main parts of this book we have by stages introduced the conservation laws 
known as the equations of change. In Chapter 3 conservation of mass and conservation 
of momentum in pure fluids were presented. In Chapter 11 we added the conservation 
of energy in pure fluids. In 519.1 we added mass conservation equations for the various 
species present. We now want to summarize the conservation equations for multicom- 
ponent systems. 

We start, in Table 19.2-1, by giving the equations of change for a mixture of N chemical 
species in terms of the combined fluxes with respect to stationary axes. The equation num- 
bers indicate where each equation first appeared. By tabulating the equations of change in 
this way, we can gain an appreciation for the unity of the subject. The only assumption 
made here is that all the species are acted on by the same external force per unit mass, g; 
note (b) of Table 19.2-1 explains the modifications needed when this is not the case. 

The important feature of these equations is that they are all of the form 

rate of net rate rate of 
increase of = of addition + production (19.2-1) 

{entity ] [ofentity ] jOf entity ] 
in which "entity" stands for mass, momentum, or energy, respectively. In each equation 
the net rate of addition of the entity per unit volume is the negative of a divergence term. 
The "rates of production" arise from chemical reactions in the first equation and from 
the external force field in the other two. Each equation is a statement of a conservation 
law. Usually we think of the conservation statements as laws that have gradually 
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Table 19.2-1 Equations of Change for Multicomponent Mixtures in Terms of 
the Combined Fluxes 

Mass of a: 
d p w ,  = -(V . nu) + r, 

(a = 1,2, . . . ,A9 
at 

Momentum: d p v  = - [ V . + ]  + pg 
dt  

(A)" 
(Eq. 19.1-6) 

Energy: d - '  Zp(u + :v2) = - ( V . e )  + ( p v - g )  (CIb 
(Eq. 11.1-6) 

" When all N equations of continuity are added, the equation of continuity for the fluid 
mixture 

is obtained. Here v is the mass average velocity defined in Eq. 17.7-1. 
If species a is acted on by a force per unit volume given by L, then pg has to be 

replaced by X,p,g, in Eq. (B), and (pv . g) has to be replaced by ZJn, g,) in Eq. (C). 
These replacements are required, for example, if some of the species are ions with 
different charges on them, acted on by an electric field. Problems of this sort are 
discussed in Chapter 24. 

evolved by experience and experiment and therefore are generally accepted by the scien- 
tific community.' 

The three "combined fluxes," which appear in Eqs. (A) to (C) of Table 19.2-1, can be 
written as the convective fluxes plus the molecular (or diffusive) fluxes. These various fluxes 
are displayed in Table 19.2-2, where the equation numbers corresponding to their first 
appearance are given. 

When the flux expressions of Table 19.2-2 are substituted into the conservation 
equations of Table 19.2-1 and then converted to the D / D t  form by means of Eqs. 3.5-4 
and 5,  we get the multicomponent equations of change in their usual forms. These are 
tabulated in Table 19.2-3. 

In addition to these conservation equations, one needs also to have the expressions 
for the fluxes in terms of the gradients and the transport properties (the latter being func- 
tions of temperature, density, and composition). Finally one nceds Aalso the thermal 
equation of state, p = p(p, T, x,), and the caloric equation of state, U = U(p, T, x,), and in- 
formation about the rates of any homogeneous chemical reactions occurring2 

Actually the conservation laws for energy, momentum, and angular momentum follow from 
Lagrange's equation of motion, together with the homogeneity of time, the homogeneity of space, and 
the isotropy of space, respectively (Noether's theorem). Thus there is something very fundamental about 
these conservation laws, more than is apparent at first sight. For more on this, see L. Landau and 
E. M. Lifshitz, Mechanics, Addison-Wesley, Reading, Mass. (1960), Chapter 2, and Emrny Noether, Nachr. 
Kgl. Ges. Wiss. Gottingen (Math.-phys. Kl.) (19181, pp. 235-257. Amalie Emmy Noether (1882-1935), after 
doing the doctorate at the University of Erlangen, was a protkgke of Hilbert in Gottingen until Hitler's 
purge of 1933 forced her to move to the United States, where she became a professor of mathematics at 
Bryn Mawr College; a crater on the moon is named after her. 

One might wonder whether or not we need separate equations of motion and energy for species a. 
Such equations can be derived by continuum arguments, but the species momentum and energy fluxes 
are not measurable quantities and molecular theory is required in order to clarify their meanings. 
These separate species equations are not needed for solving transport problems. However, the 
species equations of motion have been helpful for deriving kinetic expressions for the mass fluxes 
in multicomponent systems [see C. F. Curtiss and R. B. Bird, Proc. Nut. Acad. Sci. USA, 93,7440-7445 
(1996) and I. Chem. Phys., 111,10362-10370 (199911. 



588 Chapter 19 Equations of Change for Multicomponent Systems 

Table 19.2-2 The Combined, Molecular, and Convective Fluxes for 
Multicomponent Mixtures (all with the same sign convention) 

Combined = Molecular + Convective 
Entity flux flux flux 

Mass - - na l m  + PV"a (AY 
( a =  1,2, . . . , A 0  (Eq. 17.8-1) 
Momentum (P m + P W mb - - 

(Eq. 1.7-1) 
Energy e = q + [ m s v 1  + pv(b+$v2) (CY 

(Eq. 9.8-5) 

" The velocity v appearing in all these expressions is the mass average velocity, defined in 
Eq. 17.7-1. 
The molecular momentum flux consists of two parts: TI = p6 + T. 
' The molecular energy flux is made up of the heat flux vector q and the work flux vector 
[P . V] = pv + [7 - v], the latter occurring only in flow systems. 

Table 19.2-3 Equations of Change for Multicomponent Mixtures in Terms of 
the Molecular Fluxes 

Total mass: -- Dp - -p(V . v) 
Dt (A) 

(Eq. (A) of Table 3.5-1) 

Species mass: Dm'? 
PDt = - ( V . j , )  + r, 

(a = 1 ,2 , . . . ,N)  
(BY 

(Eq. 19.1-7a) 

Momentum: Dv 
p- Dt = -Vp - [ V - T ]  + pg (Ob 

(Eq. (B) of Table 3.5-1) 

Energy: P ~t D *  (U + iv 1 2  ) - - -(V 4) - (V . pv) - (8 17. v]) + (pv 8) ( D ) ~  
(Eq. (El of Table 11.4-1) 

a Only N - 1 of these equations are independent, since the sum of the N equations gives 
0 = 0. 
See note (b )  of Table 19.2-1 for the modifications needed when the various species are 

acted on by different forces. 

We conclude this discussion with a few remarks about special forms of the equa- 
tions of motion and energy. In 511.3 it was pointed out that the equation of motion as pre- 
sented in Chapter 3 is in suitable form for setting up forced-convection problems, but 
that an alternate form (Eq. 11.3-2) is desirable for displaying explicitly the buoyant forces 
resulting from temperature inequalities in the system. In binary systems with concentra- 
tion inequalities as well as temperature inequalities, we write the equation of motion as 
in Eq. (B) of Table 3.5-1 and use an approximate equation of state formed by making a 
double Taylor expansion of p(T, w,) about the state &: 
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Table 19.2-4 The Equations of Energy for Multicomponent Systems, with Gravity as the 
Only External Forcearb 

H, 
a For multicomponent mixtures q = -kVT + - j, + q'"', where q'" is a usually negligible term 

w = l  M ,  
associated with the diffusion-thermo effect (see Eq. 24.2-6). 
The equations in this table are valid only if the same external force is acting on all species. If this is not 

the case, then ZJj, g,) must be added to Eq. (A) and Eqs. (D-H), the last term in Eq. (B) has to be 
replaced byZ,(n, . g,), and the last term in Eq. (C) has to be replaced by Z,(v. page). 
Txact only if d&/d t  = 0. 

L. B. Rothfeld, PhD thesis, University of Wisconsin (1961); see also Problem 19D.2. 
'The contribution of q"' to the heat flux vector has been omitted in this equation. 

Here the coefficient 5 = -(l /p)(dp/doA) evaluated at T and relates the density to the 
composition. This coefficient is the mass transfer analog of the coefficient p introduced 
in Eq. 11.3-1. When this approximate equation of state is substituted into the pg term 
(but not into the pDv/Dt term) of the equation of motion, we get the Boussinesq equation 
of motion for a binary mixture, with gravity as the only external force: 

The last two terms in this equation describe the buoyant force resulting from the temper- 
ature and composition variations within the fluid. 

Next we turn to the equation of energy. Recall that in Table 11.4-1 the energy equation 
for pure fluids was given in a variety of forms. The same can be done for mixtures, and a 
representative selection of the many possible forms of this equation is given in Table 
19.2-4. Note that it is not necessary to add a term S, (as we did in Chapter 10) to describe 
the thermal energy released by homogeneous chemical reactions. This information is in- 
cluded implicitly in the functions H and k and appears explicitly as -xaEa~, and 
-X,U,R, in Eqs. (F) and (G). Remember that in calculating H and fi/ the energies of for- 
mation and mixing of the various species must be included (see Example 23.5-1). 
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519.3 SUMMARY OF THE MULTICOMPONENT FLUXES 

The equations of change have been given in terms of the fluxes of mass, momentum, and 
energy. To solve these equations, we have to replace the fluxes by expressions involving 
the transport properties and the gradients of concentration, velocity, and temperature. 
Here we summarize the flux expressions for mixtures: 

Mass: jA = -p9ARV~A binary only 
Momentum: 7 = -,u[Vv + (vv)~] + ($,u - K)(V v)S 

Energy: 

Now we append a few words of explanation: 

a. The mass flux expression given here is for binary mixtures only. For multicom- 
ponent gas mixtures at moderate pressures, we can use the Maxwell-Stefan 
equations of Eq. 17.9-1. There are additional contributions to the mass flux cor- 
responding to driving forces other than the concentration gradients: forced difu- 
sion, which occurs when the various species are subjected to different external 
forces; pressure diffusion, proportional to Vp; and thermal diffusion, proportional 
to VT. These other diffusion mechanisms, the first two of which can be quite 
important, are covered in Chapter 24. 

b. The momentum flux expression is the same for multicomponent mixtures as for 
pure fluids. Once again we point out that the contribution containing the dilata- 
tional viscosity K is seldom important. Of course, for polymers and other vis- 
coelastic fluids, Eq. 19.3-2 has to be replaced by more complex models, as 
explained in Chapter 8. 

c. The energy-flux expression given here for multicomponent fluids consists of two 
terms: the first term is the heat transport by conduction which was given for pure 
materials in Eq. 9.1-4, and the second term describes the heat transport by each of 
the diffusing species. The quantity is the partial molar enthalpy of species a. 
There is actually one further contribution to the energy flux, related to a concen- 
tration driving force-usually quite small-and this diffusion-thermo effect will be 
discussed in Chapter 24. The thermal conductivity of a mixture-the k in Eq. 
19.3-3-is defined as the proportionality constant between the heat flux and the 
temperature gradient in the absence of any mass fluxes. 

We conclude this discussion with a few comments about the combined energy flux e. 
By substituting Eq. 19.3-3 into Eq. (C) of Table 19.2-2, we get after some minor rearranging: 

In some situations, notably in films and low-velocity boundary layers, the contributions 
ipv2v and [T . V] are negligible. Then the dashed-underlined terms may be discarded. 
This leads to 
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Then use of Eqs. (G) and (H) of Table 17.8-1 leads finally to 

Finally, for ideal gas mixtures, this expression can be further simplified by replacing the 
partial molar enthalpies by the molar enthalpies &. Equation 19.3-6 provides a stan- 
dard starting point for solving one-dimensional problems in simultaneous heat and 
mass transfer.' 

The partial molar enthalpy E,, which appears in Eqs. 19.3-3 and 19.3-6, is defined for a multi- 
component mixture as 

The Partial Molar , ~ 

Enthalp y 

in which n, is the number of moles of species a in the mixture, and the subscript np indicates 
that the derivative is to be taken holding the number or moles of each species other than a 
constant. The enthalpy H(n,, n,, n,, . . .) is an "extensive property," since, if the number of 
moles of each component is multiplied by k, the enthalpy itself will be multiplied by k: 

H(kn,, kn,, kn,, . a )  = kH(n,, n,, n,, . .) (19.3-8) 

Mathematicians refer to this kind of function as being "homogeneous of degree 1." For such 
functions Euler's theorem2 can be used to conclude that 

(a) Prove that, for a binary mixture, the partial molar enthalpies at a given mole fraction can 
be determined by plotting the enthalpy per mole as a function of mole fraction, and then de- 
termining the intercepts of the tangent drawn at the mole fraction in question (see Fig. 19.3-1). 
This shows one way to get the partial molar enthalpy from data on the enthalpy of the 
mixture. 

(b) How else could one get the partial molar enthalpy? 

Fig. 19.3-1. The "method of inter- 
cepts" for determining partial molar 
quantities in a binary mixture. 

' T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Mass Transfer, McGraw-Hill, New York (1975), 
Chapter 7. Thomas Kilgore Sherwood (1903-1976) was a professor at MIT for nearly 40 years, and then 
taught at the University of California in Berkeley. Because of his many contributions to the field of mass 
transfer, the Sherwood number (Sh) was named after him. 

M. D. Greenberg, Foundations of Applied Mathematics, Prentice-Hall, Englewood Cliffs, N.J. (1978), 
p. 128; R. J. Silbey and R. A. Alberty, Physical Chemistry, 3rd edition, Wiley, New York (2001), §§1.10,4.9, 
and 6.10. 
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SOLUTION (a) Throughout this example, for brevity we omit the subscripts p, T indicating that these 
quantities are held constant. First we write expressions for the intercepts as follows: 

in which H = H/(nA + n,) = H/n. To verify the correctness of Eq. 19.3-10, we rewrite the ex- 
pression in terms of H: 

NOW the expression HA = (dH/dnA),B implies that H is a function of nA and nB, whereas 
(dH/dxA), implies that His  a function of x, and n. The relation between these kinds of deriva- 
tives is given by the chain rule of partial differentiation. To apply this rule we need the rela- 
tion between the independent variables, which, in this problem, are 

Therefore we may write 

Substitution of this into Eq. 19.3-12 and use of Euler's theorem (H = nAEA + n , ~ , )  then gives 
an identity. This proves the validity of Eq. 19.3-10, and the correctness of Eq. 19.3-11 can be 
proved similarly. 

(b) One can also get HA by using the definition in Eq. 19.3-7 and measuring the slope of the 
curve of H versus n ~ ,  holding n, constant. One can also get HA by measuring the enthalpy of 
mixing and using 

Often the enthalpy of mixing is neglected and the enthalpies of the pure substances are given 
as = c P A ( ~  - T")  and a similar expression for i?,. This is a standard assumption for gas 
mixtures at low to moderate pressures. 

Other methods for evaluating partial molar quantities may be found in current textbooks 
on thermodynamics. 

519.4 USE OF THE EQUATIONS OF CHANGE FOR MIXTURES 

The equations of change in 519.2 can be used to solve all the problems of Chapter 18, and 
more difficult ones as well. Unless the problems are idealized or simplified, mixture 
transport phenomena are quite complicated and usually numerical techniques are re- 
quired. Here we solve a few introductory problems by way of illustration. 

(a) Develop expressions for the mole fraction profile x,(y) and the temperature profile T(y) 
for the system pictured in Fig. 19.4-1, given the mole fractions and temperatures at both film 

Simulfaneous Heat and boundaries (y = 0 and y = 6). Here a hot condensable vapor, A, is diffusing at steady state 
Mass Transporf' through a stagnant film of noncondensable gas, B, to a cold surface at y = 0, where A con- 

denses. Assume ideal gas behavior and uniform pressure. Furthermore assume the physical 

A. P. Colburn and T. B. Drew, Trans. Am. Inst .  Chem. Engrs., 38,197-212 (1937). 
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SOLUTION 

Fig. 19.4-1. Condensation of a hot vapor A 
on a cold surface in the presence of a non- 
condensable gas B. 

Cold 
surface . 

properties to be constant, evaluated at some mean temperature and composition. Neglect ra- 
diative heat transfer. 

(b) Generalize the result for the situation where both A and B are condensing on the wall, 
and allow for unequal film thicknesses for heat and mass transport. 

(a) To determine the desired quantities, we must solve the equations of continuity and en- 
ergy for this system. Simplification of Eq. 19.1-10 and Eq. C of Table 19.2-1 for steady, one- 
dimensional transport, in the absence of chemical reactions and external forces, gives 

Continuity of A: 

Energy: 

Therefore, both NAY and e, are constant throughout the film. 
To determine the mole fraction profile, we need the molar flux for diffusion of A through 

stagnant B: 

Insertion of Eq. 19.4-3 into Eq. 19.4-1 and integration gives the mole fraction profile (see 918.2) 

Here we have taken to be constant, at the value for the mean film temperature. We can 
then evaluate the constant flux NAY from Eqs. 19.4-3 and 4: 

Note that NAY is negative because species A is condensing. The last two expressions may be 
combined to put the concentration profiles in an alternative form: 
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To get the temperature profile, we use the energy flux from Eq. 19.3-6 for an ideal gas along 
with Eq. 9.8-8: 

Here we have chosen To as the reference temperature for the enthalpy. Insertion of this ex- 
pression for e, into Eq. 19.4-2 and integration between the limits T = To at y = 0, and T = T, at 
y = 6 gives 

It can be seen that the temperature profile is not linear for this system except in the limit as 
NA,&/k + 0. Note the similarity between Eqs. 19.4-6 and 8. 

The conduction energy flux at the wall is greater here than in the absence of mass trans- 
fer. Thus, using a superscript zero to indicate the conditions in the absence of mass transfer, 
we may write 

We see then that the rate of heat transfer is directly affected by simultaneous mass transfer, 
whereas the mass flux is not directly affected by simultaneous heat transfer. In applications at 
temperatures below the normal boiling point of species A, the quantity ~ , , & / k  is small, and 
the right side of Eq. 19.4-9 is very nearly unity (see Problem 19A.1). The interaction between 
heat and mass transfer is further discussed in Chapter 22. 

(b) If both A and B are condensing at the wall, then Eqs. 19.4-1 and 2, when integrated, lead 
to NAY = NAO and e, = e,, where the subscript "0" quantities are evaluated at y = 0. We also in- 
tegrate the analog of Eq. 19.4-1 for B to get N,, = NBo and obtain 

In the second of these equations, we replace HA by ?,*(T - To) and by $. (T - To), and 
since the reference temperature is To, we may replace e, by q,, the conductive heat flux at the 
wall. In the first equation, we subtract xAO(NAO + NBO) from both sides to make the equation 
similar in form to the temperature equation just obtained. Thus 

Integration with respect to y and application of the boundary conditions at y = 0 gives 



s19.4 Use of the Equations of Change for Mixtures 595 

These are the concentration and temperature profiles in terms of the mass and heat fluxes. 
Applications of the boundary conditions at the outer edges of the films-that is, at y = 6, and 
y = ST, respectively-give 

These equations relate the fluxes to the film thicknesses and the transport properties. When 
Eq. 19.4-14 is divided by Eq. 19.4-16 and Eq. 19.4-15 is divided by Eq. 19.4-17, we get the con- 
centration profiles in terms of the transport coefficients (analogously to Eqs. 19.4-6 and 8). 
Equations 19.4-16 and 17 will be encountered again in 522.8. 

A catalytic tubular reactor is shown in Fig. 19.4-2. A dilute solution of solute A in a solvent S 
is in fully developed, laminar flow in the region z < 0. When it encounters the catalytic wall 
in the region 0 5 z 5 L, solute A is instantaneously and irreversibly rearranged to an isomer 

in a T d d a r  Reactor B. Write the diffusion equation appropriate for this problem, and find the solution for short 
distances into the reactor. Assume that the flow is isothermal and neglect the presence of B. 

SOLUTION For the conditions stated above, the flowing liquid will always be very nearly pure solvent S. 
The product @BAS can be considered constant, and the diffusion of A in S can be described by 
the steady-state version of Eq. 19.1-14 (ignoring the presence of a small amount of the reaction 
product B). The relevant equations of change for the system are then 

Continuity of A: 

Motion: 

We make the usual assumption that axial diffusion can be neglected with respect to axial con- 
vection, and therefore delete the dashed-underlined term (compare with Eqs. 10.8-11 and 12). 
Equation 19.4-19 can be solved to give the parabolic velocity profile v,(r) = v,,,,,[l - (r/M21. 
When this result is substituted into Eq. 19.4-18, we get 

From z = 0 to z = L the ~ i l ~ t ~  solution of 
inner surface of the tube is A B in 

coated with a catalyst / 

/' 
Fully-developed A + B irreversibly 

laminar flow before and instantaneously 
z = 0 is reached on catalyst surface 

Fig. 19.4-2. Boundary conditions for a tubular reactor. 
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This is to be solved with the boundary conditions 

B.C. 1: 

B.C. 2: 

B.C. 3: 

at z = 0, c, = c,, 
at r = R, c, = 0 

at r = 0, c, = finite 

For short distances z into the reactor, the concentration c, differs from c,, only near the wall, 
where the velocity profile is practically linear. Hence we can introduce the variable y = R - r, 
neglect curvature terms, and replace B.C. 3 by a fictitious boundary condition at y = w (see 
Example 12.2-2 for a detailed discussion of this method of treating the entrance region of the 
tube). 

The reformulated problem statement is then 

with the boundary conditions 

B.C. 1: 

B.C. 2: 

B.C. 3: 

This problem can be solved by the method of combination of independent variables by seeking 
a solution of the form c,/cA0 = f($, where r] = ( y / R ) ( 2 ~ ~ , , , , ~ ~ / 9 ~ ~ ~ z ) " ~ .  One thus obtains the 
ordinary differential equation f "  + 3r12f' = 0, which can be integrated to give (see Eq. C.l-9) 

This problem is mathematically analogous to the Graetz problem of Problem 12D.4, O of that 
problem being analogous to 1 - (c,/c,,) here. 

Experiments of the type described here have proved useful for obtaining mass transfer 
data at high Schmidt numbers.' A particularly attractive reaction is the reduction of ferri- 
cyanide ions on metallic surfaces according to the reaction 

in which ferricyanide and ferrocyanide take the place of A and B in the above development. 
This electrochemical reaction is quite rapid under properly chosen conditions. Furthermore, 
since it involves only electron transfer, the physical properties of the solution are almost en- 
tirely unaffected. The forced diffusion effects neglected here may be suppressed by the addi- 
tion of an indifferent electrolyte in e x ~ e s s . ~ , ~  

Figure 19.4-3 shows schematically how oxygen and carbon monoxide combine at a catalytic 
surface (palladium) to make carbon dioxide, according to the technologically important 

Catalytic Oxidation reaction5 
of Carbon Monoxide 0, + 2C0 + 2C02 (1 9.4-30) 

D. W. Hubbard and E. N. Lightfoot, Ind. Eng. Chem. Fundam., 5,370-379 (1966). 
1. S. Newman, Electrochical Systems, 2nd edition, Prentice-Hall, Englewood Cliffs, N.J. (1991), §1.10. 
J. R. Selman and C. W. Tobias, Advances in Chemical Engineering, 10, Academic Press, New York, 

N.Y. (1978), pp. 212-318. 
%. C. Gates, Catalytic Chemistry, Wiley, New York (1992), pp. 356-362; C. N. Satterfield, 

Heterogeneous Catalysis in Industrial Practice, McGraw-Hill, New York, 2nd edition (1991), Chapter 8. 
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SOLUTION 

Fig. 19.4-3. Three-compo- 
Outer edge of nent system with a catalytic 

stagnant gas film 
,- consisting of chemical reaction. 

For this analysis, the reaction is assumed to occur instantaneously and irreversibly at the cat- 
alytic surface. The gas composition at the outer edge of the film (at z = 0) is presumed 
known, and the catalyst surface is at z = 6. The temperature and pressure are assumed to be 
independent of position throughout the film. We label the chemical species by: O2 = 1, CO = 2, 
co2 = 3. 

For steady-state, one-dimensional diffusion without homogeneous reactions, Eq. 19.1-10 gives 

which tells us that all of the molar fluxes are constants across the film. From boundary condi- 
tions provided by the stoichiometry of the problem we further know that 

The Maxwell-Stefan equations of Eq. 17.9-1 then give: 

These equations have been simplified by using Eq. 19.4-32, and by using the fact that 
9,, - 9,, over a wide range of temperature. The latter may be seen by using Appendix E 
to show that a,, = 3.793A and a,, = 3.714A, and that E ~ ~ / K  = 145K and E,,/K = 146K. 
Since only the mole fraction x3 appears in E q .  19.4-33, this equation may be integrated6 at 
once to give 

x, = -2 + (x, + 2) exp -- ( 2:) 
Combination of the last two equations then gives, after integration 

1 i N3zz ) ( 1  - xI0 - 5 x30) exp [-(2 3 9 1 3  - I)(%)] (19-4-36) x, = 1 - - (x,, + 2) exp -- 
3 2 ~ 9 1 ,  3 

Three-component problems with two diffusivities equal have been discussed by H. L. Toor, AIChE 
Journal, 3,198-207 (1957). 
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EXAMPLE 19.4-4 

Thermal Conductivity 
of a Polyatomic Gas 

SOLUTION 

From this equation and a similar one for x2, we can get x, at z = 8. Then from Eq. 19.4-35 we get 

which gives the rate of production of carbon dioxide at the catalytic surface. This result can 
then be substituted into Eqs. 19.4-35 and 36 and the three mole fractions can be calculated as 
functions of z. 

In 59.3 we pointed out that the thermal conductivities of polyatomic gases deviate from the 
formula for monatomic gases, because of the effects of the internal degrees of freedom in the 
complex molecules. When the Eucken formula for polyatomic gases (Eq. 9.3-15) is divided by 
the formula for monatomic gases (Eq. 9.3-14) and use is made of the ideal gas law, one can 
write the ratio of the polyatomic gas thermal conductivity to that of a monatomic gas as 

Derive a result of this form by modeling the polyatomic gas as an interacting gas mixture, in 
which the various "species" are the polyatomic gas molecules in the various rotational and vi- 
brational states. 

The heat flux for a gas mixture is given in Eq. 19.3-3. All "species" will have the same thermal 
conductivity because they differ only in their internal quantum states. Therefore we expect 
each k, to be Lon. Similarly, the mass flux for each "species" should be given by Fick's law for 
a pure gas j ,  = -pB,,Vw,, with all the a,, having a common value 9,,,. Thus we get 

since the molecular weights of all the "species" are the same. 
If now it is postulated that the distribution over the various quantum states is in equilib- 

rium with the local temperature, then Vx, = (dx,/dT)VT. Then we can define the effective ther- 
mal conductivity of the mixture by 

and write 

kp0ly -- - 1 +  
k o n  

= 1 +  

= 1 +  

Here the temperature-dependent quantity 

can be calculated from the kinetic theory of gases at low density. It varies ogly very slowly 
with temperature, and a suitable mean value is 1.106. The quantity ~ p , p o I y  = dH/dT is the heat 
capacity for a gas in which the equilibrium among the various quantum states is maintained 
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- 
during the change of temperature, whereas Cp,m,, is the heat capacity for a gas in which tran- 
sitions between quantum states are not allowed, so that C,,,,, = $R. When the numerical 
value A = 1.106 is inserted in Eq. 19.4-41, we get finally 

which is the formula recommended by Hir~chfelder.~ Although the predictions of Eq. 19.4-43 
are not much better than those of the older Eucken formula, the above development does at 
least give some feel for the role of the internal degrees of freedom in heat cond~ction.~,~ 

519.5 DIMENSIONAL ANALYSIS OF THE EQUATIONS OF 
CHANGE FOR NONREACTING BINARY MIXTURES 

In this section we dimensionally analyze the equations of change summarized in 519.2, 
using special cases of the flux expressions of 919.3. The discussion parallels that of 511.5 
and serves analogous purposes: to identify the controlling dimensionless parameters of 
representative mass transfer problems, and to provide an introduction to the mass trans- 
fer correlations of Chapter 22. 

Once again we restrict the discussion primarily to systems of constant physical 
properties. The equation of continuity for the mixture then takes the familiar form 

Continuity: (V . v) = 0 (19.5-1) 

The equation of motion may be approximated in the manner of Boussinesq (see g11.3) by 
putting Eqs. 19.3-2 and 19-5.1 into Eq. 19.2-3, and replacing -Vp + pg by - V 9 .  For a 
constant-viscosity Newtonian fluid this gives 

Motion: 

The energy equation, in the absence of chemical reactions, viscous dissipation, and exter- 
nal forces other than gravity, is obtained from Eq. (F) of Table 19.2-4, with Eq. 19.3-3. In 
using the latter we further neglect the diffusional transport of energy relative to the mass 
average velocity. For constant thermal conductivity this leads to 

Energy: 

in which n = k/p?,, is the thermal diffusivity. For nonreacting binary mixtures with con- 
stant p and B,,, Eq. 19.1-14 takes the form 

Continuity of A: 

For the assumptions that have been made, the analogy between Eqs. 19.5-3 and 4 is clear. 

- - - 

J. 0. Hirschfelder, 1. Chem. Phys., 26,274-281 (1957); see also D. Secrest and J. 0. Hirschfelder, 
Physics of Fluids, 4,61-73 (1961) for further development of the theory, in wluch equilibrium among the 
various quantum states is not assumed. 

For a comparison of the two formulas with experimental data, see Reid, Prausnitz, and Poling, 
op. cit., p. 497. The Hirschfelder formula in Eq. 19.4-42 and the Eucken formula of Eq. 9.3-15 tend to 
bracket the observed conductivity values. 

' J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North Holland, 
Amsterdam (1977), g511.2 and 3. 
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We now introduce the reference quantities I,, v,, and Yo, used in 93.7 and 911.5, the 
reference temperatures To and T, of 511.5, and the analogous reference mass fractions 
o,, and w,,. Then the dimensionless quantities we will use are 

Here it is understood that v is the mass average velocity of the mixture. It should be 
recognized that for some problems other choices of dimensionless variables may be 
preferable. 

In terms of the dimensionless variables listed above, the equations of change may be 
expressed as 

Continuity: (9 . i;) = 0 (1 9.5-8) 

Motion: 

Energy: 

Continuity of A: 

-- 
~i RePr 

DGA - 
I v 2 & A  ~i ReSc 

The Reynolds, Prandtl, and thermal Grashof numbers have been given in Table 11.5-1. 
The other two numbers are new: 

sc = 1-1 = = Schmidt number 
PB AB 

Gr, = [gi(w~l - mAu)C] = diffusional Grashof number 
4 

The Schmidt number is the ratio of momentum diffusivity to mass diffusivity and repre- 
sents the relative ease of molecular momentum and mass transfer. It is analogous to the 
Prandtl number, which represents the ratio of the momentum diffusivity to the thermal 
diffusivity. The diffusional Grashof number arises because of the buoyant force caused 
by the concentration inhomogeneities. The products RePr and ReSc in Eqs. 19.5-10 and 11 
are known as Pkclet numbers, Pk and PkAB, respectively. 

The dimensional analysis of mass transfer problems parallels that for heat transfer 
problems. We illustrate the technique by three examples: (i) The strong similarity be- 
tween Eqs. 19.5-10 and 11 permits the solution of many mass transfer problems by anal- 
ogy with previously solved heat transfer problems; such an analogy is used in Example 
19.5-1. (ii) Frequently the transfer of mass requires or releases energy, so that the heat 
and mass transfer must be considered simultaneously, as is illustrated in Example 19.5-2. 
(iii) Sometimes, as in many industrial mixing operations, diffusion plays a subordinate 
role in mass transfer and need not be given detailed consideration; this situation is illus- 
trated in Example 19.5-3. 

We shall see then that, just as for heat transfer, the use of dimensional analysis for 
the solution of practical mass transfer problems is an art. This technique is normally 
most useful when the effects of at least some of the many dimensionless ratios can be ne- 
glected. Estimation of the relative importance of pertinent dimensionless groups nor- 
mally requires considerable experience. 
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We wish to predict the concentration distribution about a long isothermal cylinder of a 
volatile solid A, immersed in a gaseous stream of a species B, which is insoluble in solid A. 

Concentration The system is similar to that pictured in Fig. 11.5-1, except that here we consider the transfer 
Distribution about a of mass rather than heat. The vapor pressure of the solid is small compared to the total pres- 
Long Cylinder sure in the gas, so that the mass transfer system is virtually isothermal. 

Can the results of Example 11.5-1 be used to make the desired prediction? 

SOLUTION The results of Example 11.5-1 are applicable if it can be shown that suitably defined dimen- 
sionless concentration profiles in the mass transfer system are identical to the temperature 
profiles in the heat transfer system: 

ijA(X, ij, 2) = f(X, ij, i) (19.5-14) 

This equality will be realized if the differential equations and boundary conditions for the 
two systems can be put into identical form. 

We therefore begin by choosing the same reference length, velocity, and pressure as in 
Example 11.5-1, and an analogous composition function: ij, = (w, - w ~ ~ ) / ( o ~ ~  - ~ ~ ~ 1 .  Here 
w,, is the mass fraction of A in the gas adjacent to ths interface, and wAco is the value far from 
the cylinder. We also specify that ZA = w,, so that & = 0. The equations of change needed 
here are then Eqs. 19.5-8,9, and 11. Thus the differential equations here and in Problem 11.5-1 
are analogous except for the viscous heating term in Eq. 11.5-3. 

As for the boundary conditions, we have here: 

B.C. 1: as X2 + ij2 + m, c + tix + 1 (19.5-15) 

B.C. 2: at f2  + ij2 = Z 1 (wA0 - @Am) v=- Vij, ijA = 0 (19.5-16) 
ReSc (I - wA0) 

The boundary condition on +, obtained with the help of Fick's first law, states that there is an 
interfacial radial velocity resulting from the sublimation of A. 

If we compare the above description with that for heat transfer in Example 11.5-1, we see 
that there is no mass transfer counterpart of the viscous dissipation term in the energy equa- 
tion and no heat transfer counterpart to the interfacial radial velocity component in the 
boundary condition of Eq. 19.5-16. The descriptions are otherwise analogous, however, with 
G,, Sc, and Gr, taking the places of T, Pr, and Gr. 

When the Brinkman number is sufficiently small, viscous dissipation will be unimpor- 
tant, and that term in the energy equation can be neglected. Neglecting the Brinkman number 
term is appropriate, except for flows of very viscous fluids with large velocity gradients, or in 
hypersonic boundary layers (510.4). Similarly, when (l/ReSc)[(w,, - wA,)/(l - wAo)l is very 
small, it may be set equal to zero without introducing appreciable error. If these limiting con- 
ditions are met, analogous behavior will be obtained for heat and mass transfer. More pre- 
cisely, the dimensionless concentration G, will have the same dependence on i, q,Z, i, Re, Pr, 
and Gr, as the dimensionless temperature ? will have on f ,  jl, i, t, Re, Pr, and Gr. The concen- 
tration and temperature profiles will then be identical at a given Re whenever Sc = Pr and 
Gr, = Gr. 

The thermal Grashof number can, at least in principle, be varied at will by changing To - 
T,. Hence it is likely that the desired Grashof numbers can be obtained. However, it can be 
seen from Tables 9.1-1 and 17.1-1 that Schmidt numbers for gases can vary over a considerably 
wide range than can the Prandtl numbers. Hence it may be difficult to obtain a satisfactory 
thermal model of the mass transfer process, except in a limited range of the Schmidt number. 

Another possibly serious obstacle to achieving similar heat and mass transfer behavior is 
the possible nonuniformity of the surface temperature. The heat of sublimation must be ob- 
tained from the surrounding gas, and this in turn will cause the solid temperature to become 
lower than that of the gas. Hence it is necessary to consider both heat and mass transfer si- 
multaneously. A very simple analysis of simultaneous heat and mass transfer is discussed in 
the next example. 
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EXAMPLE 19.5-2 

Fog Formation during 
Dehumidification 

SOLUTION 

Refrigerant 
vapor out at Tr  

Air in at d / 

Liquefied refrigerant 
in at T,  

Fig. 19.5-1. Schematic representation of a dehumidifier. Air enters with 
inlet temperature TI and humidity owl (the mass fraction of water vapor). 
It leaves with outlet temperature T2 and humidity ow, Because the heat 
transfer to the refrigerant is very effective, the temperature at the air- 
condensate interface is close to the refrigerant temperature T,. 

Wet air is being simultaneously cooled and dehumidified by passage through a metal tube 
chilled by the boiling of a liquid refrigerant. The tube surface is below the dew point of the 
entering air and therefore becomes covered with a water film. Heat transfer from the refriger- 
ant to this condensate layer is sufficiently effective that the free water surface may be consid- 
ered isothermal and at the boiling point of the refrigerant. This system is shown in Fig. 19.5-1. 

We wish to determine the range of refrigerant temperatures that may be used without 
danger of fog formation. Fog is undesirable, because most of the tiny water droplets constitut- 
ing the fog will pass through the cooling tube along with the air unless special collectors are 
provided. Fog can form if the wet air become supersaturated at any point in the system. 

Let species A be air and W be water. It is convenient here to choose the dimensionless variables 

The subscripts are further defined in Fig. 19.5-1. 
For the air-water system at moderate temperatures, the assumption of constant p and BAW 

is reasonable, with air regarded as a single species. The heat capacities of water vapor and air 
are unequal, but the diffusional transport of energy is expected to be small. Hence Eqs. 19.5-9 
to 11 provide a reasonably reliable description of the dehumidification process. The boundary 
conditions needed to integrate these equations include L, = i = 1 at the tube inlet, Lw = !f = 

0 at the gas-liquid boundary, and no-slip and inlet conditions on the velocity G. 
We find then that the dimensionless profiles are related by 

ijw(f, 9, if Re, Gr,, Gr, Sc, Pr) = ?(?, ij, 2, Re, Gr, Gr,, Pr, Sc) (19.5-19) 

Thus ZiW is the same function of its arguments as f is of its arguments in the exact order given. 
Since in general Gr, is not equal to Gr and Sc is not equal to Pr, the two profiles are not simi- 
lar. This general result is too complex to be of much value. 

However, for the air-water system, at moderate temperatures and near-atmospheric 
pressure, Sc is about 0.6 and Pr is about 0.71. 

If we assume for the moment that Sc and Pr are equal, the dimensional analysis becomes 
much simpler. For this special situation, the energy and species continuity equations are iden- 
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Fig. 19.5-2. A representative dehumidifica- 
tion path. The dehumidification path 
shown here corresponds to T,,,,,, the low- 
est refrigerant temperature ensuring the 
absence of fog. The dehumidification path 
for this situation is a tangent to the satura- 
tion curve through the point (w,,, T,), rep- 
resenting the given inlet-air conditions. 
Calculated dehumidification paths for 
lower refrigerant temperatures would 
cross the saturation curve. Saturation water 
vapor concentrations would then be ex- 
ceeded, making fog formation possible. 

0 L 
30 40 50 60 70 80 90 

Temperature, O F  

tration and temperature profiles are then identical. It should be noted that equality of Gr, and 
Gr is not required. This is because the Grashof numbers affect the concentration and tempera- 
ture profiles only by way of the velocity v, which appears in both the continuity equation and 
the energy equation in the same way. 

Therefore, with the assumption that Sc = Pr, we have 

at each point in the system. This means, in turn, that evey concentration-temperature pair in 
the tube lies on a straight line between (owl, Tl) and (ow, T,) on a psychrometric chart. This is 
shown graphically in Fig. 19.5-2 for a representative set of conditions. Note that (w,,., Tr) must 
lie on the saturation curve, since equilibrium is very closely approximated. 

It follows that there can be no fog formation if a straight line drawn between (w,, TI) 
and (w,,, T,) does not cross the saturation curve. Then the lowest refrigerant temperature that 
cannot produce fog is represented by the point of tangency of a straight line through (ow, TI) 
with the saturation curve. 

It should be noted that all of the conditions along the line from the inlet (ow,, TI) to (w,, 
T,) will occur in the gas even though the bulk or cup-mixing conditions vary only from (w,, 
TI) to (o,, T,). Thus some fog can form even if saturation is not reached in the bulk of the 
flowing gas. For air entering at 90°F and 50% relative humidity, the minimum safe refrigerant 
temperature is about 45°F. It may also be seen from Fig. 19.5-2 that it is not necessary to bring 
all of the wet air to its dew point in order to dehumidify it. It is only necessary that the air be 
saturated at the cooling surface. The exit bulk conditions (w,, T,) can be anywhere along the 
dehumidification path between (w,, TI) and (w,, TJ, depending on the effectiveness of the 
apparatus used. Calculations based on the assumed equality of Sc and Pr have proven very 
useful for the air-water system. 

In addition, it can be seen, by considering the physical significance of the Schmidt and 
Prandtl numbers, that the above-outlined calculation procedure is conservative. Since the 
Schmidt number is slightly smaller than the Prandtl number, dehumidification will proceed 
proportionally faster than cooling, and concentration-temperature pairs will lie slightly 
below the dehumidification path drawn in Fig. 19.5-2. In condensing organic vapors from air, 
the reverse situation often occurs. Then the Schmidt numbers tend to be higher than the 
Prandtl numbers, and cooling proceeds faster than condensation. Conditions then lie above 
the straight line of Fig. 19.5-2, and the danger of fog formation is increased. 
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Fig. 19.5-3. Blending of miscible fluids. At zero time, the 

z = H upper half of this tank is solute free, and the lower half 
contains a uniform distribution of solute at a dimen- 
sionless concentration of unity, and the fluid is motion- 
less. The impeller is caused to turn at a constant rate of 

H rotation N for all time greater than zero. Positions in the 
z = -  

2 tank are given by the coordinates r, 8, z, with r measured 
radially from the impeller axis, and z upward from the 
bottom of the tank. 

Develop by dimensional analysis the general form of a correlation for the time required to 
blend two miscible fluids in an agitated tank. Consider a tank of the type described in Fig. 

of 19.5-3, and assume that the two fluids and their mixtures have essentially the same physical 
Fluids properties. 

SOLUTION It will be assumed that the achievement of "equal degrees of blending" in any two mixing op- 
erations means obtaining the same dimensionless concentration profile in each. That is, the 
dimensionless solute concentration &, is the same function of suitable dimensionless coordi- 
nates (?, 0,i) of the two systems when the degrees of blending are equal. These concentration 
profiles will depend on suitably defined dimensionless groups appearing in the pertinent 
conservation equations and their boundary conditions, and on a dimensionless time. 

In this problem we select the following definitions for the dimensionless variables: 

Here D is the impeller diameter, N is the rate of rotation of the impeller in revolutions per 
unit time, and p, is the prevailing atmospheric pressure. The dimensionless pressure j3 is used 
here rather than the quantity 9 defined in 53.7; the formulation with ji is simpler and gives 
equivalent results. Note that i is equal to the total number of turns of the impeller since the 
start of mixing. 

The conservation equations describing this system are Eqs. 19.5-8, 9, and 11 with zero 
Grashof numbers. The dimensionless groups arising in these equations are Re, Fr, and Sc. The 
boundary conditions include the vanishing of v on the tank wall and of p on the free liquid 
surface. In addition we have to specify the initial conditions 

C. 1: 1 H  H atf 5 0 ,  &,=O fo r - -<?<-  
2 0  D 

(19.5-22) 

C. 2: 1 H a t t  5 0 ,  1 f o r O < i < - -  
2 0  

(19.5-23) 

and the requirement of no slip on the impeller (see Eq. 3.7-34). 
We find then that the concentration profiles are functions of Re, Sc, Fr, the dimensionless 

time t ,  the tank geometry (via H/D and B/D), and the relative proportions of the two fluids. 
That is, 

&, = f (Re, Fr, Sc, t, geometry, initial conditions) (19.5-25) 

It is frequently possible to reduce the number of variables to be investigated. 
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It has been observed that, if the tank is properly baffled,' no vortices of importance occur; 
that is, the free liquid surface is effectively level. Under these circumstances, or in the absence 
of a free liquid surface, the Froude number does not appear in the system description, as we 
found in 53.7. 

It is further found, in most operations on low-viscosity liquids, that the rate-limiting step 
is the creation of a finely divided dispersion of one fluid in the other. In such a dispersion, the 
diffusional processes take place over very small distances. As a result, molecular diffusion is 
not rate limiting, and the Schmidt number (Sc) has little importance. It is further found that 
the effect of the Reynolds number (Re) is negligible under most commonly encountered con- 
ditions. This is because most of the mixing takes place in the interior of the tank where vis- 
cous effects are small, rather than in the boundary layers adjacent to the tank and impeIler 
surfaces, where they are large.' 

For most impeller-tank combinations in common use, the Reynolds number (Re) is 
unimportant when its value is above about lo4. This behavior has been substantiated by a 
number of  investigator^.^ 

We thus arrive, after extensive experimentation, at a surprisingly simple result. When all of 
the assumptions above are valid, the concentration profile depends only on I .  Hence the di- 
mensionless time required to produce any desired degree of mixing is a constant for a given system 
geometry. In other words, the total number of turns of the impeller during the mixing process 
determines the degree of blending, independently of Re, Fr, Sc, and tank size-provided, of 
course, that the tanks and impellers are geometrically similar. 

For the same reasons, in a properly baffled tank, the dimensionless velocity distribution 
and the volumetric pumping efficiency of the impeller are nearly independent of the Froude 
number (Fr) and of the Reynolds number (Re), when Re > lo4. 

QUESTIONS FOR DISCUSSION 

1. How do the various equations of change given in Chapters 3 and 11 have to be modified for 
reacting mixtures? 

2. What modifications in the flux expressions given in Chapters 3 and 11 are needed to describe 
chemically reacting mixtures? 

3. Under what conditions is (V . v) = O? (V . v") = O? 
4. Equations 19.1-24 and 15 are physically equivalent. For what kinds of problems is there a 

preference for one form over the other? 
5. Interpret physically each term in the equations in Table 19.2-3. 
6. The thermal conductivity of a mixture is defined as the ratio of the heat flux to the negative of 

the temperature gradient when all the diffusional mass fluxes are zero. Interpret this state- 
ment in terms of Eq. 19.3-3. 

A common and effective baffling arrangement for vertical cylindrical tanks with axially mounted 
impellers is a set of four evenly spaced strips along the tank wall, with their flat surfaces in planes 
through the tank axis, extending from the top to the bottom of the tank and at least two-tenths of the 
distance to the tank center. 

The insensitivity of the required mixing time to the Reynolds number can be seen intuitively from 
the fact that the term ( l /~e)?% in Eq. 19.5-9 becomes small compared to the acceleration term LX/DZ at 
large Re. Such intuitive arguments are dangerous, however, and the effect of Re is always important in 
the immediate neighborhood of solid surfaces. Here the amount of mixing taking place in the immediate 
neighborhood of solid surfaces is small and can be neglected. 

The insensitivity of the required mixing time to the Schmidt number can be seen from the time- 
averaged equation of continuity in Chapter 21. At large Re, the turbulent mass flux is much greater than 
that due to molecular diffusion, except in the immediate neighborhood of the solid surfaces. 

E. A. Fox and V. E. Gex, AlChE Journal, 2,539-544 (1956); H. Kramers, G. M. Baars, and 
W. H. Knoll, Chem. Eng Sci, 2,3542 (1955); J. G. van de Vusse, Chem. Eng. Sci., 4,178-200,209-220 (1955). 
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7. Discuss the similarities and differences between heat transfer and mass transfer. 
8. Go through all the steps in converting Eq. 19.3-4 into Eq. 19.3-6. Why is the latter (approxi- 

mate) result important? 
9. Comment on the statement at the end of Example 19.4-1 that the rate of heat transfer is di- 

rectly affected by simultaneous mass transfer, whereas the reverse is not true. 

PROBLEMS 19A.1. Dehumidification of air (Fig. 19.4-1). For the system of Example 19.4-1, let the vapor be H,O 
and the stagnant gas be air. Assume the following conditions (which are representative in air 
conditioning): (i) at y = 6, T = 80°F and XHzo = 0.018; (ii) at y = 0, T = 50°F. 
(a) For p = 1 atm, calculate the right side of Eq. 19.4-9. 
(b) Compare the conductive and diffusive heat flux at y = 0. What is the physical significance 
of your answer? 
Answer: (a) 1.004 

19B.1. Steady-state evaporation (Fig. 18.2-1). Rework the problem solved in 518.2, dealing with the 
evaporation of liquid A into gas B, starting from Eq. 19.1-17. 
(a) First obtain an expression for v*, using Eq. (M) of Table 17.8-1, as well as Fick's law in the 
form of Eq. (D) of Table 17.8-2. 
(b) Show that Eq. 19.1-17 then becomes the following nonlinear second-order differential 
equation: 

(c) Solve this equation to get the mole fraction profile given in Eq. 18.2-11. 

19B.2. Gas absorption with chemical reaction (Fig. 18.4-1). Rework the problem solved in 518.4, by 
starting with Eq. 19.1-16. What assumptions do you have to make in order to get Eq. 18.4-4? 

19B.3. Concentration-dependent diffusivity. A stationary liquid layer of B is bounded by planes 
z = 0 (a solid wall) and z = b (a gas-liquid interface). At these planes the concentration of 
A is cAo and CAb respectively. The diffusivity 9 A B  is a function of the concentration of A. 
(a) Starting from Eq. 19.1-5 derive a differential equation for the steady-state concentration 
distribution. 
(b) Show that the concentration distribution is given by 

(c) Show that the molar flux at the solid-liquid surface is 

(dl Now assume that the diffusivity can be expressed as a Taylor series in the concentration 

in which 2, = +(cAo + c,) and gA, = QAB(CA). Then, show that 

(e) How does this result simplify if the diffusivity is a linear function of the concentration? 
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Fig. 198.4. Oxidation of silicon. 

19B.4. Oxidation of silicon (Fig. 19B.4).' A slab of silicon is exposed to gaseous oxygen (species A) 
at pressure p, producing a layer of silicon dioxide (species B). The layer extends from the sur- 
face z = 0, where the oxygen dissolves with concentration CAO = Kp, to the surface at z = SW, 
where the oxygen and silicon undergo a first-order reaction with rate coefficient k;(. The thick- 
ness 6(t) of the growing oxide layer is to be predicted. A quasi-steady-state method is useful 
here, inasmuch as the advancement of the reaction front is very slow. 
(a) First solve the diffusion equation of Eq. 19.1-18, with the term dc,/dt neglected, and apply 
the boundary conditions to obtain 

in which the concentration CAS at the reaction plane is as yet unknown. 
(b) Next use an unsteady-state molar 0, balance on the region 0 < z < 6(t) to obtain, with the 
aid of the Leibniz formula of gC.3, 

(c) Now write an unsteady-state molar balance on SiO, in the same region to obtain 

(d) In Eq. 19B.4-2, evaluate dS/dt from Eq. 19B.4-3 and dc,/dz from Eq. 19B.4-I. This will 
yield an equation for CA,: 

Inserting numerical values into Eq. 19B.4-4 shows that the quadratic term can safely be 
neglected. ' 
(e) Combine Eqs. 19B.4-3 and 19B.4-4 (without the quadratic term) to get a differential equa- 
tion for S(t). Show that this leads to 

which agrees with experimental data.' Interpret the result. 

19B.5. The Maxwell-Stefan equations for multicomponent gas mixtures. In Eq. 17.9-1 the 
Maxwell-Stefan equations for the mass fluxes in a multicomponent gas system are given. Show 
that these equations simplify for a binary system to Fick's first law, as given in Eq. 17.1-5. 

19B.6. Diffusion and chemical reaction in a liquid. 
(a) A solid sphere of substance A is suspended in a liquid B in which it is slightly soluble, 
and with which A undergoes a first-order chemical reaction with rate constant k y .  At steady 

' R. Ghez, A Primer of Diffusion Problems, Wiley-Interscience, New York (1988), pp. 46-55; this book 
discusses a number of problems that arise in the microelectronics field. 
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state the diffusion is exactly balanced by the chemical reaction. Show that the concentration 
profile is 

in which R is the radius of the sphere, cAo is the molar solubility of A in B, and b2 = kyR2/9,,. 
(b) Show by quasi-steady-state arguments how to calculate the gradual decrease in diameter 
of the sphere as A dissolves and reacts. Show that the radius of the sphere is given by 

in which Ro is the sphere radius at time to, and p,,, is the density of the sphere. 

19B.7. Various forms of the species continuity equation. 
(a) In this chapter the species equation of continuity is given in three different forms: Eq. 
19.1-7, Eq. (A) of Table 19.2-1, and Eq. (B) in Table 19.2-3. Show that these three equations are 
equivalent. 
(b) Show hdv  to get Eq. 19.1-15 from Eq. 19.1-11. 

19C.1. Alternate form of the binary diffusion equation. In the absence of chemical reactions, Eq. 
19.1-17 can be written in terms of v rather than v* by using a different measure of concentra- 
tion-namely, the logarithm of the mean molecular weight:' 

in which M = xAMA + xBMB. (Caution: Solution is lengthy.) 
Equation 19C.1-1 is difficult to solve even for the stagnant gas film of 518.2, because of 

the variable mass density p that appears in the continuity equation (Eq. A of Table 19.2-3). 

19D.1. Derivation of the equation of continuity. In s19.1 the species equation of continuity is de- 
rived by making a mass balance on a small rectangular volume Ax Ay Az fixed in space. 
(a) Repeat the derivation for an arbitrarily shaped volume element V with a sufficiently 
smooth fixed boundary S. Show that the species mass balance can be written as 

Use the Gauss divergence theorem to convert the surface integral to a volume integral, and 
then obtain Eq. 19.1-6. 
(b) Repeat the derivation using a region of fluid contained within a surface, each point of 
which is moving with local mass average velocity. 

19D.2. Derivation of the equation of change for temperature for a multicomponent system. De- 
rive Eq. (F) in Table 19.2-4 from Eq. (E). We suggest the following sequence of steps: 
(a) Since the enthalpy is an extensive thermodynamic property, we can write 

in which the m, are the masses of the various species, is the sum of the ma, and the w, = 

m,/m are the corresponding mass fractions. Both Hand Hare understood to be functions of T 
and p as well as of composition. Use the chain rule of partial differentiation to show that 

C. H. Bedingfield, Jr., and T. 8. Drew, Ind. Eng. Chem., 42,1164-1173 (1950). 
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Subtraction then gives for a # N 

The subscript w, means "holding all other mass fractions constant." 
(b) The left side of Eq. (E) can be expanded by regarding the enthalpy per unit mass to be a 
function of p, T,  and the first (N - 1) mass fractions: 

Next, verify that the coefficients of the substantial derivatives can be identified as 

The coefficient of p(Dw,/ Dt) has already been given in Eq. 19D.2-4. 
(c) Substitute the coefficients into Eq. 19D.2-5, and then use Eq. 19.1-14 to eliminate 
p(Dw,/Dt), and verify that (dH/dma)p,T,,y is the same as (HJM,). The summation on a, which 
goes from 1 to N - 1, now has to be appropriately rewritten as a summation from 0 to N, by 
using Eq. (K) of Table 17.8-1 and the fact that Z,ra = 0. 
(d) Then combine the results of (a), (b), and (c) with Eq. (E) to get Eq. (F). 

19D.3. Gas separation by atmolysis or "sweep diffusion" (Fig. 19D.3). When two gases A and B are 
forced to diffuse through a third gas C, there is a tendency of A and B to separate because of 
the difference in their diffusion rates. This phenomenon was first studied by Hertz? and later 
by Maier.* Benedict and Boas5 studied the economics of the process particularly with regard 
to isotope separation. Keyes and pigford6 contributed further to both theory and experiment. 

Diffusion tube 4' in 
length and 1 " in diameter, 
packed with glass wool 

A + B + C  A + B + C  , 1 1 ~ n i ' 2  I Cc , 1 , 
Feed A + B 

Make-up 
Separator for C Separator 

Raffinate A + B I Products A + B I 
Fig. 19D.3. The Keyes-Pigford experiment for studying atmolysis. 

G. Hertz, Zeits. f. Phys., 91,810-815 (1934). 
G. G. Maier, Mechanical Concentration of Gases, US. Bureau of Mines Bulletin 431 (1940). 
M. Benedict and A. Boas, Chem. Eng. Prog., 47,5142,111-122 (1951). 
J. J. Keys, Jr., and R. L. Pigford, Chem. Eng. Sci., 6,215-226 (1957). 
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In their experimental arrangement, C was a condensable vapor, which could be separated 
from A and B by lowering the temperature so that C would be liquefied. 

We want to study the details of the three-component diffusion taking place in the diffu- 
sion tube of length L, when the apparatus is operated at steady state. Obtain an expression re- 
lating the concentrations x,, and xB1 at the feed end of the tube to the concentrations X,q and 
xB2 at the product end. This expression will contain the molar fluxes of the three species, 
which are controlled by the rates of addition of materials in the two entering streams. 

Use the following notation for dimensionless quantities: 5 = z / L  for the distance down 
the tube from the feed entrance; rA = 9lAB/BAc and r, = g A B / 9 B C  for the diffusivity ratios; and 
v, = N , , L / c ~ ~ ~  for the molar fluxes (with a = A, B, C). 

(a) Shows that, in terms of these dimensionless quantities, the Maxwell-Stefan equations for 
the diffusion are 

where YAA = vz + rA(vA + vC), YAS = vA(rA - I ) ,  and YA = -YAVA, and the remaining quantities 
are obtained by interchanging A and B. 
(b) By using Laplace transforms, solve Eqs. 19D.3-1 and 2 to get the concentration profiles for 
A and B in the tube. 
(c) Show that the terminal concentrations are interrelated thus, 

XA(~AI, XRI; 0 )  + XA(~AI,  xm; p+)  exp p+ XA(xA1, r,,; p-)  exp p- 
X ~ 2  = P+P- 

+ 
p+(p+ - p- )  

(19D.3-3) 
P-(P- - p+) 

in which 

A similar expression may be obtained for xB2. Keyes and Pigford6 give further results for spe- 
cial cases. 

19D.4. Steady-state diffusion from a rotating disk.7 A large disk is rotating with an angular veloc- 
ity fl in an infinite expanse of liquid B. The surface is coated with a material A that is slightly 
soluble in B. Find the rate at which A dissolves in B. (The solution to this problem can be ap- 
plied to a disk of finite radius R with negligible error.) 

The fluid dynamics of this problem was developed by von KBrmBn8 and later corrected by 
C~chran .~  It was found that the velocity components can be expressed, except near the edge, as 

in which 5 = z m v .  The functions F, G, and H have the following expansions: 

in which a = 0.510 and b = -0.616. It is further known that, in the limit as l + m, H + 

-0.886, and F,  G, F', and G' all approach zero. Also it is known that the boundary layer thick- 
ness is proportional to m, except near the edge of the disk. 

' V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), §11. 
T. von Kirmhn, Zeits. f.  angew. Math. u. Mech.,l, 244-247 (1921). 
W .  G. Cochran, Proc. Camb. Phil. Soc., 30,365-375 (1934). 
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The diffusion equation of Eq. 19.1-16 with the known velocity components is to be solved 
under the boundary conditions that: p, = p,, at z = 0; p, = 0 at z = m; and dp,/dr = 0 at r = 
0, m. Since there can be but one solution to this linear problem, it may be seen that a solution 
of the form p,(z) can be found that satisfies the differential equation and all the boundary con- 
ditions. Thus, the solution for p~ does not depend on the radial coordinate in the region 
considered. 
(a)  Show that at steadystate Eq. 19.1-16 gives 

(b) Solve Eq. 19D.4-5 to get, for large Schmidt number, 

(c) Show that the mass flux at the surface of the disk is7 

for large Schmidt number. Clearly, if desired, one could use higher terms in the series expan- 
sion for H and extend the Schmidt-number range.10 This system has been used for studying 
the removal of solid behenic acid from stainless-steel surfaces." 

10 D. Schuhmann, Physicochemical Hydrodynamics (V. G. Levich Fextschrift), Vol. 1 (D. B. Spalding ed.), 

Advance Publications Ltd., London (1977), pp. 44.5459; see also K.-T. Liu and W. E. Stewart, Intl. Jnl. 
Heat and Mass Trf., 15,187-189 (1972). 

" C. S. Grant, A. T. Perka, W. D. Thomas, and R. Caton, AIChE Journal, 42,1465-1476 (1996). 



Chapter 20 

Concentration Distributions 
with More Than One 
Independent Variable 
520.1 Time-dependent diffusion 

520.2~ Steady-state transport in binary boundary layers 

520.3. Steady-state boundary layer theory for flow around objects 

520.4. Boundary layer mass transport with complex interfacial motion 

520.5. Taylor dispersion in laminar tube flow 

Most of the diffusion problems discussed in the preceding two chapters led to ordinary 
differential equations for the concentration profiles. In this chapter we use the general 
equations of Chapter 19 to set up and solve some diffusion problems that lead to partial 
differential equations. 

A large number of diffusion problems can be solved by simply looking up the solu- 
tions to the analogous problems in heat conduction. When the differential equations and 
the boundary and initial conditions for the diffusion process are of exactly the same form 
as those for the heat conduction process, then the heat conduction solution may be taken 
over with appropriate changes in notation. In Table 20.0-1 the three main heat transport 
equations used in Chapter 12 are shown along with their mass transport analogs. Many 
solutions to the nonflow equations may be found in the monographs of Carslaw and 
Jaeger' and of Crank.' 

Because the diffusion problems described by the equations in Table 20.0-1 are analo- 
gous to the problems of Chapter 12, we do not discuss them extensively here. Instead, 
we focus primarily on problems involving diffusion with chemical reactions, diffusion 
with a moving interface, and diffusion with rapid mass transfer. 

In 920.1 we discuss a variety of time-dependent diffusion problems. In s20.2 we pre- 
sent some steady-state boundary layer problems involving binary mixtures. This is fol- 
lowed by two boundary layer analyses for more complicated systems: the diffusion in 
steady flow around arbitrary objects in 920.3, and the diffusion in flows yvith complex in- 
terfacial motion in 920.4. Finally, in 520.5 we explore an asymptotic solution to the "Tay- 
lor dispersion" problem. 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959). 

J. Crank, The Mathematics of Di@sion, 2nd edition, Clarendon Press, Oxford (1975). 
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Table 20.0-1 Analoges Between Special Forms of the Heat Conduction and Diffusion Equations 

B 
Unsteady-state nonflow Steady-state flow a Steady-state nonflow 

g .9 §12.1-Exact solutions 512.2-Exact solutions .s fi 
s12.3-Exact solutions 

I QJ 

+ 2 512.4--Boundary layer in two dimensions by 
$ 0  solutions analytic functions 

g 
Heat conduction in Heat conduction in Steady heat conduction b 

.A d 

a solids laminar incompressible solids 
9 flow 

. .d 1. k = constant 1. k, p = constants 1. k = constant 
2 .v=O 2. No viscous dissipation 2. v  = 0  

2 
4 3. Steady state 3. Steady state 

2 Diffusion of traces of 
'8 A through B 
.* - 
a 
2 

1. %ABr p = constants 8 
g 2 . v = o  

3. No chemical reactions 
4 
V) 

OR Equimolar counter- .* - 
B .- 4 

diffusion in low 
a 2 density gases 

Diffusion in laminar Steady diffusion in 
flow (dilute solutions of solids 
A in B )  

1. 9AB, p = constants 1. %ABI p = constants 
2. Steady state 2. Steady state 
3. No chemical reactions 3. No chemical reactions 

4.v  = 0 

I. BAB, c = constants 
.4 + 2 2. v* = 0 
5 3. No chemical reactions 
4 

$20.1 TIME-DEPENDENT DIFFUSION 

In this section we give four examples of time-dependent diffusion. The first deals with 
evaporation of a volatile liquid and illustrates the deviations from Fick's second law that 
arise at high mass-transfer rates. The second and third examples deal with unsteady- 
state diffusion with chemical reactions. In the last example we examine the role of inter- 
facial-area changes in diffusion. The method of combination of variables is used in 
Examples 20.1-1,2, and 4, and Laplace transforms are used in Example 20.1-3. 

We wish to predict the rate at which a volatile liquid A evaporates into pure B in a tube of in- 
finite length. The liquid level is maintained at z = 0  at all times. The temperature and pres- 

Unsteady-State sure are assumed constant, and the vapors of A and B form an ideal gas mixture. Hence the 
Evaporation of a Liquid molar density c is constant throughout the gas phase, and BAB may be considered to be con- 
(the "Amold Problem'') stant. It is further assumed that species B is insoluble in liquid A, and that the molar average 

velocity in the gas phase does not depend on the radial coordinate. 
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SOLUTION For this system the equation of continuity for the mixture, given in Eq. 19.1-12, becomes 

in which v: is the z-component of the molar average velocity. Integration with respect to z gives 

Here and elsewhere in this problem, the subscript "0" indicates a quantity evaluated at z = 0. 
According to Eq. (M) of Table 17.8-1, this velocity can be written in terms of the molar fluxes 
of A and B as 

However, N,,, is zero because of the insolubility of species B in liquid A. Then use of Eq. (D) 
of Table 17.8-2 gives finally 

in which XAO is the interfacial gas-phase concentration, evaluated here on the assumption of 
interfacial equilibrium. For an ideal gas mixture this is just the vapor pressure of pure A di- 
vided by the total pressure. 

The equation of continuity of Eq. 19.1-17 then becomes 

This is to be solved with the initial and boundary conditions: 

LC.: 
B.C. 1: 

B.C. 2: 

We can try the same kind of combination of variables used in Example 4.1-1; namely, X = 

xA/xA0 and Z = z / - .  However, since Eq. 20.1-5 contains the parameter X A ~ ,  we can an- 
ticipate that X will depend not only on Z but also parametrically on xAo. 

In terms of these dimensionless variables, Eq. 20.1-5 can be written as 

Here the quantity 

is a dimensionless molar average velocity, 9 = v : m ,  as can be seen by comparing Eqs, 
20.1-10 and 20.1-4. The initial and boundary conditions in Eqs. 20.1-6 to 8 now become 

B.C. 1: 

B.C. 2 and I.C.: 

Equation 20.1-9 can be attacked by first letting d X / d Z  = Y. This gives a first-order differential 
equation for Y that can be solved to obtain 
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This gives on integration 

Combining this result with Eqs. 20.1-11 and 12, we get 

Then we use the definition of the error function and some of the properties of this function, in 
particular, -erf(-cp) = erf cp and erf = 1 (see 5C.6). This leads to the final expression for the 
mole fraction distribution:' 

erf(Z - cp) + erf cp 1 - erf(Z - cp) 
X(Z) = 1 - - - 

erf + erf cp 1 + erf cp 

To get the function cp(xA0), this mole fraction distribution has to be substituted into Eq. 20.1-10. 
This gives 

Rather than solving this to get (D as a function of xAo, it is easier to evaluate xAo as a function of 9: 

1 
X~~ = 

1 + [l/;f(l + erf q)cp exp cp21-' 

A small table of p(xAo) is given in Table 20.1-1, and the concentration profiles are shown in 
Fig. 20.1-1. 

We can now calculate the rate of production of vapor from a surface of area S. If VA is the 
volume of A produced by evaporation up to time t, then 

Table 20.1-1   able' of (p(xAo) and $(xA,) 

' J. H. Arnold, Trans. AIChE, 40,361-378 (1944). Jerome Howard Arnold (1907-1974) taught at MIT, 
the University of Minnesota, the University of North Dakota, and the University of Iowa; he worked for 
Standard Oil of California (1944-1948) and was the director of the Contra Costa Transit District 
(1956-1960). 
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Fig. 20.1-1. Concentration profiles in time-dependent evaporation, showing 
that the d e v i a t i ~  from Fick's law increases with the volatility of the evapo- 
rating liquid. 

Integration with respect to t then gives 

This relation can be used to calculate the diffusivity from the rate of evaporation (see Problem 
20A.1). 

We can now assess the importance of including the convective transport of species A in 
the tube. If Fick's second law (Eq. 19.1-18) had been used to determine X, we would have ob- 
tained 

Thus we can rewrite Eq. 20.1-20 as 

The factor I) = (Pfi/~AO, tabulated in Table 20.1-1, is a correction for the deviation from the 
Fick's second law results caused by the nonzero molar average velocity. We see that the devi- 
ation becomes especially significant when xAO is large-that is, for liquids with large volatility. 

In the preceding analysis it is assumed that the system is isothermal. Actually, the inter- 
face will be cooled by the evaporation, particularly at large values of xA0. This effect can be 
minimized by using a small-diameter tube made of a good thermal conductor. For applica- 
tion to other mass transfer systems, however, the analysis given here needs to be extended by 
including the solution to the energy equation, so that the interfacial temperature and compo- 
sitions can be calculated (see Problem 20B.2). 

This analysis can be extended2 to include interphase transfer of both species, with any 
time-independent flux ratio NAzO/NBzo and any initial gas composition x,,. A simple example 
of such a system is the diffusion-controlled reaction 2A -+ B on a catalytic solid at z = 0, with 

W. E. Stewart, J. B. Angelo, and E. N. Lightfoot, AlChE Journal, 16,771-786 (19701, have 
generalized this example and the following one to forced convection in three-dimensional flows, 
including turbulent systems. 
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EXAMPLE 20.1-2 

Gas Absorption with 
Rapid 

the heat of reaction removed through the solid. The concentration profile is a generalization 
of that in Eq. 20.1-16: 

n =  x, - x,, - - erf(Z - c p )  + erf cp  
X ~ m  - x~~ 1 + erf cp 

The dimensionless flux c p  now depends on XA,, xAm, and the ratio N,,,/NAZ,: 

1 (XAO - XA=)(NA~O + NB~o) dII 
c P = -  2 NAz0 - x,,(Nh, + NB,) *Z Iz=, (20.1 -24) 

The relation between the interfacial fluxes and the terminal compositions is 

(xAO - X A ~ ) ( N A ~ O  + NB~o) = + erf c p ) c p  exp cp2 
NA~O - XAO(NA~O + NB~o) 

Equations 20.1-16,10, and 18 are included as special cases of the last three equations. The last 
one is a key result for mass transfer calculations (see 522.8). 

Gas A is absorbed by a stationary liquid solvent S, the latter containing solute B. Species A re- 
acts with B in an instantaneous irreversible reaction according to the equation aA + bB + 

Products. It may be assumed that Fick's second law adequately describes the diffusion 
processes, since A, B, and the reaction products are present in S in low concentrations. Obtain 
expressions for the concentration profiles. 

Because of the instantaneous reaction of A and B, there will be a plane parallel to the 
liquid-vapor interface at a distance z ,  from it, which separates the region containing no A 
from that containing no B. The distance z, is a function of t, since the boundary between A 
and B retreats as B is used up in the chemical reaction. 

The differential equations for c, and c, are then 

d c ~  d2cB 
- = BBS - for z,(t) 5 z < 
df dz2 

These are to be solved with the following initial and boundary conditions: 

LC.: a t t  = 0, CB = Cgm forz > 0 (20.1-28) 

B.C. 1: at z = 0, CA = C~~ (20.1-29) 

B.C. 2,3: at z = z,(f), CA = cB = 0 (20.1-30) 

B.C. 4: 

B.C. 5: a tz  = m, (20.1-32) 

Here c,, is the interfacial concentration of A, and c,, is the original concentration of B. The 
fourth boundary condition is the stoichiometric requirement that a moles of A consume b 
moles of B (see Problem 20B.2). 

T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Absorption and Extraction, 3rd edition, McGraw- 
Hill, New York (1975), Chapter 8. See also G. Astarita, Mass Transfer with Chemical Reaction, Elsevier, 
Amsterdam (1967), Chapter 5. 

For related problems with moving boundaries associated with phase changes, see H. S. Carslaw 
and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press (1959). See also S. G. 
Bankoff, Advances in Chemical Engineering, Academic Press, New York (1964), Vol. 5, pp. 76-150; J. Crank, 
Free and Moving Bounday Problems, Oxford University Press (1984). 
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The absence of a characteristic length in this problem, and the fact that c, = c,, both at 
t = 0 and z = w, suggests trying a combination of variables. Comparison with the previous 
example (without the v: term) suggests the following trial solutions: 

c A -- Z 
- C, + C,erf- for 0 I z 5 zR(t) 

CAO v"GJ 
C~ Z - = C3 + C4erf- for zR(t) 5 z < 

C B ~  V ' q J  

These functions satisfy the differential equations, and if the constants of integration, C1 to C4, 
can be so chosen that the initial and boundary conditions are satisfied, we will have the com- 
plete solution to the problem. 

Application of the initial condition and the first three boundary conditions permits the 
evaluation of the integration constants in terms of zR(t), thereby giving 

1 - erf(~/V'49,~t) 
for z&) 5 z < w 

1 - e r f ( z R / w )  

B.C. 5 is then automatically satisfied. Finally, insertion of these solutions into B.C. 4 gives the 
following implicit equation from which zR(t) can be obtained: 

Here y is a constant equal to z;/4t. Thus zR increases as V% 
To calculate the concentration profiles, one first solves Eq. 20.1-37 for G, and then in- 

serts this value for z , / f i  in Eqs. 20.1-35 and 36. Some calculated concentration profiles are 
shown in Fig. 20.1-2 (for a = b), to illustrate the rate of movement of the reaction zone. 

From the concentration profiles we can calculate the rate of mass transfer at the interface: 

Distance from interface (mm) 

Fig. 20.1-2. Gas absorption with rapid chemical reaction, with concen- 
tration profiles given by Eqs. 20.1-35 to 37 (for a = b). This calculation 
was made for 9,, = 3.9 X ft2/hr and '3,, = 1.95 X lop5 fP/hr [T. K. 
Sherwood and R. L. Pigford, Absorption and Extraction, McGraw-Hill, 
New York (1952), p. 3361. 
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The average rate of absorption up to time t is then 

Hence the average rate up to time t is just twice the instantaneous rate. 

When species A diffuses in a liquid medium B and reacts with it irreversibly (A + B + C) ac- 
cording to a pseudo-first-order reaction, then the process of diffusion plus reaction is de- 

Unsteady Diffusion scribed by 
with First-Order 
Homogeneous 
~ e a c t i o n ~ - ~  

SOLUTION 

provided that the solution of A is dilute and that not much C is produced. Here kr is the rate 
constant for the homogeneous reaction. Equation 20.1-40 is frequently encountered with the 
initial and boundary conditions 

and with a velocity profile independent of time. For such problems show that the solution is 

Here f is the solution of Eqs. 20.1-40 to 42 with k: = 0 and o,, = 0, whereas g is the solution 
with ky = 0 and o,, = 0. 

This problem is linear in o,. It may, therefore, be solved by a superposition of two simpler 
problems: 

W A  = 02) + 02) (20.1-44) 

with wg' described by the equations 

j P. V. Danckwerts, Trans. Faraday Soc., 47,1014-1023 (1951). Peter Victor Danckwerts (1916-1984) 
was bomb disposal officer for the Port of London during "the Blitz" and was wounded in a mine field in 
Italy during WWII; while teaching at Imperial College in London and at Cambridge University he 
directed research on residence-time distribution, diffusion and chemical reaction, and the role of 
diffusion in gas absorption. 

A. Giuliani and F. P. Foraboschi, Atti. Acad. Sci. Inst. Bologna, 9,l-16 (1962); F. P. Foraboschi, ibid., 
11,l-14 (1964); F. P. Foraboschi, AlCkE Journal, 11,752-768 (1965). 

E. N. Lightfoot, AIChE Journal, 10,278-284 (1964). 
". E. Stewart, Ckem. Eng. Sci., 23,483487 (1968); corrigenda, ibid., 24,1189-1190 (1969). There this 

approach was generalized to time-dependent flows with homogeneous and heterogeneous first-order 
reactions. 
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and wy) described by 

We now proceed to solve these two auxiliary problems by means of Laplace transform. 
Taking the Laplace transform of the equations for w$' gives 

P.D.E. + I.C.: (p + k;")w2' - uAI(x, y, Z) + i~ VW?)) = 9JABV 2-(1) W A  (20.1-51) 
- 

B.C. at surfaces: = 0 (20.1-52) 

Now, the function g in Eq. 20.1-43 is the solution for "2' with k;" replaced by zero. Corre- 
spondingly the Laplace transform satisfies Eqs. 20.1-51 and 52 with p  + k;" replaced by p: 

Hence by taking $e inverse Laplace transform we get 

which is the first part of the solution. 
Next, taking the Laplace transform of Eqs. 20.1-48 to 50 gives 

P.D.E. + I.C.: (p + k;")Gz' + (V ' V W ~ ' )  = %ABV2Gg' 

B.C. at surfaces: (20.1-56) 

The Laplace transform f satisfies the same two equations with k;" replaced by zero. That is, if 
we now use s for the transform variable in lieu of p, we have 

P.D.E. + 1.C.: sj + (v vf ) = GJABv2f (20.1-57) 

B.C. at surfaces: - 1 f = s ~ A O ( X I  y, 2) (20.1-58) 

We see that the function sf satisfies the same boundary condition as p@ and that the differ- 
ential equations for sf and pWf)  are identical when s = p + k"'. Hence 

Taking the inverse transform then gives 

as the second part of the solution. Addition of the two parts of the solution, wg' and my), then 
gives Eq. 20.1-43 directly. 

Equation 20.1-43 provides a means for predicting concentration profiles in reacting sys- 
tems from calculations or experiments on nonreacting systems at the same flow conditions. 
Several extensions of this treatment are available, including multicomponent systems: turbu- 
lent and more general boundary  condition^.^-^ 

Y.-H. Pao, AIM Journal, 2,1550-1559 (1964); Ckem. Eng. Sci., 19,694-696 (1964); ibid., 20,665469 
(1965). 
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Fig. 20.1-3. Time-dependent diffusion from a 
soluble wall of A into a semi-infinite column of 
liquid B. 

Figure 20.1-3 shows schematically the concentration profiles for the diffusion of A from a 
slightly soluble wall into a semi-infinite body of liquid above it. If the density and diffusivity 

Infruence of Changing areconstants, then this problem is the mass transfer analog of the problems discussed in gg4.1 
Interfacial Area on and 12.1. The diffusion is described by the one-dimensional version of Fick's second law, Eq. 
Mass Transfer a t  an 19.1-18, 
~nterfacel~," 

SOLUTION 

along with the initial condition that cA = 0 throughout the liquid, and the boundary condi- 
tions that cA = cA, at the solid-liquid interface and c, = 0 infinitely far from the interface. The 
solution to this problem is 

from which we can get the interfacial flux 

Equation 20.1-63 is the mass transfer analog of Eqs. 4.1-15 and 12.1-8. 
In Fig. 20.1-4 we depict a similar problem in which the interfacial area is changing with 

time as the liquid spreads out in the x and y directions, so that the interfacial area is a function 
of time, SO). The initial and boundary conditions for the concentration are kept the same. We 
wish to know the function cA(z, t )  for this system. 

The velocity distribution for this varying interfacial area problem is v, = +$ax, v, = +;fly, 
v, = -az, where a = d In S/d t .  Then the diffusion equation for this system is 

'" D. Ilkovic', Collec. Czechoslov. Chem. Comm., 6,498-513 (1934). The final result in this section was 
obtained by Ilkovit in connection with his work on the dropping-mercury electrode. 

"V. G. Levich, Physicochemical Hydrodynamics, 2nd edition (English translation), Prentice-Hall, 
Englewood Cliffs N.J. (1962), $108. This book contains a wealth of theoretical and experimental results on 
diffusion and flow phenomena in liquids and two-phase systems. 
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Semi-infinite medium 
in region z 2 0. The 

mass transfer surface 
S( t )  changes with time / 

Fig. 20.1-4. Time-dependent diffusion across a mass transfer interface 
S(t) that is changing with time. The liquid B, in the region above the 
plane z = 0, has a velocity distribution v, = ++ax, v, = +$ay, and 
vZ = -az, where a = d In S/d t .  

7 

Since Eq. 20.1-62 is solved by the method of combination of variables, the same technique can 
be tried here. We postulate 

' A Z 
- = g(5) with 5 = -- 
' A ,  8 0 )  

Substitution of this trial solution into Eq. 20.1-65 gives 

If we set the expression within the brackets equal to unity, then we accomplish two things: (i) 
we obtain an equation for g that has the same form as Eq. 4.1-9, to which the solution is 
known; (ii) we get an equation for 8 as a function of t :  

This equation may be integrated to give 

The lower limit on the left side is chosen so as to ensure that c, = 0 initially throughout the 
fluid. This choice then leads to 

and we get finally for the concentration profiles 

The interfacial mass flux is then obtained by differentiating Eq. 20.1-71 to get 
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The total number of moles of A that have crossed the interface at time t through the surface 
S(t) can be obtained from integration of Eq. 20.1-71 as follows: 

An equivalent expression can be obtained by integrating Eq. 20.1-72: 

Both Eq. 21.1-73 and Eq. 21.1-74 can be checked by verifying that dMA/dt = N,,,(t)S(t). 
If S(t) = atn, where a is a constant, the above results simplify to 

For the diffusion into the surrounding liquid from a gas bubble whose volume is increasing 
linearly with time, n = $ and 2n + 1 = g. This is of course an approximate result, in which cur- 
vature has been neglected, and is therefore valid only for short contact times. Related results 
have been obtained for interfaces of arbitrary shapesr2,12 and experimentally verified for sev- 
eral laminar and turbulent ~ysterns.~,'~ 

520.2 STEADY-STATE TRANSPORT IN 
BINARY BOUNDARY LAYERS 

In 512.4 we discussed the application of boundary layer analysis to nonisothermal flow 
of pure fluids. The equations of continuity, motion, and energy were presented in 
boundary layer form and were solved for some simple situations. In this section we ex- 
tend the set of boundary layer equations to binary reacting mixtures, adding the equa- 
tion of continuity for species A so that the concentration profiles can be evaluated. Then 
we analyze three examples for the flat-plate geometry: one on forced convection with a 
homogeneous reaction, one on rapid mass transfer, and one on analogies for small mass- 
transfer rates. 

"J. B. Angelo, E. N. Lightfoot, and D. W. Howard, AKhE Journal, 12,751-760 (1966). 
l3  W. E. Stewart, in Physicochemical Hydrodynamics (D. B. Spalding, ed.), Advance Publications Ltd., 

London, Vol. I (1977), pp. 22-63. 
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Consider the steady, two-dimensional flow of a binary fluid around a submerged ob- 
ject, such as that in Fig. 4.4-1. In the vicinity of the solid surface, the equations of change 
given in 5918.2 and 3 may be simplified as follows, provided that p, p, k, ep, and 9AB are 
essentially constant (except in the pg term), and that viscous dissipation can be neglected: 

Continuity: 

Motion: 

Energy: 

Continuity of A: 

dv, dv, 
-- + - = 0 
dx dy 

The equation of ~ontinuity is the same as Eq. 12.4-1. The equation of motion, obtained 
from Eq. 19.2-3, differs from Eq. 12.4-2 by the addition of the binary buoyant force term 
%z(oA - oAm). The energy equation, obtained from Eq. (F) of Table 19.2-4, differs from 
Eq. 12.4-3 by the addition of the chemical heat-source term -[(KIM,) - (%/~,)lr,.,. 
Equation 20.2-4 is obtained from Eq. 19.1-16 by setting oA = wA(x, y) and neglecting the 
diffusion in the x direction. More complete equations, valid for high-velocity, variable- 
property boundary layers, are available elsewhere.' 

The usual boundary conditions on v, are that v, = 0 at the solid surface, and v, = 

v,(x) at the outer edge of the velocity boundary layer. The usual boundary conditions on T 
in Eq. 20.2-3 are that T = T,(x) at the solid surface, and T = T ,  at the outer edge of the 
thermal boundary layer. The corresponding boundary conditions on w, in Eq. 20.2-4 are 
that o, = w,,(x) at the surface and o, = o,, at the outer edge of the difusional boundary 
layer. Thus there are now three boundary layers to consider, each with its own thickness. 
In fluids with constant physical properties and large Prandtl and Schmidt numbers, the 
thermal and diffusional boundary layers usually lie within the velocity boundary layer, 
whereas for Pr < 1 and Sc < 1 they may extend beyond it. 

For mass transfer systems the velocity vy at the surface is usually not zero, but de- 
pends on x. Hence we set vy = v,(x) at y = 0. This boundary condition is appropriate when- 
ever there is a net mass flux between the surface and the stream, as in melting, drying, 
sublimation, combustion of the wall, or transpiration of the fluid through a porous wall. 
Clearly, some of these processes are possible with pure fluids, but for simplicity we have 
deferred their consideration to this chapter (see also 5918.3 and 22.8 for related analyses). 

With the help of the equation of continuity, Eqs. 20.2-1 to 4 can be formally inte- 
grated, with the boundary conditions just given, to obtain the following set of boundary 
layer balances: 

Continuity + motion: 

Continuity + energy: 

See, for example, W. H. Dorrance, Viscous Hypersonic Flow, McGraw-Hill, New York (1962), and 
K. Stewartson, The Theory of Laminar Boundary Layers in Compressible Fluids, Oxford University Press (1964). 



5j20.2 Steady-State Transport in Binary Boundary Layers 625 

Continuity + continuity of A: 

These equations are extensions of the von Ka'rmtin balances of 554.4 and 12.4 and may be 
similarly applied, as shown in Example 20.2-1. 

Boundary layer techniques have been of considerable value in developing the the- 
ory of high-speed flight, separations processes, chemical reactors, and biological mass 
transfer systems. A few of the interesting problems that have been studied are chemical 
reactions in hypersonic boundary layers: mass transfer from dropletsI2 electrode polar- 
ization in forced convection2 and free convection,3 reverse-osmosis water desalination: 
and interphase transfer in packed-bed reactors and distillation c ~ l u m n s . ~  

EXAMPLE 20.2-1 

Diffusion and Chemical 

An appropriate mass transfer analog to the problem discussed in Example 12.4-1 would be 
the flow along a flat plate that contains a species A slightly soluble in the fluid B. The concen- 
tration at the plate surface would be c,,, the solubility of A in B, and the concentration of A far 

I h ~ t i o n  in I s ~ t ~ ~ ~ a l  from the plate would be cA,. In this example we let c,, = 0 and break the analogy with Exam- 
Laminar Flow Along a ple 12.4-1 by letting A react with B by an nth order homogeneous reaction, so that RA = 
Soluble Flat Plate -k,"'c;. The concentration of dissolved A is assumed to be small, so that the physical proper- 

ties p, p, and %,, are virtually constant throughout the fluid. We wish to analyze the system, 
sketched in Fig. 20.2-1, by the von KArmAn method. 

SOLUTION We begin by postulating forms for the velocity and concentration profiles. To minimize the 
algebra and still illustrate the method, we select simple functions (clearly one can suggest 
more realistic functions): 

approaches with ~ Z = O  
velocity /,8,(~) 

71 

Fig. 20.2-1. Assumed velocity and con- 
centration profiles for the laminar bound- 
ary layer with homogeneous chemical 

' Concentration C,O reictibn. 

V. G. Levich, Physicochemical Hydrodynamics, 2nd edition (English translation), Prentice-Hall, 
Englewood Cliffs, N.J. (1962). 

C. R. Wilke, C. W. Tobias, and M. Eisenberg, Chem. Eng. Prog., 49,66-74 (1953). 
W. N. Gill, D. Zeh, and C. Tien, Ind. Eng. Chem. Fund., 4,433439 (1965); ibid., 5,367-370 (1966). 

See also P. L. T. Brian, ibid., 4,439445 (1965). 
J. P. Sdrensen and W. E. Stewart, Chem. Eng. Sci., 29,833-837 (1974); W.  E. Stewart and 

D. L. Weidman, ibid., 45,2155-2160 (1990); T .  C. Young and W. E. Stewart, AIChE Journal, 38,592-602, 
1302 (1992). 
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Note that we use different thicknesses, 6 and a,, for the velocity and concentration boundary 
layers. In order to relate this problem to that of Example 12.4-1, we introduce the quantity 
A = 6J6, which in this case is a function of x because of the chemical reaction occurring. We 
restrict the discussion to A 5 1, for which the concentration boundary layer lies entirely 
within the velocity boundary layer. We can also neglect the interfacial velocity vo = v,l,=,, 
which is small here because of the small solubility of A. Insertion of these expressions into 
Eqs. 20.2-5 and 7 then gives the differential equations 

for the boundary layer thicknesses 6 and 6, = SA. 
Equation 20.2-10 is readily integrated to give 

I 

Insertion of this regult into Eq. 20.2-11 and multiplication by -6A/vc,, gives 

as the differential equation for A. Thus A depends on the Schmidt number, Sc = p/pQAB, and 
on the dimensionless position coordinate shown in the square brackets. The bracketed quan- 
tity is 1 /(n + 1) times the first Damkohler number6 based on the distance x. 

When no reaction is occurring, ky is zero, and Eq. 20.2-13 becomes a linear first-order reac- 
tion for A3. When that equation is integrated, we get 

in which C is a constant of integration. Because A does not become infinite as x --+ 0, we obtain 
in the absence of chemical reaction (cf. Eq. 12.4-15): 

That is, when there is no reaction and Sc > 1, the concentration and velocity boundary layer 
thicknesses bear a constant ratio to one another, dependent only on the value of the Schmidt 
number. 

When a slow reaction occurs (or when x is small), a series solution to Eq. 20.2-13 can be ob- 
tained: 

A = S C ~ ' / ~ ( ~  + a,t + a2t2 + . . a) 

in which 

Substitution of this expression into Eq. 20.2-13 gives 

Because a, is negative, the concentration boundary layer thickness is diminished by the chem- 
ical reaction. 

G. Damkohler, Zeits. f. Electrochemie, 42,846-862 (1936); W .  E. Stewart, Chem. Eng. Prog. Symp. 
Series, #58, 61,16-27 (1965). 
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When a fast reaction occurs (or when x is very large), a series solution in I / (  is more ap- 
propriate. For large t ,  we assume that the dominant term is of the form A = const. e 5" where 
rn < 0. Substitution of this trial function into Eq. 20.2-13 then shows that 

A = ( s c@-~ /~  for large 5 (20.2-19) 

Combination of Eqs. 20.2-12 and 19 shows that, at large distances from the leading edge, 
the concentration boundary layer thickness 6, = 6 A  becomes a constant independent of v, 
and v. 

Once A@, Sc) is known, then the concentration profiles and the mass transfer rate at 
the surface may be found. A more refined treatment of this problem has been given else- 
where.7 

The laminar boundary layer on a flat plate (see Fig. 20.2-2) has been a popular system for heat 
and mass transfer studies. In this example, we give an analysis of subsonic forced convection 

Forced Convection from in this geometry at high mass-transfer rates, and discuss the analogies that hold in this situa- 
a Flat Plate at High tion. This example is an extension of Example 4.4-2. 
Mass-Transfer Rates 

SOLUTION 

Consider the nonisothermal, steady, tyo-dimensional flow of a binary fluid in the system of 
Fig. 20.2-2. The fluid properties p, p, C,, k, and 9,+, are considered constant, viscous dissipa- 
tion is neglected, and there are no homogeneous chemical reactions. The Prandtl boundary 
layer equations for the laminar region are 

Continuity: 

Motion: 

Energy: 

Continuity of A. 

dv, dv, d2vx 
v,--+v - = v -  

dx Y dy dy2 

Outer flow: 11,  = 1 Transition 
+ 1 1 ,  = 1 region I. 

1 1 ,  = 1 

Line of constant I1 

Y Fig. 20.2-2. TangentiaI flow along a 
sharp-edged semi-infinite flat plate 

, , with mass transfer into the stream. 
The laminar-turbulent transition 

I I T  = 0 usually occurs at a length Reynolds 
Leading edge 11, = 0 number (xv,/v),,,, on the order of 

'The boundary layer below the plate 1s omitted here lo5 to lo6. 

-- 

P. L. Chambre and J. D. Young, Physics of Fluids, 1,48-54 (1958). Catalytic surface reactions in 
boundary layers have been studied by P. L. Chambr6 and A. Acrivos, J. Appl. Pkys., 27,1322-1328 (1956). 
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The boundary conditions are taken to be: 

Here the function vO(x) stands for V&X, y) evaluated at y = 0 and describes the distribution of 
mass transfer rate along the surface. This function will be specified later. 

Equation 20.2-20 can be integrated, with the boundary condition of Eq. 20.2-26, to give 

This expression isto be inserted for v, into Eqs. 20.2-21 to 23. 
To capitalize on the analogous form of Eqs. 20.2-21 to 23 and the first six boundary condi- 

tions, we define the dimensionless profiles 

and the dimensionless physical property ratios 

With these definitions, and the above equation for v,, Eqs. 20.2-21 to 23 all take the form 

and the boundary conditions on the dependent variables reduce to the following: 

Thus the dimensionless velocity, temperature, and composition profiles all satisfy the same 
equation, but with their individual values of A. 

The form of the boundary conditions on n suggests that a combination of variables be 
tried. By analogy with Eq. 4.4-20 we select the combination: 

Then by treating l7 and as functions of 77 (see Problem 20B.3), we obtain the differential 
equation 

with the boundary conditions 
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From the last three equations we conclude that the profiles will be expressible in terms of the 
single coordinate q, if and only if the interfacial velocity vo(x) is of the form 

Any other functional form for v,(x) would cause the left side of Eq. 20.2-34 to depend on both 
x and q, SO that a combination of variables would not be possible. The boundary layer equa- 
tions would then require integration in two dimensions, and the calculations would become 
more difficult. Equation 20.2-37 specifies that vo(x) vary as 1 / f i ,  and thus, inversely with the 
boundary layer thickness 6 of Eq. 4.4-17.This equation has the same range of validity as Eq. 
20.2-34, that is, 1 << (v,x/v) < (v,x/v),,, (see Fig. 20.2-2). 

Fortunately the condition in Eq. 20.3-37 is a useful one. It corresponds to a direct propor- 
tionality of pv, to the interfacial fluxes 70, qO, and jAO. Conditions of this type arise naturally in 
diffusion-controlled surface reactions, and also in certain cases of drying and transpiration 
cooling. The determination of K for these situations is considered at the end of this example. 
Until then we treat K as given. 

With the specification of v,(x) according to Eq. 20.2-37, the problem statement is com- 
plete, and we are ready to discuss the calculation of the profiles. This is best done by numeri- 
cal integration, with specified values of the parameters A and K. 

The first step in the solution is to evaluate the velocity profile ll,. For this purpose it is 
convenient to introduce the function 

which is a generalization of the dimensionless stream function f used in Example 4.4-2. Then 
setting A = 1 in Eq. 20.2-34 and making the substitutions f' = df/dq = II,, f" = d2f/dV2 = 

dII,/dv, and so on, gives the equation of motion in the form 

and Eqs. 20.2-35,36, and 38 give the boundary conditions 

Equation 20.2-39 can be solved numerically with these boundary conditions to obtain f as a 
function of q for various values of K. 

Once the function f(q, K )  has been evaluated, we can integrate Eq. 20.2-34 with the 
boundary conditions in Eqs. 20.2-35 and 36 to obtain 

Some profiles calculated from this equation by numerical integration are given in Fig. 20.2- 
3. The velocity profiles are given by the curves for A = 1. The temperature and composition 
profiles for various Prandtl and Schmidt numbers are given by the curves for the corre- 
sponding values of A. Note that the velocity, temperature, and composition boundary lay- 
ers get thicker when K is positive (as in evaporation) and thinner when K is negative (as in 
condensation). 
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Fig. 20.2-3. Velocity, temperature, and composition profiles in the laminar boundary layer on a 
flat plate with mass transfer at the wall [H. S. Mickley, R. C. Ross, A. L. Squyers, and W. E. Stew- 
art, NACA Technical Note 3208 (1954).1 

The gradients of the velocity, temperature, and composition at the wall are obtainable 
from the derivative of Eq. 20.2-43: 

Some values computed from this formula by numerical integration are then given in Table 
20.2-1. 

Table 20.2-1 Dimensionless Gradients of Velocity, Temperature, and Composition in Laminar Flow Along a Flat Plate" 

" Taken from the following sources: E. Elzy and R. M. Sisson, Engineering Experiment Station Bulletin No. 40, Oregon State University, 
Corvallis, Or. (1967); H. L. Evans, Int. J. Heat and Mass Transfer, 3,321-339 (1961); W .  E. Stewart and R. Prober, Int. J. Heat and Mass 
Transfer, 5,1149-1163 (1962) and 6,872 (1963). More complete results, and reviews of earlier work, are given in these references. 

The value K = 0.87574 is the largest positive mass transfer rate attainable in this geometry with steady laminar flow. See 
H. W. Emmons and D. C. Leigh, Interim Technical Report No. 9, Combustion Aerodynamics Laboratory, Harvard University (1953). 
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The molecular fluxes of momentum, energy, and mass at the wall are then given by the 
dimensionless expressions 

with the tabulated values of lI'(0, A, K). Thus the fluxes can be computed directly when K 
is known. These expressions are obtained from the flux expressions of Newton, Fourier, 
and Fick, and the profiles as given in Eq. 20.2-43. The energy flux qo here corresponds to 
the conduction term -kVT of Eq. 19.3-3; the diffusive flux j,, is obtained by using Eq. 20.2-47 
above. 

The fluid properties p, p, ep, k, and PA, have been treated as constants in this develop 
ment. However, Eqs. 20.2-45 to 47 have been found to agree closely with the corresponding 
variable-property  calculation^,^'^ provided that K is generalized as follows, 

and that p, p, $, k, and are evaluated at the "reference conditions" Ti = :(T, + T.) and 
U A ~  = $ b A O  + @Am). 

In many situations, one of the following dimensionless quantities 

is known or readily computed. These flux ratios, R, are independent of x under the present 
boundary conditions and are related to A and K as follows, 

according to Eqs. 20.2-45 to 51. From Eq. 20.2-52 we see that the dimensionless interfacial 
mass flux K can be tabulated as a function of R and A, by use of the results in Table 20.2-1. 
Then K can be found by interpolation if the numerical values of R and A are given for one of 
the three profiles (i.e., if we can specify R,, or R, and Pr, or R, and Sc.) Convenient plots of 
these relations are given in Figures 22.8-5 to 7. 

As a simple illustration, suppose that the flat plate is porous and is saturated with liquid 
A, which vaporizes into a gaseous stream of A and B. Suppose also that gas B is noncondens- 
able and insoluble in liquid A, and that wAo and o,, are given. Then R, can be calculated from 

- - 

For calculations of momentum and energy transfer in gas flows with K = 0, see E. R. G. Eckert, 
Trans. A.S.M.E., 78,1273-1283 (1956). 

For calculations of momentum and mass transfer in binary and multicomponent gas mixtures, see 
W. E. Stewart and R. Prober, Ind. Eng. Chem. Fundamentals, 3,224-235 (1964); improved reference 
conditions are provided by T. C. Young and W. E. Stewart, ibid., 25,276482 (19861, as noted in 922.9. 

lo For other methods of applying Eq. 20.2-47 to variable-property fluids, see 0. T. Hanna, AIChE 
Joltrnnl, 8,278-279 (1962); 11,706-712 (1965). 
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Table 20.2-2 Coefficients for the Approximate Flat-Plate Formulas," Eqs. 20.2-54 and 55 

" Taken from H. J. Merk, Appl. Sci. Res., A8,237-277 (1959), and R. Prober and W. E. Stewart, Int. 1. Heat and Mass Transfer, 6,221-229, 

Eq. 20.2-51 with n, = 0, and K can be found by ihterpolating the function K(R, A) to R = A, 
and A = p/pQAB. 

For moderate values of K, the calculations can be simplified by representing II'(0, A, K) 
as a truncated Taylor series in the parameter K: 

This expansion can be written more compactly as 

in which a and b are slowly varying functions of A, given in Table 20.2-2. Insertion of 
Eq. 20.2-54 into Eq. 20.2-52 gives the convenient expression for the dimensionless interfa- 
cial mass flux K 

for calculations with unknown parameter K. This result is easy to use and fairly accurate. The 
predicted function K(R, A) is within 1.6% of that found from Table 20.2-1 for (R( < 0.25 and 
A > 0.1. 

This example illustrates the related effects of the interfacial velocity v, on the velocity, 
temperature, and composition profiles. The effect of vo on a given profile, II, is small if R << 
1 for that profile (as in most separation processes) and large if R 2 1 (as in many combustion 
and transpiration cooling processes). Some applications are given in Chapter 22. 

EXAMPLE 20.2-3 

Approximate Analogies 
for the Flat Plate a t  
Low Mass-Transfer 
Rates 

Pohlhausen" solved the energy equation for the system of Example 12.1-2 and curve-fitted 
his results for the heat transfer rate Q (see third line of Table 12.4-1). Compare his result with 
Eq. 20.2-46, and derive the corresponding results for the momentum and mass fluxes. 

SOLUTION 

By inserting the coefficient 0.664 in place of v148/315 in Eq. 12.4-17, and setting 2Wqo(x) = 

(dQldL)I,,,, we get 

This result is subject to the boundary condition v,,(x) = 0, which corresponds to K = 0 in the 
system of Example 20.2-2. 

" E. Pohlhausen, Zeits. f. angew. Math. Mech., 1,115-121 (1921). 
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Equation 20.2-56 is obtainable from Eq. 20.2-46 when K = 0 by setting IIf(O, Pr, 0) = 
0.4696~r"~; this agrees with Table 20.2-2 at A = 1. Making comparable substitutions in Eqs. 
20.2-45 and 46, we get the convenient analogy 

which has been recommended by Chilton and Colburn12 for this flow situation (cf. 5514.3 and 
22.3). The expression for agrees with the exact solution at K = 0, and the results for qo and 
j,, are accurate within 22% at K =O for A > 0.5. 

520.3 STEADY-STATE BOUNDARY LAYER THEORY 
FOR FLOW AROUND OBJECTS 

In 9518.5 and 6 we discussed two related mass transfer problems of boundary layer type. 
Now we want to enlarge'-7 on the ideas presented there and consider the flow around 
objects of other shapes such as the one shown in Fig. 12.4-2. Although we present the 
material in this section in terms of mass transfer, it is understood that the results can be 
taken over directly for the analogous heat transfer problem by appropriate changes of 
notation. The concentration boundary layer is presumed to be very thin, which means 
that the results are restricted either to small diffusivity or to short exposure times. The 
results are applicable only to the region between the forward stagnation locus (from 
which x is measured) and the region of separation or turbulence, if any, as indicated in 
Figure 12.4-2. 

The concentration of the diffusing species is called c,, and its concentration at the 
surface of the object is c,,. Outside the concentration boundary layer, the concentration 
of A is zero. 

Proceeding as in Example 12.4-3, we adopt an orthogonal coordinate system for the 
concentration boundary layer, in which x is measured along the surface everywhere in 
the direction of the streamlines. The y-coordinate is perpendicular to the surface, and the 
z-coordinate is measured along the surface perpendicular to the streamlines. These are 
"general orthogonal coordinates," as described in Eqs. A.7-10 to 18, but with h, = 1, and 
h, = hx(x, z )  and h, = h,(x, z). Since the flow near the interface does not have a velocity 
component in the z direction, the equation of continuity there is 

'' T. H. Chilton and A. P. Colburn, Ind. Eng. Chem., 26,1183-1187 (1934). 
' A. Acrivos, Chem. Eng. Sci., 17,457-465 (1962). 
W .  E. Stewart, AKhE Journal, 9,528-535 (1963). 
D. W. Howard and E. N. Lightfoot, AlChE lournal, 14,458-467 (1968). 
W .  E. Stewart, J. B. Angelo, and E. N. Lightfoot, AlChE Journal, 16,771-786 (1970). 
E. N. Lightfoot, in Lecfures in Transport Phenomena, American Institute of Chemical Engineers, New 

York (1969). 
E. Ruckenstein, Chem. Eng. Sci., 23,363-371 (1968). 
W .  E. Stewart, in Physicochemical Hydrodynamics, Vol. 1 (D. B. Spalding, ed.), Advance 

Publications, Ltd., London (1977), pp. 22-63. 



634 Chapter 20 Concentration Distributions with More Than One Independent Variable 

according to Eq. A.7-16. The diffusion equation for the concentration boundary layer is then 

where Eqs. A.7-15 and 17 have been used. In writing these equations it has been as- 
sumed that: (i) the x- and z-components of the diffusion flux are negligible, (ii) the 
boundary layer thickness is small compared to the local interfacial radii of curvature, 
and (iii) the density and diffusivity are constant. We now want to get formal expressions 
for the concentration profiles and mass fluxes for two cases that are generalizations of 
the problems solved in 518.5 and 518.6. When we get the expressions for the local molar 
flux at the interface, we will find that the dependences on the diffusivity ($power in 
518.5 and the $-power in 918.6) correspond to cases (a) and (b) below. This turns out to be 
of great importance in the establishment of dimensionless correlations for mass transfer 
coefficients, as we shall see in Chapter 22. 

Zero Velocity Gradient at the Mass Transfer Surface 

This situation ariges in a surfactant-free liquid flowing around a gas bubble. Here vx does 
not depend on y, and v, can be obtained from the equation of continuity given above. 
Therefore, for small mass-transfer rates we can write general expressions for the velocity 
components as 

V, = v,(x, Z) (20.3-3) 

where y depends on x and z. When this is used in Eq. 20.3-2, we get for the diffusion in 
the liquid phase 

which is to be solved with the boundary conditions 

B.C. 1: 
B.C. 2: 
B.C. 3: 

The nature of the boundary conditions suggests that a combination of variables treatment 
might be appropriate. However, it is far from obvious how to construct an appropriate di- 
mensionless combination. Hence we try the following: let cA/cA0 = f ir)) ,  where 77 = y/6,(x, z), 
and 6,(x, z) is the boundary layer thickness for species A, to be determined later. 

When the indicated combination of variables is introduced into Eq. 20.3-5, the equa- 
tion becomes 

with the boundary conditions: f(0) = 1 and f(w) = 0. If, now, the coefficient of the 
r)(df/dr)) term were a constant, then Eq. 20.3-9 would have the same form as Eq. 4.1-9, 
which we know how to solve. For convenience we specify the constant as 

Next we insert the expression for y from Eq. 20.3-4 and rearrange the equation thus: 
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Linear Velocity Profi 

This is a linear, first-order equation for 6:, which has to be solved with the boundary 
condition 6, = 0 at x = 0. Integration of Eq. 20.3-11 gives 

as the thickness function for the diffusional boundary layer. Since Eq. 20-3-9 and the bound- 
ary conditions then contain 7 as the only independent variable, the postulated combination 
of variables is valid, and the concentration profiles are given by the solution of Eq. 20.3-9: 

2 T  
f(7) = 1 - -- exp (-7') dTj = 1 - erfq * 0 

Equations 20.3-12 and 13 are the solution to the problem at hand. 
Next, we combine this solution with Fick's first law to evaluate the molar flux of 

species A at the interface: 

This result shows the same dependence of the mass flux on the .$power of the diffusivity 
that arose in Eq. 18.5-17, for the much simpler gas absorption problem solved there. In 
fact, if we set the scale factors h, and h, equal to unity and replace v, by v,,,, we recover 
Eq. 18.5-17 exactly. 

.le Near the Mass-Transfer Surface 

This velocity function is appropriate for mass transfer at a solid surface (see Example 
12.4-3) when the concentration boundary layer is very thin. Here v, depends linearly on 
y within the concentration boundary layer, and vy can be obtained from the equation of 
continuity. Consequently, when the net mass flux through the interface is small, the ve- 
locity components in the concentration boundary layer are 

in which y depends on x and z. Substituting these expressions into Eq. 20.3-2 gives the 
diffusion equation for the liquid phase 

which is to be solved with the boundary conditions 

B.C. 1: 
B.C. 2: 

B.C. 3: 

atx = 0, CA = 0 

aty = 0, C~ = C ~ o  
asy+m,  cA+O 

Once again, we use the method of combination of variables, by setting cA/cA0 = f(q), 
where 7 = y/SA(x, z). 

When the change of variables is made, the diffusion equation becomes 
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EXAMPLE 20.3-1 

Mass Transfer for 
Creeping Flow Around 
a Gas Bubble 

with the boundary conditions: f(0) = 1 and f(m) = 0. A solution of the form f(q) is possi- 
ble only if the factor in parentheses is a constant. Setting the constant equal to 3 reduces 
Eq. 20.3-21 to Eq. 18.6-6, for which the solution is known. Therefore we now get the 
boundary layer thickness by requiring that 

The solution of this first-order, linear equation for 61 is 

Hence the solution to the problem in this subsection is 
< 

/vmexp (-ij3) di j  
c A 
- = f(q) = 
C~~ r (3 

which reduces to Eq. 18.6-10 for the system considered there. 
Finally, we get the expression for the molar flux at the interface, which is 

For a plane surface, with h, = h, = 1 and P = constant, Eq. 20.3-26 reduces to Eq. 18.6-11. 

A liquid B is flowing very slowly around a spherical bubble of gas A of radius R. Find the rate 
of mass transfer of A into the surrounding fluid, if the solubility of gas A in liquid B is c~,. 
(a) Show how to use Eq. 20.3-14 to get the mass flux at the gas-liquid interface for this system. 
(b) Then get the average mass flux over the entire spherical surface. 

SOLUTION 

(a) Select as the origin of coordinates the upstream stagnation point, and define the coordi- 
nates x and z as follows: x = RO and z = R(sin 8)4, in which 6 and 4 are the usual spherical 
coordinates. The y direction is then the same as the r direction of spherical coordinates. The 
interfacial velocity is obtained from Eq. 4B.3-3 as v, = iv, sin 8, where v, is the approach 
velocity. 

When these quantities are inserted into Eq. 20.3-14 we get 

(R sin 13)~(iv, sin 8)' 
0 = 

(R)(R sin 8)2(:v, sin 8)d(R8) 
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(b) To get the surface-averaged value of the mass flux, we integrate the above expression 
over all 8 and 4 and divide by the sphere surface: 

R sin 8 d8 d+ 

In going from the second to the third line, we made the change of variable cos 8 = u, and 
to get the fourth line, we factored out (1 - u)  from the numerator and denominator. Equa- 
tion 20.3-28 was cited in Eq. 18.5-20 in connection with absorption from gas bubbles.' This 
equation is referred to again in Chapter 22 in connection with the subject of mass transfer 
coefficients. 

520.4 BOUNDARY LAYER MASS TRANSPORT WITH 
COMPLEX INTERFACIAL 

Time-dependent interfacial motions and turbulence are common in fluid-fluid transfer 
operations. Boundary layer theory gives useful insight and asymptotic relations for these 
systems, utilizing the thinness of the concentration boundary layers for small 9,, (as in 
liquids) or for flows with frequent boundary layer separation (as at rippling or oscillating 
interfaces). Mass transfer with simple interfacial motions has been discussed in 918.5 for a 
laminar falling film and a circulating bubble, and in Example 20.1-4 for a uniformly ex- 
panding interface. Here we consider mass transfer with more general interfacial motions. 

Consider the time-dependent transport of species A between two fluid phases, with 
initially uniform but different compositions. We start with the binary continuity equa- 
tion for constant p and 9,, (Eq. 19.1-16, divided by p): 

We now want to reduce this to boundary layer form for small %,,, and then present so- 
lutions for various forced-convection problems with controlling resistance in one phase. 

We use the following boundary layer approximations: 

(i) that the diffusive mass flux is collinear with the unit vector n normal to the 
nearest interfacial element. (This approximation is used throughout the bound- 
ary layer sections of this book. Higher-order approximations: not treated here, 
are appropriate for describing boundary layer diffusion near edges, wakes, and 
separation loci.) 

9. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), p. 408, 
Eq. 72.9. 

' J. B. Angelo, E. N. Lightfoot, and D. W. Howard, AKhE Journal, 12,751-760 (1966). 
* W. E. Stewart, J. B. Angelo, and E. N. Lightfoot, NChE Journal, 16,771-786 (1970). 

W. E. Stewart, AKhE Journal, 33,2008-2016 (1987); 34,1030 (1988). 
J. Newman, Electroanal. Chem. and Interfacial Electrochem., 6,187-352 (1973). 
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(ii) that the tangential fluid velocity relative to the interface is negligible within the 
concentration boundary layer. (This approximation is satisfactory for 
fluid-fluid systems free of surfactants, when the interfacial drag is not too 
large.) 

(iii) that the concentration boundary layer along each interface is thin relative to the 
local radii of interfacial curvature. 

(iv) that the concentration boundary layers on nonadjacent interfacial elements do 
not overlap. 

Each of these approximations is asymptotically valid for small 9,, in nonrecirculating 
flows with nonrigid interfaces and nonzero Dw,/Dt-that is, with time-dependent con- 
centration as viewed by an observer moving with the fluid. The systems considered in 
part (a) of 520.3 are thus included, because they are time-dependent for such an observer 
(though steady for a stationary one). 

Interfacially embedded coordinates are used in this discussion, with a piecewise 
smooth interfacial grid as in Fig. 20.4-1. Each interfacial element in the system is perma- 
nently labeled with surface coordinates (u, w), and its position vector is r,(u, w, t). Each 
point in a boundary layer is identified by its distance y from the nearest interfacial point, 
together with the surface coordinates (u, w) of that point. The instantaneous position 
vector of each point (u, w, y) at time t is then 

relative to a stationary origin, as illustrated in Fig. 20.4-2. The function r,(u, w, t) gives 
the trajectory of each interfacial point (u, w, O), and the associated function n(u, w, t )  = 

(d/dy)r gives the instantaneous normal vector from each surface element toward its posi- 
tive side. These functions are computable from fluid mechanics for simple flows, and 
provide a framework for analyzing experiments in complex flows. 

Drop 1 

Drop 2 

Composite 
drop 

Fig. 20.4-1. Schematic illustration of embedded coordinates in a simple coa- 
lescence process. W.E. Stewart, J.B. Angelo, and E.N. Lightfoot, AIChE Jour- 
nal, 14,458467 (1968). 
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Time t ' 

4' Time t 

origin of // A 

Stationary 
4 I+ 
dy coordinates &' 

Fig. 20.4-2. Element dS (shaded) of a deforming interfacial area shown at two different times, 
t' and t, with the adjacent boundary layer. The vectors are (at time t): 

8' = r&u, w, t) = position vector of a point on the interface 

8 = yn(u, w, t) = vector of lengthy normal to the interface locating a point in 
the boundary layer 

+ 
OQ = r(u, W, y, t) = position vector for a point in the boundary layer 

The element of interfacial area consists of the same material particles as it moves through 

space. The magnitude of the area changes with time and is given by dS = 1 2 du X 

Similarly, the magnitude of the volume of that part of the boundary layer between y and 

y+dyisdV= 

The instantaneous volume of a spatial element du dw dy in the boundary layer (see 
Fig. 20.4-2) is 

dV = vg(u, W, y, t) du dw dy (20.4-3) 

in which dg(u, w, y, t) is the following product of the local interfacial base vectors, 
(d/du)r, and (d/dv)r,, and the normal unit vector (d/dy)r, = n, 

and is considered nonnegative in this discussion. The second equality follows because n 
is collinear with the vector product of the local interfacial base vectors, which lie in the 
plane of the interface. Correspondingly, the instantaneous area of the interfacial element 
du dw in Fig. 20.4-2 is 

in which s(u, w, t )  is the following product of the interfacial basis vectors: 
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In these interfacially embedded coordinates, the mass average velocity V relative to sta- 
tionary coordinate axes takes the form 

In this section, v is the mass average fluid velocity relative to an observer at (u, w, y), and 
(d/at)r(u, w, y, t )  is the velocity of that observer relative to the stationary origin. Taking 
the divergence of this equation gives the corollary2 (see Problem 20D.5) 

This equation states that the divergence of V differs from that of v by the local rate of ex- 
pansion or contraction of the embedded coordinate frame. 

The last term in Eq. 20.4-8 arises when interfacial deformation occurs. Its omission in 
such problems gives inaccurate predictions, which ~ i g b i e ~  and ~ a n c k w e r t s ~ , ~  then ad- 
justed by introducing hypothetical surface residence times5f6 or surface rej~venation.~ 
Such hypotheses are not needed in the present analysis. 

~pplication'of Eq. 20.4-8 at y = 0 and use of the constant-density condition 

along with the no-slip condition on the tangential part of v, gives the derivative 

Hence, the truncated Taylor expansion 

describes the normal component of v in an incompressible fluid near a deforming 
interface. 

The corresponding expansion for the tangential part of v gives 

in which B 11 (u, w, t )  is the interfacial y-derivative of v 1 1 .  With these results (neglecting 
the 0 ( y 2 )  terms) and approximation (i), we can write Eq. 20.4-1 for wA(u, w, y, t )  as 

Here (V, n) is the surface divergence of n at the nearest interfacial point and is the sum 
of the principal curvatures of the surface there. The + . . . stands for terms of higher 
order, which are here neglected. 

To select the dominant terms in Eq. 20.4-13, we introduce a dimensionless coordinate 

' R. Higbie, Trans. AIChE, 31,365-389 (1935). 
P. V. Danckwerts, ind. Eng. Chem., 43,1460-1467 (1951). 
P. V. Danckwerts, AIChE Journal, 1,456-463 (1955). 
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in which K is an average thickness of the concentration boundary layer. When Eq. 20.4-14 
is written in terms of this new variable, we get 

for w, in terms of u, w, Y, and t. Since, on physical grounds, K will decrease with decreas- 
ing %ABf the dominant terms for small gAB are those of lowest order in K-namely, all but 
the B 11 and (V, . n) contributions. The subdominance of the latter terms confirms the as- 
ymptotic validity of approximations (ii) and (iii) in non-recirculating flows. 

Now, the coefficients of all the dominant terms must be proportional over the range 
of BAB, in order that these terms remain of comparable size in the small-EbAB limit. Such a 
"dominant balance principle" was applied previously in 513.6. Here it gives the orders 
of magnitude 

9AB/~2  = o(1) and V ~ , / K  = o(1) (20.4-16, 17) 

for the terms of the lowest order with respect to K. Equation 20.4-16 is consistent with the 
previous examples of $power dependence of the diffusional boundary layer thickness 
on 9,, in free-surface flows. It also confirms the asymptotic correctness of assumption 
(iv) for small values of aAB.  Equation 20.4-17 is consistent with the proportionality of v: 
to shown under Eq. 20.1-10 for the Arnold problem. Thus, the boundary layer 
equation for o, in either phase near a deforming interface is 

to lowest order in K. At the next order of approximation, terms proportional to K would 
appear, and these involve the tangential velocity yB I and the interfacial curvature 
(V, n). The latter term appears in Problems 20C.1 and 20C.2. 

Multiplication of Eq. 20.4-18 by p/MA (a constant for the assumptions made here), 
and use of z as the coordinate normal to the interface as in Example 20.1-1, give the cor- 
responding equation for the molar concentration cA(u, w, z, t )  

which allows convenient extension of several earlier examples. Another useful corollary 
is the binary boundary layer equation in terms of xA and v* 

in which c and 9IAB have been treated as constants, as in Example 20.1-1. 

EXAMPLE 20.4-1 

Mass Transfer with 

Equation 20.4-19 readily gives a generalized form of Eq. 20.1-65, by omitting the reaction 
source term RA and neglecting the normal velocity term v,, (thus assuming the interfacial 
net mass flux to be small). The equation thus obtained has the form of Eq. 20.1-65, except 

Nonuniform Interfacial that the total surface growth rate d In S / d t  is replaced by the local growth rate, given by 
Deformation d In s(u, w, t)/dt. The resulting partial differential equation has two additional space vari- 

ables (u and w), but is solvable in the same manner, since no derivatives with respect to the 
added variables appear. 
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SOLUTION Rewriting Eq. 20.1-66 with a boundary layer thickness function Nu, w, t) leads by analogous 
steps to the relation 

EXAMPLE 20.4-2 

Gas Absorption with 
Rapid Reaction and 
Intetfacial Deformation 

and the corresponding generalizations of Eqs. 20.1-71 and 72: 

CA --  z 
- 1 - erf (20.4-22) 

c~~ d4?bAB Sb [s(u, Wr ~) /s(u,  W/ t)12 di 

These solutions, unlike Eq. 20.1-71 and Eq. 20.1-72, include the spatial variations of the 
boundary layer thickness and interfacial molar flux NAZO that occur in nonuniform flows. 
Local stretching of the interface (as at stagnation loci) thins the boundary layer and enhances 
NAzO. Local interfacial shrinkage (at separation loci) diminishes NAz0, but also ejects stale fluid 
from the boundary layer, allowing its mixing into the interior of the same phase. Observa- 
tions of mass transler enhancement by such mixing have been interpreted by some workers 
as "surface renewal," even though creation of new surface elements in an existing surface is 
not permitted in continuum fluid mechanics. 

These results, and others for negligible v,,, are obtainable conveniently by introducing 
the following new variables into Eq. 20.4-19: 

Z = ZS(U, W, t) and 7 = (20.4-24/25) 

In the absence of chemical reactions, the resulting differential equation for the concentration 
function c,(u, w, Z, 7) becomes 

This is a generalization of Fick's second law to an asymptotic relation for forced convection in 
free-surface flows. 

Show how to generalize Example 20.1-2 to flow systems, by using Eq. 20.4-26 for the two re- 
action-free zones. 

SOLUTION 

Using Eq. 20.4-26, we get the following replacements for Eqs. 20.1-26 and 27: 

Now the reaction plane z = z, of the original example is a time-dependent suuface, Z = Z,, or 
z,(u, w, t) = Z,/S(U, W, t). The initial and boundary conditions remain as before, subject to this 
generalization of the reaction-front location. 

The solutions for c, and cB then take the forms in Eqs. 20.1-35 and 36, with z / l h  replaced 
by z/G, and z R / ~  by qY. The latter constant is again given by Eq. 20.1-37. The enhance- 
ment of the absorption rate by the chemical reaction accordingly parallels the expressions that 
will be given in Eq. 22.5-10, and simplified in Eqs. 22.5-11 through 13. 
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520.5 "TAYLOR DISPERSION" IN LAMINAR TUBE FLOW 

Here we discuss the transport and spreading of a solute "pulse" of material A intro- 
duced into fluid B in steady laminar flow through a long, straight tube of radius R, as 
shown in Fig. 20.5-1. A pulse of mass m, is introduced at the inlet z = 0 over a very short 
period near time t = 0, and its progress through the tube is to be analyzed in the long- 
time limit. Problems of this type arise frequently in process control (see Problem 20C.41, 
medical diagnostic procedures,' and in a variety of environmental applications.2 

A short distance downstream from the inlet, the &dependence of the mass fraction 
distribution will die out. Then the diffusion equation for oA(r, z, t) in Poiseuille flow with 
constant p, p, and a,, takes the form 

This equation is to be solved with the boundary conditions 

B.C. 1 and 2: ~ W A  a t r = O a n d a t r = R ,  -- dr - 0 (20.5-2) 

which express the radial symmetry of the mass fraction profile and the impermeability of 
the tube wall to diffusion. For this long-time analysis it is not necessary to speclfy the exact 
shape of the pulse injected at t = 0. No exact analytical solution is available for the mass 
fraction profile wA(r, z, t)-even if an initial condition were clearly formulated-but Tay- 
l0$r4 gave a useful approximate analysis that we summarize here. This involves getting 
from Eq. 20.5-1 a partial differential equation for the cross-sectional average mass fraction 

which can then be solved to describe the behavior at long times. 

' J. B. Bassingthwaighte and C. A. Goresky, in Section 2, Volume 3 of Handbook of Physiology, 2nd 
edition, American Physiological Society, Bethesda, Md. (1984). 

P. C. Chatwin and C. M. Allen, Ann. Rev. Fluid Mech., 17,119-150 (1985); B. E. Logan, 
Environmental Transport Processes, Wiley-Interscience, New York (1999), Chapters 10 and 11; J. H. 
Seinfeld, Advances in Chemical Engineering, Academic Press, New York (1983), pp. 209-299. 

G. I. Taylor, Proc. Roy. Soc. A219,186-203 (1953). 
G. I. Taylor, Proc. Roy. Soc., A225,473-477 (1954). 
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Taylor began by neglecting the axial molecular diffusion term (dashed underlined 
term in Eq. 20.5-I), and subsequently showed4 that this is permissible if the P6clet num- 
ber PhAB = R(vZ)/9IAB is of the order of 70 or greater, and if the length Lp(t) of the region 
occupied by the pulse, measured visually in Taylor's experimentsf3 is of the order of 
170R or greater. Here (v,) = $v,,,,~ is the mean speed of the flow. 

Taylor sought a solution valid for long times. He estimated the condition for the va- 
lidity of his result to be 

When the pulse length Lp attains this range, enough time has elapsed that the initial 
shape of the pulse no longer matters. 

In order to follow the development of the concentration profile as the fluid moves 
downstream, it is useful to introduce the shifted axial coordinate 

When this is used in Eq. 20.5-1 (without the dashed-underlined term), we get the follow- 
ing diffusion equalion for wA(rf Z, t ) ,  

in which 6 = r/R is the dimensionless radial coordinate. The time derivative here is under- 
stood to be taken at constant 2, and, under the condition of Eq. 20.5-4, it may be neglected 
relative to the radial diffusion term. As a result we have a quasi-steady-state equation 

For the condition of Eq. 20.5-4, the mass fraction can be expressed as 

where (w,) is a function of 2 and t. Substituting this expression into the right side of Eq. 
20.5-7, and accordingly neglecting wi, we then get 

from which the radial dependence of the mass fraction can be obtained under the condi- 
tion of Eq. 20.5-4. 

Integration of Eq. 20.5-9 with the boundary conditions of Eq. 20.5-2 then yields 

The average of this profile over the cross section is 
f l  

Subtracting this equation from the previous one, and replacing v,,,,, by 2(vz), gives finally 

as Taylor's approximate solution of Eq. 20.5-6. 
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The total mass flow of A through a plane of constant Z (that is, the flow relative to 
the average velocity (v,)) is 

Next we note that, with the assumption of p = constant, p(wA(vz)) = (pA)(v,) and 
p(oAvz) = (pAvA,) = (nAz). (Replacing v, by VAz is allowed here because, with axial mol- 
ecular diffusion neglected, species A and B are moving with the same axial speed). 
Therefore when Eq. 20.5-13 is divided by T R ~ ,  we obtain the averaged mass flux 
expression 

relative to stationary coordinates. Here K is an axial dispersion coefficient, given by Tay- 
lor's analysis as 

This formula indicates that axial dispersion (in the range P6 >> 1 considered so far) is 
enhanced by the radial variation of v, and reduced by radial molecular diffusion. 

Although Eq. 20.5-14 has the form of Fick's law in Eq. (C) of Table 17.8-2, the present 
equation does not include any axial molecular diffusion. Also it should be emphasized 
that K is not a property of the fluid mixture, but depends on R and (v,) as well as on %,,. 

Next we write the equation of continuity of Eq. 19.1-6, averaged over the tube cross 
section, as 

When the expression for the mass flux of A from Eq. 20.5-14 is inserted, we get the fol- 
lowing axial dispersion equation: 

This equation can be solved to get the shape of the traveling pulse resulting from a 6- 
function input of a mass m~ of solute A into a stream of otherwise pure B: 

This can be used along with Eq. 20.5-15 to extract gAB from data on the concentrations in 
the traveling pulse. In fact, this is probably the best method for reasonably quick mea- 
surements of liquid diffusivities. 

Taylor's development laid the foundation for an extensive literature on convective dis- 
persion. However, it remained to study the approximations made and to determine their 
range of validity. ~ r i s ~  gave a detailed treatment of dispersion in tubes and ducts, covering 
the full range of t and including diffusion in the z and 0 directions. His long-time asymptote 

R. Aris, PYOC. Roy. SOC., A235,67-77 (1956). 
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Fig. 20.5-2. Sketch showing the limits of the Taylor (Eq. 20.3-15) 
and Aris (Eq. 20.5-19) expressions for the axial dispersion 
coefficient. This figure is patterned after one in Ref. 6. 

is an important extension of Eq. 20.5-15. From this result, we see that molecular diffusion 
enhances the axial dispersion when the Pkclet number Pk = R ( V , ) / % ~  is less than V'% 
and inhibits axial dispersion at larger Peclet numbers, where Taylor's mode of transport 
predominates. 

The ranges of validity of the Taylor and Aris dispersion formulas have been studied 
thoroughly by finite difference calculationsb and by orthogonal coll~cation.~ Figure 20.5- 
2 shows the useful ranges of Eq. 20.5-15 and 19. The latter formula has been widely used 
for measurements of binary diffusivities, and an extension of it8 has been used to mea- 
sure ternary diffusivities in liquids. 

Several further investigations on convective dispersion will be mentioned here. 
Coiled tubes give reduced longitudal dispersion, as shown by the experiments of Koutsky 
and Adler9 and analyzed for laminar flow by Nunge, Lin, and Gill.'' This effect is impor- 
tant in chemical reactor design and in diffusivity measurements, where coiling is often 
necessary to get enough tube length into a compact apparatus. 

Extra-column dispersion, caused by the pump and connecting tubing of chromato- 
graphic systems, was investigated by Shankar and ~enhoff" with detailed predic- 

V. Ananthakrishnan, W. N. Gill, and A. J. Barduhn, AlChE Journal, 11,1063-1072 (1965). 
J. C. Wang and W. E. Stewart, AKhE Journal, 29,493497 (1983). 
Ph. W. M. Rutten, Diffusion in Liquids, Delft University Press, Delft, The Netherlands (1992). 
J. A. Koutsky and R. J. Adler, Can. J. Chem. Eng., 42,239-246 (1964). 

lo R. J. Nunge, T. S. Lin, and W. N. Gill, 1. Fluid Mech., 51,363-382 (1972). 
"A. Shankar and A. M. Lenhoff, J. Chromatography, 556,235-248 (1991). 
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tions and precise experiments. Their experiments showed that the form of radial av- 
eraging is important at times shorter than the recommended range shown in Fig. 
20.5-2 for the Taylor-Aris formula. Depending on the type of analyzer used, the data 
may be better described either by a cup-mixing average p,b or by the area average 
(p,) used above. 

Hoagland and Prud'homme12 have analyzed laminar longitudinal dispersion in 
tubes of sinusoidally varying radius, R(z) = R,(1 f E sin(2m/A)), to model dispersion in 
packed-bed processes. Their results parallel Eq. 20.5-19, when the variations have small 
relative amplitude 8 and long relative wavelength A/&. One might think that the axial 
dispersion in a packed column would be similar to that in tubes of sinusoidally varying 
radius, but that is not the case. Instead of Eq. 20.3-19, one finds K .= 2.59,,PeAB, with the 
first power of the P6clet number appearing, instead of the second power and with K in- 
dependent of 9JAB.13 Brenner and Edwards14 have given analyses of convective disper- 
sion and reaction in various geometries, including tubes and spatially periodic packed 
beds. 

Dispersion has also been investigated in more complex flows. For turbulent flows in 
straight tubes, Taylor15 derived and experimentally verified the axial dispersion formula 
K/Rv* = 10.1, where v* is the friction velocity used in Eq. 5.3-2. Bassingthwaighte and 
Goresky' investigated models of solute and water exchange in the cardiovascular sys- 
tem, and Chatwin and Allen2 give mathematical models of turbulent dispersion in rivers 
and estuaries. 

Equations 20.5-1 and 19 are limited to the conditions of Eqs. 20.5-2 and 4. Therefore, 
they are not appropriate for describing entrance regions of steady-state reactor opera- 
tions or systems with heterogeneous reactions. Equation 20.5-1 is a better starting point 
for laminar flows. 

QUESTIONS FOR DISCUSSION 

1. What experimental difficulties might be encountered in using the system in Example 20.1-1 to 
measure gas-phase diffusivities? 

2. What problems do you foresee in using the Taylor dispersion technique of s20.5 for measur- 
ing liquid-phase diffusivities? 

3. Show that Eq. 20.1-16 satisfies the partial differential equation as well as the initial and 
boundary conditions. 

4. What do you conclude from Table 20.1-l? 
5. Why are Laplace transforms useful in solving the problem in Example 20.1-3? Could Laplace 

transforms be used to solve the problem in Example 20.1-I? 
6. How is the velocity distribution in Example 20.1-4 obtained? 
7. Describe the method of solving the variable surface area problem in Example 20.1-4. 
8. Perform the check suggested after Eq. 20.1-74. 
9. What effects do chemical reactions have on the boundary layer? 

10. Discuss the Chilton-Colburn expressions in Eq. 20.2-57. Would you expect these same rela- 
tions to be valid for flows around cylinders and spheres? 

'' D. A. Hoagland and R. K. Prud'homme, AlChE Journal, 31,236-244 (1985). 
l3 A. M. Athalye, J. Gibbs, and E. N. Lightfoot, J. Chromatog. 589,71-85 (1992). 
l4 H. Brenner and D. A. Edwards, Macrotransport Processes, Butterworth-Heinemann, Boston (1993). 
l5 G. I. Taylor, Proc. Roy. Soc., A223,446467 (1954). 
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PROBLEMS 20A.1. Measurement of diffusivity by unsteady-state evaporation. Use the following data to 
determine the diffusivity of ethyl propionate (species A) into a mixture of 20 mole% air and 
80 mole% hydrogen (this mixture being treated as a pure gas B).' 

Increase in vapor volume (cm3) ~ (sl") 

These data were obtained1 by using a glass tube 200 cm long, with an inside diameter 1.043 
cm; the temperature was 27.9OC and the pressure 761.2 mm Hg. The vapor pressure of ethyl 
propionate at this temperature is 41.5 mm Hg. Note that t is the actual time from the start of 
the evaporation, whereas the volume increase is measured from t =. 240 s. 

20A.2. Absorption of oxygen from a growing bubble (Fig. 20A.2). Oxygen is being injected into 
pure water from a capillary tube. The system is virtually isothermal and isobaric at 25OC and 
1 atm. The solubility of oxygen in the liquid phase is o,, = 7.78 X and the liquid-phase 
diffusivity for the oxygen-water pair is 9,, = 2.60 X cm2/s. Calculate the instantaneous 
total absorption rate in g/s, for a bubble of 1 mm diameter and age t = 2 s, assuming 
(a) Constant volumetric growth rate 
(b) Constant radial growth rate drJd t  

Fig. 20A.2. Gas absorption from a 
growing bubble, idealized as a sphere. 

Answers: (a) 7.6 X lo-' g/s; (b) 1.11 X lop7 g/s 

20A.3. Rate of evaporation of n-octane. At 20°C, how many grams of liquid n-octane will evaporate 
into N2 in 24.5 hr in a system such as that studied in Example 20.1-1 at system pressures of (a) 
1 atm, and (b) 2 atm? The area of the liquid surface is 1.29 cm2, and the vapor pressure of n- 
octane at 20°C is 10.45 mm Hg. 
Answer: (a) 6.71 mg 

D. F. Fairbanks and C. R. Wilke, Ind. Eng. Chem. 42,471475 (1950). 
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20A.4. Effect of bubble size on interfacial composition (Fig. 20A.2). Here we examine the assump- 
tion of time-independent interfacial composition, WA~, for the system in Fig. 20A.2. We note 
that, because of the interfacial tension, the gas pressure p, depends on the instantaneous 
bubble radius r,. The equilibrium expression 

is adequate unless dr,/dt is very large. Here p, is the ambient liquid pressure at the mean ele- 
vation of the bubble, and CT is the interfacial tension. 

For a sparingly soluble solute, the interfacial liquid composition WAO depends on pA ac- 
cording to Henry's law 

in which the Henry's law constant, H, depends on the two species and on the liquid tempera- 
ture and pressure. This expression may be combined with Eq. 20A.4-1 to obtain the depen- 
dence of w,, on r,. 

For a gas bubble dissolving in liquid water to T = 25OC and p, = 1 atm, how small must 
the bubble be in order to obtain a 10% increase in above the value for a very large bubble? 
Assume u = 72 dyn/cm over the relevant composition range. 
Answer: 1.4 microns 

20A.5. Absorption with rapid second-order reaction (Fig. 20.1-2). Make the following calculations 
for the reacting system depicted in the figure: 
(a) Verify the location of the reaction zone, using Eq. 20.1-37. 
(b) Calculate NAO at t = 2.5 s. 

20A.6. Rapid forced-convection mass transfer into a laminar boundary layer. Calculate the evapo- 
ration rate nAo(x) for the system described under Eq. 20.2-52, given that w,, = 0.9, w,, = 0.1, 
n&) = 0 and Sc = 2.0. Use Fig. 22.8-5 with R calculated as R, from Eq. 20.2-51, to find the di- 
mensionless mass flux (denoted by 4, for diffusional calculations with mass fractions). 
Then use Eq. 22.8-21 and Table 20.2-1 to calculate K, and Eq. 20.2-48 to calculate nAo(x). 
Answer: nAo(x) = 0 . 3 3 a  

20A.7. Slow forced-convection mass transfer into a laminar boundary layer. This problem illus- 
trates the use of Eqs. 20.2-55 and 57 and tests their accuracy against that of Eq. 20.2-47. 
(a) Estimate the local evaporation rate, n,, as a function of x for the drying of a porous water- 
saturated slab, shaped as in Fig. 20.2-2. The slab is being dried in a rapid current of air, under 
conditions such that w,, = 0.05, w,, = 0.01, and Sc = 0.6. Use Eq. 20.2-55 for the calculation. 
(b) Make an alternate calculation of n,, using Eq. 20.2-57. 
(c) For comparison with the preceding approximate results, calculate n,, from Eq. 20.2-47 
and Table 20.2-1. The K values found in (a) will be sufficiently accurate for looking up II'(0, 
Sc, K). 

Answers: (a) nA0(x) = 0 . 0 1 8 8 w ;  (b) nAO(x) = 0.0196-; 
(c) nA0(x) = 0.0188- 

20B.1. Extension of the Arnold problem to account for interphase transfer of both species. Show 
how to obtain Eqs. 20.1-23,24, and 25 starting with the equations of continuity for species A 
and B (in molar units) and the appropriate initial and boundary conditions. 

20B.2. Extension of the Arnold problem to nonisothermal diffusion. In the situation described in 
Problem 20B.1, find the analogous result for the temperature distribution T(z, f). 
(a) Show that the energy equation [Eq. (H) of Table 19.2-41 reduces to 
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provided that k, p, and c (or p)  are essentially constant, and that = &(p, T )  and C,, = G, = 

constant; consequently a is then a constant. Here the dissipation term (7:Vv) and the work 
term CJj, . gJ are appropriately neglected. (Hint: Use the species equation of continuity of 
Eq. 19.1-10.) 
(b) Show that the solution of Eq. 208.2-1, with the initial condition that T = T, at t = 0, and 
the boundary conditions that T = To at z = 0 and T = T, at z = a, is 

with 
r 

z Z, = -- and qr = v: 
V ' G  

(c) Show that the interfacial mass and energy fluxes are related to To and T ,  by 

so that NAo/qo and NRo/qo are constant for t > 0. This nifty result arises because there is no 
characteristic length or time in the mathematical model of the system. 

Stoichiometric boundary condition for rapid irreversible reaction. The reactant fluxes in 
Example 20.1-2 must satisfy the stoichiometric relation 

in which vR = dzR/dt. Show that this relation leads to Eq. 20.1-31 when use is made of Fick's 
first law, with the assumptions of constant c and instantaneous irreversible reaction. 

Taylor dispersion in slit flow (Fig. 2B.3). Show that, for laminar flow in a plane slit of width 
2B and length L, the Taylor dispersion coefficient is 

Diffusion from an instantaneous point source. At time t = 0, a mass m, of species A is in- 
jected into a large body of fluid B. Take the point of injection to be the origin of coordinates. 
The material A diffuses radially in all directions. The solution may be found in Carslaw and 
~ a e g e r : ~  

(a) Verify that Eq. 20B.5-1 satisfies Fick's second law. 
(b) Verify that Eq. 20B.5-1 satisfies the boundary conditions at r = w .  

(c) Show that Eq. 20B.5-1, when integrated over all space, gives m,, as required. 
(d) What happens to Eq. 20B.5-1 when t + O? 

Unsteady diffusion with first-order chemical reaction. Use Eq. 20.1-43 to obtain the concen- 
tration profile for the following situations: 

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 
(1959), p. 257. 
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(a) The catalyst particle of Problem 188.14, in time-dependent operation with the boundary 
conditions as given before, but with the initial condition that c, = 0 at t = 0. The differential 
equation for CA is 

where is the interior void fraction for the particle. The necessary solution with kra = 0 may 
be found from the result of Example 12.1-2. 
(b) Diffusion and reaction of a solute, A, injected at t = 0 at the point r = 0 (in spherical coor- 
dinates) in an infinite stationary medium. Here the functiong of Eq. 20.1-43 is given as 

and the function f vanishes. 

20B.7. Simultaneous momentum, heat, and mass transfer: alternate boundary conditions (Fig. 
20B.7). The dimensionless profiles N q ,  A, K) in Eq. 20.2-43 are applicable to a variety of situ- 
ations. Use Eqs. 20.2-49 to 52 to obtain implicit equations for the evaluation of the dimension- 
less net mass flux K for the following steady-state operations: 
(a) Evaporation of pure liquid A from a saturated porous plate into a gaseous stream of A 
and B. Substance B is insoluble in liquid A. 
(b) Instantaneous irreversible reaction of gas A with a solid plate of C to give gaseous B, ac- 
cording to the reaction A + C + 2B. The molecular weights of A and B are equal. 
(c) Transpiration cooling of a porous-walled hollow plate, as shown in the figure. The fluid is 
pure A throughout, and the injected fluid is distributed so as to maintain the whole outer sur- 
face of the plate at a uniform temperature To. 

Approaching stream of 
gas A at temperature 

T, and velocity v, 
b 

Injection velocity vo (x) 

Surface at uniform 
A temperature To 

I t *  / Porous wall \ 

- ' 

,-Gas A at uniform temperature T, - Gas A in 

I + y  Porous wall / 

Fig. 20B.7. 
A transpiration-cooled 
porous plate. 

Answers: (a) K = - ( W ~ O  - @,")nr (0, SC, N; (b) )K = 1 II (0, SC, K )  
Sc 1 - o,, Sc 
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20B.8. Absorption from a pulsating bubble. Use the results of Example 20.1-4 to calculate 6(t) and 
NAO(t) for a bubble whose radius undergoes a square-wave pulsation: 

r, = R, for 2n < wt < 2n + 1 

r, = R, for 2n + 1 < ot  < 2n + 2 

Here w is a characteristic frequency, and n = 0,1,2, . . . . 
20B.9. Verification of the solution of the Taylor-dispersion equation. Show that the solution to Eq. 

20.5-17, given in Eq. 20.5-18, satisfies the differential equation, the initial condition, and the 
boundary  condition^.^ The latter are that at z = ? m, 

d 
(PA)  = 0 and ,~z bA) = 0 

The initial condition is that, at t = 0, the solute pulse, of mass mA, is concentrated at z = 0, 
with no solute anywhere else in the tube, so that for all times, 

(a) Show that Eq. 20.5-17 can be reduced to the one-dimensional form of Fick's second law by 
the coordinate transformation 

(b) Show that Eq. 20.5-18 satisfies the equation derived in (a). 
(c) Show that Eqs. 20B.9-1 and 2 are also satisfied. 

20C.1. Order-of-magnitude analysis of gas absorption from a growing bubble (Fig. 20A.2). 
(a) For the growth of the spherical bubble of Problem 20A.2(a) in a liquid of constant density, 
show that in the liquid phase the radial velocity is v, = C,/r2 according to the equation of con- 
tinuity. Then use the boundary condition that v, = drJdt at r = rs(t) to obtain 

(b) Next, using the species equation of continuity in spherical coordinates with diffusion in 
the radial direction only, show that 

and indicate suitable initial and boundary conditions. 
(c) For short contact times, the effective diffusion zone is a relatively thin layer, so that it is 
convenient to introduce a variable y = r - r,(t). Show that this leads to 

(1) (2) (3) (4) (5) (6)  (7) 

(d) From Example 20.1-4 we can see that the contributions of terms (11, (2), and (4) are all of 
the same order of magnitude in the concentration boundary layer, that is, at y = O(6,) = 
o(-). Taking these terms to be of order 0(1), estimate the orders of magnitude of the re- 
maining terms shown in Eq. 20C.1-3. 

See, for example, H. S. Carslaw and J. C. Jaeger, Heat Conduction in Solids, 2nd edition, Oxford 
University Press (1959),§10.3. For the effects of finite tube length, see H. Brenner, Ckem. Eng. Sci., 17, 
229-243 (1961). 
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(el Show that the terms of the two leading orders in Eq. 20C.l-3 give 

-..-- ---------- 
the second-order terms being designated by dashed underlines. 
(e) This equation has been analyzed thoroughly in the electrochemical l i terat~re.~ The results 
for nAo are further considered in Problem 20C.2. 

20C.2. Effect of surface curvature on absorption from a growing bubble (Fig. 20A.2). Pure gas A is 
flowing from a small capillary into a large reservoir of initially pure liquid B at a constant 
molar flow rate WA. The interfacial molar flux of A into the liquid is predictable from the 
Levich-Koutecky-Newman equation 

in which 

for purely radial motion and a spherical bubble. Equation 20C.2-1 is a consequence of Eq. 
20C.1-4. 
(a) Give an expression for the number of moles of A absorbed over a bubble lifetime to. 
(b) Use Eq. 20C.2-1 to obtain more accurate results for the absorption rates in Problem 20A.2. 

20C.3. Absorption with chemical reaction in a semi-infinite medium. A semi-infinite medium of 
material B extends from the plane boundary x = 0 to x = m.  At time t = 0 substance A is 
brought into contact with this medium at the plane x = 0, the surface concentration being cA, 
(for absorption of gas A by liquid B, for example, c ~ ,  would be the saturation concentration). 
Substances A and B react to produce C according to the irreversible first-order reaction A + B 
+ C. It is assumed that A is present in such a small concentration that the equation describing 
the diffusion plus chemical reaction process is 

in which k;' is the first-order rate constant. This equation has been solved for the initial condi- 
tion that C A  = 0 at t = 0, and the boundary conditions that cA = c,, at x = 0, and cA = 0 at x = 
w . The solution is5 

(a) Verify that Eq. 20C.3-2 satisfies the differential equation and the boundary conditions. 
(b) Show that the molar flux at the interface x = 0 is 

J. Kouteckj, Czech. 1. Phys., 2,50-55 (1953). See also V. Levich, Physicochemical Hydrodynamics, 2nd 
edition, Prentice-Hall, Englewood Cliffs, N.J. (1962). The right sides of Levich's Eqs. 108.17 and 108.18 
should be multiplied by t2'! See also J. S. Newman, ElectrochemicaI Systems, 2nd edition, Prentice-Hall, 
Englewood Cliffs, N.J. (1991). 

P. V. Danckwerts, Trans. Faraday Soc., 46,300-304 (1950). 
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(c) Show further that the total moles absorbed across area A up to time t is 

(d) Show that, for large values of kyt, the expression in (c) reduces asymptotically to 

This result6 is good within 2% for values of kyt greater than 4. 

20C.4. Design of fluid control circuits. It is desired to control a reactor via continuous analysis of a 
side stream. Calculate the maximum frequency of concentration changes that can be detected 
as a function of the volumetric withdrawal rate, if the stream is drawn through a 10 cm length 
of tubing with an internal diameter of 0.5 mm. Suggestion: Use as a criterion that the standard 
deviation of a pulse duration be no more than 5% of the cycle time to = 2n-/w, where w is the 
frequency it is desired to detect. 

20C.5. Dissociation of a gas caused by a temperature gradient. A dissociating gas (for example, 
Na, + 2Na) is endosed in a tube, sealed at both ends, and the two ends are maintained at dif- 
ferent temperatures. Because of the temperature gradient established, there will be a continu- 
ous flow of Na, molecules from the cold end to the hot end, where they dissociate into Na 
atoms, which in turn flow from the hot end to the cold end. Set up the equations to find the 
concentration profiles. Check your results against those of D i r a ~ . ~  

20D.1. Two-bulb experiment for measuring gas diffusivities-analytical solution (Fig. 188.6). 
This experiment, described in Problem 18B.6, is analyzed there by a quasi-steady-state 
method. The method of separation of variables gives the exact solution8 for the compositions 
in the two bulbs as 

in which y,, is the nth root of y tan y = N, and N = SL/V. Here the 2 sign corresponds to the 
reservoirs attached at t L. Make a numerical comparison between Eq. 20D.1-1 and the experi- 
mental measurements of and re^.^ Also compare Eq. 20D.1-1 with the simpler result in Eq. 
18B.6-4. 

20D.2. Unsteady-state interphase diffusion. Two immiscible solvents I and I1 are in contact at the 
plane z = 0. At time t = 0 the concentration of A is c, = cf in phase I and c,, = cg in phase 11. 
For t > 0 diffusion takes place across the liquid-liquid interface. It is to be assumed that the 
solute is present only in small concentration in both phases, so that Fick's second law of diffu- 
sion is applicable. We therefore have to solve the equations 

R. A. T. 0. Nijsing, Absovptie van gassen in vloeistoffen, zonder en met chemische reactie, Academisch 
Proefschrift, Technische Universiteit Delft (1957). 

P. A. M. Dirac, Proc. Camb. Phil. Soc., 22, Part 11,132-137 (1924). This was Dirac's first publication, 
written while he was a graduate student. 

R. B. Bird, Advances in Chemical Engineering, Vol. 1, Academic Press, New York (1956), pp. 156-239; 
errata, Vol. 2 (1958), p. 325. The result at the bottom of p. 207 is in error, since the factor of (-1)"" is 
missing. See also H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford 
University Press (1959), p. 129. 

S. P. S. Andrew, Chem. Eng. Sci., 4,269-272 (1955). 
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in which c1 and cII are the concentrations of A in phases I and 11, and and BII are the corre- 
sponding diffusivities. The initial and boundary conditions are: 

atz = -w, cI = cp 
atz = +w, CII = cPI 

The first boundary condition at z = 0 is the statement of equilibrium at the interface, m being 
the "distribution coefficient" or "Henry's law constant." The second boundary condition is a 
statement that the molar flux calculated at z = 0- is the same as that at z = 0'; that is, there is 
no loss of A at the liquid-liquid interface. 
(a) Solve the equations simultaneously by Laplace transform or other appropriate means to 
obtain: 

(b) Obtain the expression for the mass transfer rate at the interface. 

20D.3. Critical size of an autocatalytic system. It is desired to use the result of Example 20.1-3 to dis- 
cuss the critical size of a system in which an "autocatalytic reaction" is occurring. In such a sys- 
tem the reaction products increase the rate of reaction. If the ratio of the system surface to the 
system volume is large, then the reaction products tend to escape from the boundaries of the sys- 
tem. If the surface to volume ratio is small, however, the rate of escape may be less than the rate 
of creation, and the reaction rate will increase rapidly. For a system of a given shape, there will 
be a critical size for which the rate of production just equals the rate of removal. 

One example is that of nuclear fission. In a nuclear pile the rate of fission depends on the 
local neutron concentration. If neutrons are produced at a rate that exceeds the rate of escape 
by diffusion, the reaction is self-sustaining and a nuclear explosion occurs. 

Similar behavior is also encountered in many chemical systems, although the behavior 
here is generally more complicated. An example is the thermal decomposition of acetylene 
gas, which is thermodynamically unstable according to the overall reaction. 

This reaction appears to proceed by a branched-chain, free-radical mechanism, in which the 
free radicals behave qualitatively as the neutrons in the preceding paragraph, so that the de- 
composition is autocatalytic. 

However, the free radicals are effectively neutralized by contact with an iron surface, so 
that the free-radical concentration is maintained near zero at such a surface. Acetylene gas 
can then be stored safely in an iron pipe below a "critical" diameter, which is smaller the 
higher the pressure or temperature of the gas. If the pipe is too large, the formation of even 
one free radical is likely to cause a rapidly increasing rate of decomposition, which may result 
in a serious explosion. 
(a) Consider a system enclosed in a long cylinder in which the diffusion and reaction process 
is described by 
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with cA = 0 at r = R, and CA = f(r) at t = 0, in which f(r) is some function of r. Use the result of 
Example 20.1-3 to get a solution for cA(r, t) .  
(b) Show that the critical radius for the system is 

in which a, is the first zero of the zero-order Bessel function 1,. 
(c) For a bare cylindrical nuclear reactor core,'' the effective value of k:))/gAB is 9 X ~ m - ~ .  
What is the critical radius? 
Answer: (c) R,, = 25.3 cm 

20D.4. Dispersion of a broad pulse in steady, laminar axial flow in a tube. In the Taylor dispersion 
problem, consider a distributed solute pulse of substance A introduced into a tube of length L 
containing a fluid in steady, laminar flow. Now the inlet boundary condition is that 

with the same con~traints of negligible diffusion across the tube inlet and outlet as in Problem 
20B.9. Note now that each element of solute acts independently of all the others. 
(a) Using the result of Problem 20B.9, show that the exit concentration is given by 

(b) Specialize this result for a square pulse: 

f = fo for 0 < t < to; f = 0 for t  > to (20D.4-3) 

Sketch the result for several values of (v,)t,/L. 

20D.5. Velocity divergence in interfacially embedded coordinates. Consider a closed domain 
D(u, w, y) in the interfacially embedded coordinates of Fig. 20.4-2. 
(a) Integrate Eq. 20.4-7 over the boundary surface of D to obtain 

in which d S ,  is a vector element of area, having magnitude dS, and the direction of the out- 
ward normal to the boundary of the domain D. 
(b) The integrand of the last term is the velocity of the boundary element dSD. Hence, the last 
integral is the rate of change of the volume of D. Rewrite this integral accordingly with the 
aid of Eq. 20.4-3, giving 

The second equality is obtained by the Leibniz rule, noting that u, w, and y are independent of 
t on each surface element dSD. 
(c) Use the result of (b) and the Gauss-Ostrogradskii divergence theorem of sA.5 to express 
Eq. 20D.5-1 as the vanishing of a sum of three volume integrals over D(u, w, y). Show that this 
result, and the arbitrariness of the choice of D, yield Eq. 20.4-8. 

lo R. L. Murray, Nuclear Reactor Physics, Prentice-Hall, Englewood Cliffs, N.J. (1957), pp. 23,30,53. 



Chapter 21 

Concentration Distributions 
in Turbulent Flow 
521.1 Concentration fluctuations and the time-smoothed concentration 

521.2 Time-smoothing of the equation of continuity of A 

521.3 Semi-empirical expressions for the turbulent mass flux 

521.4' Enhancement of mass transfer by a first-order reaction in turbulent flow 

521.5. Turbulent mixing and turbulent flow with second-order reaction 

In preceding chapters we have derived the equations for diffusion in a fluid or solid, and 
we have shown how one can obtain expressions for the concentration distribution, pro- 
vided no fluid turbulence is involved. Next we turn our attention to mass transport in 
turbulent flow. 

The discussion here is quite similar to that in Chapter 13, and much of that material 
can be taken over by analogy. Specifically, 5513.4, 13.5, and 13.6 can be taken over di- 
rectly by replacing heat transfer quantities by mass transfer quantities. In fact, the prob- 
lems discussed in those sections have been tested more meaningfully in mass transfer, 
since the range of experimentally accessible Schmidt numbers is considerably greater 
than that for Prandtl numbers. 

We restrict ourselves here to isothermal binary systems, and make the assumption 
of constant mass density and diffusivity. Therefore the partial differential equation de- 
scribing diffusion in a flowing fluid (Eq. 19.1-16) is of the same form as that for heat con- 
duction in a flowing fluid (Eq. 11.2-9), except for the inclusion of the chemical reaction 
term in the former. 

,1 CONCENTRATION FLUCTUATIONS AND 
THE TIME-SMOOTHED CONCENTRATION 

The discussion in 513.1 about temperature fluctuations and time-smoothing can be taken 
over by analogy for the molar concentration c,. In a turbulent stream, c, will be a rapidly 
oscillating function that can be written as the sum of a time-smoothed value ZA and a tur- 
bulent concentration fluctuation c: 

which is analogous to Eq. 13.1-1 for the temperature. -- By virtue of the definition of c; we 
see that = 0. However, quantities such as vick, v$;, and a are not zero, because the 
local fluctuations in concentration and velocity are not independent of one another. 

The time-smoothed concentration profiles G(x, y, z, t) are those measured, for exam- 
ple, by the withdrawal of samples from the fluid stream at various points and various 
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times. In tube flow with mass transfer at the wall, one expects that the time-smoothed 
concentration CA will vary only slightly with position in the turbulent core, where the 
transport by turbulent eddies predominates. In the slowly moving region near the bound- 
ary surface, on the other hand, the concentration % will be expected to change within a 
small distance from its turbulent-core value to the wall value. The steep concentration 
gradient is then associated with the slow molecular diffusion process in the viscous sub- 
layer in contrast to the rapid eddy transport in the turbulent core. 

521.2 TIME-SMOOTHING OF THE EQUATION 
OF CONTINUITY OF A 

We begin with the equation of continuity for species A, which we presume is disappearing 
by an nth-order chemical reaction.' Equation 19.1-16 then gives, in rectangular coordinates, 

Here k r  is the reaction rate coefficient for the nth-order chemical reaction, and is pre- 
sumed to be independent of position. In subsequent equations we shall consider n = 1 
and n = 2 to emphasize the difference between reactions of first and higher order. 

When cA is replaced by & + c;, and vi by Ei + ul!, we obtain after time-averaging 

Comparison of this equation with Eq. 21.2-1 indicates that the time-smoothed equation 
differs in the appearance - of some extra terms, marked here with dashed underlines. The 
terms containing vlc; describe the turbulent mass transport and we designate them by 
FA!, the ith component of the turbulent molar flux vector. We have now met the third of 
the turbulent fluxes, and we may summarize their components thus: 

- - 
turbulent molar flux (vector) Ti; = ui c; (21.2-3) 

- - 
turbulent momentum flux (tensor) .$) = Pv;v; (21.2-4) 

- 
turbulent heat flux (vector) 4i ct) - - P  c v ! ~ t  (21.2-5) 

All of these are defined as fluxes with respect to the mass average velocity. 
It is interesting to note that there is an essential difference between the behaviors of 

chemical reactions of different orders. The first-order reaction has the same form in the 
time-smoothed equation as in the original equation. The second-order reaction, on the 
other hand, contributes on time-smoothing an extra term -k;"c, this being the manifes- 
tation of the interaction between the chemical kinetics and the turbulent fluctuations. 

We now summarize all three of the time-smoothed equations of change for turbu- 
lent flow of an isothermal, binary fluid mixture with constant p, gA,, and p: 

continuity (V -5) = 0 (21.2-6) 

motion 

continuity of A 

Here J$) = and it is understood that the op'erator DIE is to be written with the 
time-smoothed velocity V in it. 

S. Corrsin, Physics of Fluids, 1 ,4247  (1958). 
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521.3 SEMI-EMPIRICAL EXPRESSIONS FOR 
THE TURBULENT MASS FLUX 

In the preceding section we showed that the time-smoothing of the equation of conti- 
I I 

nuity of A gives rise to a turbulent mass flux, with components 7;; = G. To solve 
mass transport problems in turbulent flow, it may be useful to postulate a relation be- 
tween 2; and the time-smoothed concentration gradient. A number of empirical expres- 
sions can be found in the literature, but we present here only the two most popular ones. 

Eddy Diffusivity 

By analogy with Fick's first law of diffusion, we may write 

as the defining equation for the turbulent diffusivity @&, also called the eddy diffusivity. As 
is the case with the eddy viscosity and the eddy thermal conductivity, the eddy diffusiv- 
ity is not a physical property characteristic of the fluid, but depends on position, direc- 
tion, and the nature of the flow field. 

The eddy diffusivity 92)B and the eddy kinematic viscosity v"' = p't'/p have the same 
dimensions-namely, length squared divided by time. Their ratio 

is a dimensionless quantity, known as the turbulent Schmidt number. As is the case with 
the turbulent Prandtl number, the turbulent Schmidt number is of the order of unity 
(see the discussion in 513.3). Thus the eddy diffusivity may be estimated by replacing it 
by the turbulent kinematic viscosity, about which a fair amount is known. This is done 
in 921.4, which follows. 

The Mixing-Length Expression of Prandtl and Taylor 

According to the mixing-length theory of Prandtl, momentum, energy, and mass are all 
transported by the same mechanism. Hence by analogy with Eqs. 5.4-4 and 13.3-3 we 
may write 

where I is the Prandtl mixing length introduced in Chapter 5. The quantity 121 dE,/dyl ap- 
pearing here corresponds to 9zL of Eq. 21.3-1, and to the expressions for v'" and a'" im- 
plied by Eqs. 5.4-4 and 13.3-3. Thus, the mixing-length theory satisfies the Reynolds 
annIogy v(f) = = 9") AB, or ~ r ' ~ )  = SC") = 1. 

521.4 ENHANCEMENT OF MASS TRANSFER BY A FIRST-ORDER 
REACTION IN TURBULENT FLOW' 

We now examine the effect of the chemical reaction term in the turbulent diffusion equa- 
tion. Specifically we study the effect of the reaction on the rate of mass transfer at the 
wall for steadily driven turbulent flow in a tube, where the wall (of material A) is slightly 

' 0. T. Hanna, 0. C. Sandall, and C. L. Wilson, Ind. Eng. Chem. Research, 26,2286-2290 (1987). An 
analogous problem dealing with falling films is given by 0. C. Sandall, 0. T. Hanna, and F. J. Valeri, 
Chem. Eng. Communications, 16,135-147 (1982). 
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soluble in the fluid (a liquid B) flowing through the tube. Material A dissolves in liquid B 
and then disappears by a first-order reaction. We shall be particularly interested in the 
behavior with high Schmidt numbers and rapid reaction rates. 

For tube flow with axial symmetry and with EA independent of time, Eq. 21.2-8 
becomes 

Here we have made the customary assumption that the axial transport by both molecu- 
lar and turbulent diffusion can be neglected. We want to find the mass transfer rate at 
the wall 

where C A ~  and are the concentrations of A at the wall and at the tube axis. As 
pointed out in the preceding section, the turbulent diffusivity is zero at the wall, and 
consequently does not appear in Eq. 21.4-2. The quantity kc is a mass transfer coefficient, 
analogous to the heat transfer coefficient h. The coefficient h was discussed in Chapter 14 
and mentioned in Chapter 9 in connection with "Newton's law of cooling." As a first ap- 
proximation' we take to be zero, assuming that the reaction is sufficiently rapid 
that the diffusing species never reaches the tube axis; then dZA/dr must also be zero at 
the tube axis. After analyzing the system under this assumption, we will relax the as- 
sumption and give computations for a wider range of reaction rates. 

We now define the dimensionless reactant concentration C = ZA/cA0. Then under 
the further assumption' that, for large z, the concentration will be independent of z, 
Eq. 21.4-1 becomes 

This equation may now be multiplied by r and integrated from an arbitrary position to 
the tube wall to give 

Here the boundary conditions at r = 0 have been used, as well as the definition of the 
mass transfer coefficient. Then a second integration from r = 0 to r = R gives 

Here we have used the boundary conditions C = 0 at r = 0 and C = 1 at r = R. 
Next we introduce the variable y = R - r, since the region of interest is right next to 

the wall. Then we get 

in which C(y) is not the same function of iJi as C(7) is of 7. For large Sc the integrands are 
important only in the region where y << R, so that R - y may be safely approximated 
by R. Furthermore, we can use the fact that the turbulent diffusivity in the neighborhood 
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of the wall is proportional to the third power of the distance from the wall. When the in- 
tegrals are rewritten in terms of a = y/R, we get the dimensionless equation 

This equation contains several dimensionless groupings: the Schmidt number Sc = v/9,,, 
a dimensionless reaction-rate parameter Rx = k;"R2/v, and a dimensionless mass transfer 
coefficient Sh = k,D/gAB known as the Sherwood number ( D  being the tube diameter). 

In the limit that Rx + m, the solution to Eq. 21.4-3 under the given boundary condi- 
tions is C = exp(-Shu/2). Substitution of this solution into Eq. 21.4-7 then gives after 
straightforward integration 

in which 

This can be solved' to give Sh as a function of Sc, Rx, and K. 
The foregoing solution of Eq. 21.4-3 is reasonable when Sc, Rx, and z are sufficiently 

large, and is an improvement over the result given by Vieth, Porter and Sherwo~d.~  
However, in the absence of chemical reaction, Eq. 21.4-3 fails to describe the downstream 
increase of C caused by the transfer of species A into the fluid. Thus, the mass-transfer 
enhancement by the chemical reaction cannot be assessed realistically from the results of 
either Ref. 1 or Ref. 2. 

For a better analysis of the enhancement problem, we use Eq. 21.4-1 to get a more 
complete differential equation for C: 

The assumption that C = 0 at r = 0 is then replaced by the zero-flux condition dC/dr = 0 
there. We represent '3:b in this geometry as l2 IdEJdrl for fully developed flow, by use of 
a position-dependent mixing length 1 as in Eq. 21.3-3. Introducing dimensionless nota- 
tions v+ = EJv,, z+ = zv,/v, r+ = rv,/v, and It' = lv,/v based on the friction velocity 
v, = of 95.3, we can then express Eq. 21.4-11 in the dimensionless form 

in which a Damkohler number Da = kyv/v$ has been introduced. 
An excellent model for the mixing length 1 is available in Eq. 5.4-7, developed by 

Hanna, Sandall, and Mazet3 by modifying the model given by van Dr i e~ t .~  This model 

-- 

W. R. Vieth, J. H. Porter, and T. K. Sherwood, Ind. Eng. Chem. Fundam., 2,l-3 (1963). 
%. T. Hanna, 0. C. Sandall, and P. R. Mazet, A K h E  Journal, 27,693-697 (1981). 

E. R. van Driest, 1. Aero. Sci., 23,1007-1011,1036 (1956). 
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will give smooth concentration profiles, provided that we use a velocity function with 
continuous radial derivative, rather than the piecewise continuous expressions given in 
Fig. 5.5-3. Such a function is obtainable by integrating the differential equation 

in the dimensionless variables u+ = &/u ,  and y+ = y v J v  of Fig. 5.5-3, with the bound- 
ary conditions u f  = 0 at y+ = 0 (the wall) and du+/dy+ = 0 at y+ = R+ (the centerline). 
Equation 21.4-13 is obtained (see Problem 21B.5) by combining the cylindrical-coordinate 
versions of Eqs. 5.5-3 and 5.4-4 with the dimensionless form 

of the mixing-length model shown in Eq. 5.4-7. Equation 21.4-13 is solvable via the qua- 
dratic formula to give 

and v+ is then computable by quadrature using, for example, the subroutines trapzd and 
qtrap of Press et aL5 The resulting v+ function closely resembles the plotted line in Fig. 
5.5-3, with small changes near y' = 30 where the plotted line has a slope discontinuity, 
and near the centerline where the calculated v+ function attains a maximum value de- 
pendent on the dimensionless wall radius R+ whereas the line in Fig. 5.5-3 improperly 
does not. 

Equations 21.4-12 through 15 were solved numerically6 for fully developed flow of a 
fluid of kinematic viscosity v  = 0.6581 cm2/s in a smooth tube of 3 cm inner diameter, at 
Re = 10,000, Sc = 200 and various Damkohler numbers Da. These calculations were 
done with the software package Athena Visual W~rkbench.~ The resulting Sherwood 
numbers Sh = kcD/9,,, based on kc as defined in Eq. 21.4-2, are plotted in Fig. 21.4-1 as 

Axial position, zi 

Fig. 21.4-1. Calculated 
Sherwood numbers, 
Sh = k,D/QAB, for turbulent 
mass transfer from the wall 
of a tube, with and without 
homogeneous first-order 
chemical reaction. Results 
calculated at Re = 10,000 and 
Sc = 200, as functions of 
axial position zf = zv,/D 
and Damkohler number 
Da = kyv/v:. 

W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. flannery, Numerical Recipes in FORTRAN, 
Cambridge University Press, 2nd edition (1992). 

M. Caracotsios, personal communication. 
Information on this package is available at www.athenavisual.com and from 

stewart~associates.msn.com. 
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functions of z+ for various values of the Damkohler number Da. These results lead to the 
following conclusions: 

1. In the absence of reaction (that is, when Da = O), the Sherwood number falls off 
rapidly with increasing distance into the mass-transfer region. This behavior is 
consistent with the results of Sleicher and  ribu us' for a corresponding heat trans- 
fer problem, and confirms that the convection term of Eq. 21.4-11 is essential for 
this system. This term was neglected in References 2 and 3 by regarding the con- 
centration profiles as "fully developed." 

2. In the presence of a pseudo-first-order homogeneous reaction of the solute (that is, 
when Da > O), the Sherwood number falls off downstream less rapidly, and ulti- 
mately attains a constant asymptote that depends on the Damkohler number. 
Thus, the enhancement factor, defined as Sh (with reaction)/Sh (without reaction), 
can increase considerably with increasing distance into the mass-transfer region. 

g21.5 TURBULENT MIXING AND TURBULENT 
FLOW WITH SECOND-ORDER REACTION 

We now consider processes occurring within turbulent fluid systems, with particular ref- 
erence to the two mixers shown in Fig. 12.5-1. In Fig. 12.5-l(a) is shown a steady state sys- 
fem, in which two input streams enter a system of fixed geometry at constant rates, and 
in Fig. 12.5-l(b) an unsteady state system, in which two initially stationary, segregated, 
miscible fluids are mixed by turning an impeller at a constant angular velocity, starting at 
time t = 0. One stream [in (a)] or one initial region [in (b)] contains solute A in solvent S, 
and the other contains solute B in solvent S. All solutions are sufficiently dilute that the 
solutes do not appreciably affect the viscosity, density, or species diffusivities. Then the 
behavior of the solute (A or B )  in either system [(a) or (b)] is described by the non-time- 
smoothed diffusion equations 

with suitable initial and boundary conditions. 
For these systems, we may write that at z = 0 [in (a)] or t = 0 [in (b)]  

C,  = C,O and c, = 0 (21.5-3,4) 

over the A inlet port [in (a)] or the initial region [in (b)], and 

C,  = cBO and c, = 0 (21.5-5,6) 

over the B inlet port [in (a)] or the initial region [in (b)] .  In addition, we consider all con- 
fining surfaces to be inert and impenetrable.' 

No Reaction Occurring 

For this situation, the terms RA and RB are identically zero. We now define a single new 
independent variable 

C. A. Sleicher and M. Tribus, Trans. ASME, 79,789-797 (1957). 
In system (a), these boundary conditions are only approximations. The indicated values of c~ and 

c, are regarded as asymptotic values for z << 0. 
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Then both Eqs. 21.5-1 and 2 take the following form over the whole system: 

Here the subscript i can represent either solute A or solute B, and 

r = 0 for (a) the entering A-rich stream, or 
(b) initially A-rich region (21.5-9) 

r = 1 for (a) the entering B-rich stream, or 
(b) initially B-rich region (21.5-10) 

It follows that, for equal diffusivities, the time-smoothed concentration profiles, - 
T(x ,  y, z, t) are identical for both solutes, where 

However, the fluctuating quantities r' are also of interest, as they are measures of "un- 
mixedness." These can be equal only in a statistical sense. To show this, we subtract Eq. 
21.5-11 from Eq. 21.5-7, and then square the result and time-smooth it to give 

Here d(x, y, z, t) is a dimensionless decay function, which decreases toward zero at large z 
[for the motionless mixer in Fig. 21.5-l(a)I, or at large t [for the mixing tank of Fig. 21.5- 
I@)]. Cross-sectional averages of this quantity can be measured, and are shown in Fig. 
21.5-2. 

It remains to determine the functional dependence of the decay function, and to do 
this we introduce the dimensionless variables: 

Then Eq. 21.5-8 becomes 

D r  - 1 +zr 
D ReSc 

in which Re = I,u,p/p. 
In order to be able to draw specific conclusions, we now focus our attention on mix- 

ing tanks [see Fig. 21.5(b)], and further assume low-viscosity liquids and low-molecular- 
weight solutes. For these systems 1, is normally chosen to be the diameter of the 
impeller, and v, to be I&, where N is the rate of impeller rotation in revolutions per unit 
time. 

1 

B+ 
Fig. 21.5-1. Two types 
of mixers: (a) a baffled 

(a) 
mixer with no moving 
parts; (b)  a batch mixer 

(b) with a stirrer. 
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Fig. 21.5-2. The decay function for a 
specific device for the mixing of two 
streams emerging from a tube and 
from an annular region. This figure 
is patterned after one by E. L. Cus- 
sler, Diffusion: Mass Transfer in Fluid 
Systems, Cambridge University Press 
(1997), p. 422, based on data of R. S. 
Brodkey, Turbulence in Mixing Opera- 
tions, Academic Press, New York 
(1975), p. 65, Fig. 6, upper curve. The 
radius of the outer tube is fi times 
that of the inner one. 

It is now useful to consider experience gained in the study of such systems and to 
classify the overall mixing process as  follow^:^ 

(i) macromixing, in which large-scale motions spread the A-rich and B-rich fluids 
over the entire tank region, into subregions that are large compared to the dis- 
tances solute molecules have moved by diffusion. 

(ii) micromixing, in which diffusion provides the final blending over scales of mole- 
cular dimensions. 

It has been found1 that macromixing is normally much the slower process, and this ob- 
servation can be explained in terms of dimensional analysis. This finding is consistent 
with experience in large-scale mixing. 

For industrial systems, Reynolds numbers are normally well over lo4 and Schmidt 
numbers on the order of lo5. The diffusion term in Eq. 21.5-14 thus tends to be small al- 
most everywhere in the system. This term is negligible during the period of macromix- 
ing, where diffusion, and hence the Schmidt number, have no significant effect. Then for 
many practical purposes one may write 

We may then relax the requirement of equal diffusivities in extrapolating experience to a 
new system. It follows that Reynolds numbers as well as Schmidt numbers should have 
no significant effect on the macromixing process, and that the effective degree of un- 
mixedness, d2, depends mainly on the dimensionless time. 

For large-scale mixing tanks, this prediction is amply ~onfirmed.~ These normally 
operate at large Reynolds numbers (typically greater than lo4), where the large-scale mo- 
tions, expressed in terms of +(?, jl, if t ) ,  are observed to be independent of both Reynolds 
number and system size. Thus a very large number of investigators have observed using 

M. L. Hanks and H. L. Toor, Ind. Eng. Chem. Res., 34,3252-3256 (1995). 
J. Y. Oldshue, Fluid Mixing Technology, McGraw-Hill, New York (1983); H. Benkreira, Fluid Mixing, 

Institution of Chemical Engineers, Rugby, UK, Vol. 4 (1990), Vol. 6 (1999); I. Bouwmans and H. E. A. van 
den Akker, in Vol. 4 of Fluid Mixing, Institution of Chemical Engineers, Rugby, UK (1990), pp. 1-12. 
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many different mixer geometries, that the product of the required mixing time t,, and 
rotation rate N is a constant independent of mixer size and Reynolds number: 

That is, the required mixing time t,, corresponds, for a given tank geometry, essen- 
tially to the required number of turns of the impeller. This expectation is confirmed by 
experience. 

This finding is consistent with observations2 that both the dimensionless volume 
flow rate through the impeller, Q/ND~, and the tank friction factor, plpIV3D5, are con- 
stants, depending only on the tank and impeller geometries (see Problem 6C.3). Here Q 
is the volumetric flow in the jet produced by the impeller, and P is the power required to 
turn it. 

Similar remarks usually apply to motionless mixers, where increasing the flow ve- 
locities typically has little effect on the degree of mixing. However, approximations like 
this must be tested, and such tests should be considered as first steps in an experimental 
program. As a practical matter, these approximations are almost always reliable on 
scale-up, since Reynolds numbers normally increase with equipment size. 

Reaction Occurring 

We next consider the effects of a homogeneous, irreversible chemical reaction, and for 
simplicity we write this as A + B 4 products. Again we assume dilute solutions, so that 
the heat of reaction and the presence of reaction products have no significant effect. In 
addition, we assume equal diffusivities for the two solutes. 

We next define 

Then when we subtract Eq. 21.5-2 from Eq. 21.5-1, we find that the description of ~,e,cti,, 

is identical to that for its nonreactive counterpart. Hence 

By subtracting from this its time-smoothed counterpart, we find that an equation like Eq. 
21.5-18 must hold for the fluctuations: 

( 4 - 4 )  =(") 
CAO + CBO reactive nonreactive 

The time-smoothed mean square of the quantity on the right side is equal to d2, which is 
measurable as illustrated in Fig. 21.5-2, and therefore we have a way of predicting the 
corresponding quantity for reacting systems. 

Equation 21.5-19 suggests that the fluctuations in cA and cB in reactive problems 
occur on the same time and distance scales as for nonreactive problems. Note that this is 
true for arbitrary geometry, flow conditions, and reaction kinetics. We are now ready to 
consider special cases. 

We begin with a fast reaction, for which the two solutes cannot coexist, and the rate 
of the reaction is controlled by the diffusion of the species toward each other. Then, for 
the first (macromixing) stage of the blending process, where diffusion is very slow com- 
pared to the larger-scale convective processes, there is no significant reaction. In this, 
typically dominant, stage of the blending process 

(") =(") 
reactive nonreactive 
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It has been suggested4 that Eq. 21.5-20 is also true for the micromixing stage. Where this 
can be assumed (e.g., in the common situation where macromixing is rate controlling), it 
follows that reactive and nonreactive processes lead to identical descriptions of solute 
fluctuations. 

In practice, fast reactions (e-g., neutralization of acids with bases) are often used to 
determine the effectiveness of mixers, as these are much easier to follow experimentally 
than nonreactive mixing. Frequently one can use simple macroscopic measures such as 
temperature rise or an indicator color change. However, the measurement of concentra- 
tion fluctuations can provide more insight into the nature and the course of the mixing 
process. 

Slow reactions are also important, and we consider the special case of irreversible sec- 
ond-order kinetics, defined by 

When this is time-smoothed, we get 

We find, therefore, that the fluctuations in solute concentration increase the time- 
smoothed reaction rate relative to that when a simple product of time-smoothed concen- 
trations is used. It is, however, difficult to assess the practical importance of this effect. 

We illustrate this point by a simple order-of-magnitude analysis, beginning with the 
definition of a reaction time constant tA for one of the reactants, here solute A: 

To a first approximation, we may write 

tA = l/krcB0 

Fast and slow reactions may then be defined as those for which 

t,, >> tA fast reaction 

t,, < < tA slow reaction 

We have already discussed the case of fast reaction. For slow reactions, turbulence has 
no significant effect, because fluctuations become negligible before any appreciable reac- 
tion has taken place. 

If the mixing and reaction time constants are of the same order of magnitude, a 
deeper analysis than the above is needed. Such an analysis must include a model for the 
turbulent motion, and does not appear to be presently available. 

QUESTIONS FOR DISCUSSION 

1. Discuss the similarities and differences between turbulent heat and mass transport. 
2. Discuss the behavior of first- and higher-order reactions in the time-smoothing of the equa- 

tion of continuity for a given species. What are the consequences of this? 
3. To what extent are the turbulent momentum flux, heat flux, and mass flux similar in form? 
4. What empiricisms are available for describing the turbulent mass flux? 
5. How can eddy diffusivities be measured, and on what do they depend? 
6. Would you expect to get trustworthy results for mass transfer in turbulent tube flow without 

chemical reaction just by setting Rx = 0 in Eq. 21.4-8? 

- - - - 

K.-T. Li and H.  L. Toor, Ind. Eng. Chem. Fundam., 25,719-723 (1986). 
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PROBLEMS 21~.1. Determination of eddy diffusivity (Figs. 18C.1 and 21A.1). In Problem 18C.1 we gave the 
formula for the concentration profiles in diffusion from a point source in a moving stream. In 
isotropic highly turbulent flow, Eq. 18C.1-2 may be modified by replacing 9,, by the eddy 
diffusivity 9zL. This equation has been found to be useful for determining the eddy 
diffusivity. The molar flow rate of carbon dioxide is 1/1000 that of air. 
(a) Show that if one plots lnsc, versus s - z the slope is -vo/29$b. 
(b) Use the data on the diffusion of CO, from a point source in a turbulent air stream shown 
in Fig. 21A.1 to get a$), for these conditions: pipe diameter, 15.24 cm; v, = 1512 cm/s. 
(c) Compare the value of 9jfL with the molecular diffusivity BAB for the system C02-air. 
(d) List all assumptions made in the calculations. 
Answer: (b) 9jf', = 19 cm2/s 

Heat and mass transfer analogy. Write the mass transfer analog of Eq. 13.4-19. What are the 
limitations of the resulting equation? 

Wall mass flux for turbulent flow with no chemical reactions. Use the diffusional analog of 
Eq. 13.4-20 for turbulent flow in circular tubes, and the Blasius formula for the friction factor, 
to obtain the following expression for the Sherwood number, 

valid for large Schmidt numbers.' 

Alternate expressions for the turbulent mass flux. Seek an asymptotic expression for the 
turbulent mass flux for long circular tubes with a boundary condition of constant wall mass 
flux. Assume that the net mass transfer across the wall is small. 
(a) Parallel the approach to laminar flow heat transfer in 510.8 to write 

in which 6 = r /D ,  5 = (z/D)/ReSc, o,, is the inlet mass fraction of A, and j,, is the interfacial 
mass flux of A into the fluid. 

Fig. 21A.1. Concentration traverse data for 
C02 injected into a turbulent air stream with 
Re = 119,000 in a tube of diameter 15.24 cm. 
The circles are concentrations at a distance 
z = 112.5 cm downstream from the injection 
point, and the crosses are concentrations at 
z = 152.7 cm. [Experimental data are taken 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 from W. L. Towle and T. K. Sherwood, Ind. 
r/R - Eng. Chem., 31,457462 (1939).] 

- 

' 0. T. Hanna, 0. C. Sandall, and C. L. Wilson, Ind. Eng. Chem. Res., 28,2286-2290 (1987). 
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(b) Next use the equation of continuity for species A to obtain 

in which Sc"' = p'"/p9$~. This equation is to be integrated with the boundary conditions that 
I I ,  is finite at 5 = 0 and dI I , /d f  = -1 at 5 = i. 
( c )  Integrate once with respect to [ to obtain 

dn, - t - 4 It1'' (vz/(vz))[dt 
-- - (21 B.2-3) 

d 5  f [ 1  + (Sc/S~(~ ')(~ '~ ' /p) l  

An asymptotic expression for the turbulent mass flux.' Start with the final result of Problem 
21B.2, and note that for sufficiently high Sc all curvature of the concentration profile will take 
place very near the wall, where v,/(v,) = 0 and 5 = i. Assume that Sdt' = 1 and use Eq. 5.4-2 
to obtain 

dn, - -- - 1 - - 1 (21B.3-1) 
4 [I + S C ( ~ ' " / ~ ) I  1 + sc(yv*/14.5~)~ 

Introduce the new coordinate 77 = S~"~(yv,/14.5~) into Eq. 21B.3-1 to get an equation for d I I / d v  
valid within the laminar sublayer. Then integrate from q = 0 (where w, = w,,) to 77 = (where 
o, = w,,) to obtain an explicit relation for the wall mass flux jAO. Compare with the analog of 
Eq. 13.4-20 obtained in Problem 21A.2. 

Deposition of silver from a turbulent stream (Fig. 21B.3). An approximately 0.1 N solution of 
KNO, containing 1.00 X lop6 g-equiv. AgNO, per liter is flowing between parallel Ag plates, 

- Movement of electrons --+ 

r" Ag + Ag' + e- 
Anode 

4 

Cathode 1 4 

Fig. 218.3. (a) Electrodeposition of Ag' from a turbulent stream flowing in the positive z direction between two 
parallel plates. (b) Concentration gradients in electrodeposition of Ag at an electrode. 

' C. S. Lin, R. W. Moulton, and G. L. Putnam, Ind. Eng. Chem., 45,636 (1953). 
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as shown in Fig. 21B.3(a). A small voltage is applied across the plates to produce a deposition 
of Ag on the cathode (lower plate) and to polarize the circuit completely (that is, to maintain 
the Agt concentration at the cathode very nearly zero). Forced diffusion may be ignored, and 
the Ag+ may be considered to be moving to the cathode by ordinary (that is, Fickian) diffu- 
sion and eddy diffusion only. Furthermore, this solution is sufficiently dilute that the effects 
of the other ionic species on the diffusion of Agf are negligible. 
(a) Calculate the Ag' concentration profile, assuming that (i) the effective binary diffusivity 
of Ag+ through water is 1.06 X lop5 cm2/s; (ii) the truncated Lin, Moulton, and Putnam ex- 
pression of Eq. 5.4-2 for the turbulent velocity distribution in round tubes is valid for "slit 
flow" as well, if four times the h draulic radius is substituted for the tube diameter; (iii) the 
plates are 1.27 cm apart, and & is 11.4 cm/s. 
(b) Estimate the rate of deposition of Ag on the cathode, neglecting all other electrode reactions. 
(c) Does the method of calculation in part (a) predict a discontinuous slope for the concentra- 
tion profile at the center plane of the system? Explain. 
Answers: (a) See Fig. 218.3(b); (b) 6.7 X lo-'* equiv/cm2. s 

21B.5. Mixing-length expression for the velocity profile. 
(a) Start with Eq. 5.5-3, and show that for steadily driven, fully developed turbulent flow in 
a tube 

(b) Next set 7, = 72' + 72, where 7:) is given by the cylindrical coordinate analog of Eq. 5.2-9, 
and ?:' by Eq. 5.5-5. Show that Eq. 21B.5-1 then becomes 

(c) Obtain Eq. 21.4-13 from Eq. 21B.5-2 by introducing the dimensionless symbols used in the 
former equation. 



Chapter 22 

Interphase Transport in 
Nonisothermal Mixtures 

Definition of transfer coefficients in one phase 

Analytical expressions for mass transfer coefficients 

Correlation of binary transfer coefficients in one phase 

Definition of transfer coefficients in two phases 

Mass transfer and chemical reactions 

Combined heat and mass transfer by free convection 

Effects of interfacial forces on heat and mass transfer 

Transfer coefficients at high net mass transfer rates 

Matrix approximations for multicomponent mass transport 

Here we build on earlier discussions of binary diffusion to provide means for predicting 
the behavior of mass transfer operations such as distillation, absorption, adsorption, ex- 
traction, drying, membrane filtrations, and heterogeneous chemical reactions. This chap- 
ter has many features in common with Chapters 6 and 14. It is particularly closely 
related to Chapter 14, because there are many situations where the analogies between 
heat and mass transfer can be regarded as exact. 

There are, however, important differences between heat and mass transfer, and we 
will devote much of this chapter to exploring these differences. Since many mass transfer 
operations involve fluid-fluid interfaces, we have to deal with distortions of the interfa- 
cial shape by viscous drag and by surface tension gradients resulting from inhomo- 
geneities in temperature and composition. In addition, there may be interactions 
between heat and mass transfer, and there may be chemical reactions occurring. Further- 
more, at high mass transfer rates, the temperature and concentration profiles may be dis- 
torted. These effects complicate and sometimes invalidate the neat analogy between heat 
and mass transfer that one might otherwise expect. 

In Chapter 14 the interphase heat transfer involved the movement of heat to or from 
a solid surface, or the heat transfer between two fluids separated by a solid surface. Here 
we will encounter heat and mass transfer between two contiguous phases: fluid-fluid or 
fluid-solid. This raises the question as to how to account for the resistance to diffusion 
provided by the fluids on both sides of the interface. 

We begin the chapter by defining, in 522.1, the mass and heat transfer coefficients 
for binary mixtures in one phase (liquid or gas). Then in 522.2 we show how analytical 
solutions to diffusion problems lead to explicit expressions for mass transfer coefficients. 
In that section we give some analytic expressions for mass transfer coefficients at high 
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Schmidt numbers for a number of relatively simple systems. We emphasize the different 
behavior of systems with fluid-fluid and solid-fluid interfaces. 

In 522.3 we show how dimensional analysis leads to predictions involving the Sher- 
wood number (Sh) and the Schmidt number (Sc), which are the analogs of the Nusselt 
number (Nu) and the Prandtl number (Pr) defined in Chapter 14. Here the emphasis is 
on the analogies between heat transfer in pure fluids and mass transfer in binary mix- 
tures. Then in 522.4 we proceed to the definition of mass transfer coefficients for systems 
with diffusion in two adjoining phases. We show there how to apply the information 
about mass transfer in single phases to the understanding of mass transfer between two 
phases. 

Finally, in the last five sections of the chapter, we take up some effects that are pecu- 
liar to mass transfer systems: mass transfer with chemical reactions (§22.5), the interac- 
tion of heat and mass transfer processes in free convection (§22.6), the complicating 
factors of interfacial tension forces and Marangoni effects (522.71, the distortions of tem- 
perature and concentration profiles that arise in systems with large net mass transfer 
rates across the interface (S22.8); and finally the matrix analysis of mass transport in mul- 
ticomponent systems. In this chapter the emphasis is on the non-analogous behavior of 
heat and mass transfer systems. 

In this chapter we have limited the discussion to a few key topics on mass transfer 
and transfer coefficient correlations. Further information is available in specialized text- 
books on these and related topics.14 

g22.1 DEFINITION OF TRANSFER COEFFICIENTS IN ONE PHASE 

In this chapter we relate the rates of mass transfer across phase boundaries to the rele- 
vant concentration differences, mainly for binary systems. These relations are analogous 
to the heat transfer correlations of Chapter 14 and contain mass transfer coeficients in 
place of the heat transfer coefficients of that chapter. The system may have a true phase 
boundary, as in Fig. 22.1-1,2, or 4, or an abrupt change in hydrodynamic properties, as 
in the system of Fig. 22.1-3, containing a porous solid. Figure 22.1-1 shows the evapora- 
tion of a volatile liquid, often used in experiments to develop mass transfer correlations. 
Figure 22.1-2 shows a permselective membrane, in which a selectively permeable sur- 
face permits more effective transport of solvent than of a solute that is to be retained, as 
in ultrafiltration of protein solutions and the desalting of sea water. Figure 22.1-3 shows 
a macroscopically porous solid, which can serve as a mass transfer surface or can pro- 
vide sites for adsorption or reaction. Figure 22.1-4 shows an idealized liquid-vapor con- 
tactor where the mass transfer interface may be distorted by viscous or surface-tension 
forces. 

Stream of gas B 
h 

t Vapor A moving 
into gas stream Fig. 22.1-1. Example of 

Interface + 
mass transfer across a 
plane boundary: drying of 
a saturated slab. 

' T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Mass Transfer, McGraw-Hill, New York (1975). 
R. E. Treybal, Mass Transfer Operations, 3rd edition, McGraw-Hill, New York (1980). 

%. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 2nd edition, Cambridge University Press 
(1997). 

9. E. Rosner, Transport Processes in Chemically Reacting Flow Systems (Unabridged), Dover, New 
York (2000). 
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Representative Membrane Processes 

P e k  1: 
Dialysis 
Blood oxygenation 

re'>> 1: 
Microfiltration 
Ultrafiltration 
Nanofiltration 
Reverse osmosis 

Membrane 4 
Fig. 22.1-2. Two rather typical kinds of membrane separators, 
classified here according to a Peclet number, P6 = 6v/geff, for 
the flow through the membrane. Here 6 is the membrane 
thickness, v is the velocity at which solvent passes through 
the membrane, and '& is the effective solute diffusivity 
through the membrane. The heavy line represents the mem- 
brane, and the arrows represent the flow along or through the 
membrane. 

Stream of hot gas A 
Injected gas A moving 
/ away from wall 

Cold gas A pumped 
through wall 

Upward- - 
moving gas 

At interface 
r = R  
y = 0 

and 
= N ~ O  

N B  = NBO 

Fig. 22.1-3. Example of 
mass transfer through a 
porous wall: transpira- 
tion cooling. 

Tube wall 

Fig. 22.1-4. Example of a gas-liquid con- 
tacting device: the wetted-wall column. 
Two chemical species A and B are mov- 
ing from the downward-flowing liquid 
stream into the upward-flowing gas 
stream in a cylindrical tube. 
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In each of these systems, there will be both heat and mass transfer at the interface, 
and each of these fluxes will have a molecular (diffusive) and a convective term (here we 
have moved the convective term to the left side of the equation): 

These equations are just Eq. 18.0-1 and Eq. 19.3-6 written at the mass transfer interface 
(y = 0). They describe the interphase molar flux of species A and the interphase flux of 
energy (excluding the kinetic energy and the contribution from [T . vl). Both NAo and e, 
are defined as positive for transfer into the local phase except in 522.4 where the fluxes in 
each phase are defined as positive for transfer toward the liquid. 

In Chapter 14 we defined the heat transfer coefficient in the absence of mass transfer 
by Eq. 14.1-1 (Q = hA AT). For surfaces with mass and heat transfer, Eqs. 22.1-1 and 2 
suggest that the following definitions are appropriate: 

Here WAo is the number of moles of species A per unit time going through the transfer 
surface at y = 0, and E, is the total amount of energy going through the surface. The 
transfer coefficients kxA and h are not defined until the area A and the driving forces Ax, 
and AT have been specified. All the comments in Chapter 14 regarding these definitions 
may be taken over in this chapter, with the result that a subscript 1, In, a, m, or loc can be 
added to make clear the type of driving force that is used. In this chapter, however, we 
shall mainly use the local transfer coefficients and occasionally the mean transfer coeffi- 
cients. Also, in this chapter, molar fluxes of the species will be used, since in chemical en- 
gineering this is traditional. The relations between the mass-transfer expressions in 
molar and mass units are summarized in Table 22.2-1. 

Local transfer coefficients are defined by writing Eqs. 22.1-3 and 4 for a differential 
area. Since d WA,/dA = NAO and dE,/dA = e,, we get the definitions 

Next, we note that the left side of Eq. 22.1-5 is J;,, and that the left side of a similar equa- 
tion written for species B is J&. However, since J;, = -J& and AX, = -AxB, we find that 
kxA,loc = kxB,loc, and therefore we can write both mass transfer coefficients as kx,lOc, which 
has units of (moles)/(area)(time). - Furthermore, if the heat of mixing is zero (as in ideal 
gas mixtures), we can replace HA, by (?,,,(T, - To), where To is an arbitrarily chosen ref- 
erence temperature, as explained in Example 19.3-1. A similar replacement may be made 
for &,. With these changes we get 

We remind the reader that rapid mass transfer across phase boundaries can distort the 
velocity, temperature, and concentration profiles, as we have already seen in 518.2 and 
in Example 19.4-1. The correlations provided in s22.2, as well as their analogs in Chap- 
ters 6 and 14, are all for small net mass-transfer rates, that is, for situations in which the 
convective terms in Eqs. 22.1-7 and 8 are negligible relative to the first term. Such situa- 
tions are common, and most correlations in the literature suffer from the same limita- 
tion. In 522.8 we consider the deviations associated with high net mass-transfer rates and 
decorate the transfer coefficients at these conditions with a superscript "*" (see 522.8). 
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In much of the chemical engineering literature, the mass transfer coefficients are de- 
fined by 

The relation of this "apparent" mass transfer coefficient to that defined by Eq. 22.1-7 is 

in which r = NBo/NAo. Other widely used mass transfer coefficients are defined by 

for liquids and 

for gases. In the limit of low solute concentrations and low net mass transfer rates, for 
which most correlations have been obtained, 

The superscript 0 indicates that these quantities are applicable only for small mass-trans- 
fer rates and small mole fractions of species A. 

In many industrial contactors, the true interfacial area is not known. An example of 
such a system would be a column containing a random packing of irregular solid parti- 
cles. In such a situation, one can define a volumetric mass transfer coefficient, k g ,  incor- 
porating the interfacial area for a differential region of the column. The rate at which 
moles of species A are transferred to the interstitial fluid in a volume Sdz of the column is 
then given by 

Here the interfacial area, a, per unit volume is combined with the mass transfer coeffi- 
cient, S is the total column cross section, and z is measured in the primary flow direction. 
Correlations for predicting values of these coefficients are available, but they should be 
used with caution. Rarely do they include all the important parameters, and as a result 
they cannot be safely extrapolated to new systems. Furthermore, although they are usu- 
ally described as "local," they actually represent a poorly defined average over a wide 
range of interfacial 

We conclude this section by defining a dimensionless group widely used in the 
mass-transfer literature and in the remainder of this book: 

which is called the Sherwood number based on the characteristic length lo. This quantity 
can be "decorated with subscripts 1, a, m, In, and loc in the same manner as h. 

' J. Stichlmair and J. F. Fair, Distillation Principles and Practice, Wiley, New York (1998). 
H. Z. Kister, Distillation Design, McGraw-Hill, New York (1992). 
J. C. Godfrey and M. M. Slater, Liquid-Liquid Extraction Equipment, Wiley, New York (1994). 

". H. Perry and D. W. Green, Chemical Engineers' Handbook, 8th edition, McGraw-Hill, New York 
(1997). 

J. E. Vivian and C. J. King, in Modem Chemical Engineering (A. Acrivos, ed.), Reinhold, New York (1963). 
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522.2 ANALYTICAL EXPRESSIONS FOR 
MASS TRANSFER COEFFICIENTS 

In the preceding chapters we obtained a number of analytical solutions for concentra- 
tion profiles and for the associated molar fluxes. From these solutions we can now derive 
the corresponding mass transfer coefficients. These are usually presented in dimensionless 
form in terms of Sherwood numbers. We summarize these analytical expressions here for 
use in later sections of this chapter. All of the results given in this section are for systems 
with a slightly soluble component A, small diffusivities %AB, and small net mass-transfer 
rates, as defined in 9322.1 and 8. It may be helpful at this point to refer to Table 22.2-1, 
where the dimensionless groups for heat and mass transfer have been summarized. 

Mass Transfer in Falling Films on Plane Surfaces 

For the absorption of a slightly soluble gas A into a falling film of pure liquid B, we can 
put the result of Eq. 18.5-18 into the form of Eq. 22.1-3 (appropriately modified for molar 
concentration units in the manner of Eq. 22.1-ll), thus 

Table 22.2-1 Analogies Among Heat and Mass Transfer at Low Mass-Transfer Rates 

Heat transfer Binary mass transfer Binary mass transfer 
quantities quantities (isothermal quantities (isothermal 
(pure fluids) fluids, molar units) fluids, mass units) 

Profiles T *A w A 

Diffusivity a = k/pCp 9 AB 9 AB 

Effect of profiles 
on density 

Transfer coefficient Q h = -  
A AT 

Dimensionless groups Re = I,v,p/p Re = l,v@/p 
common to all three Fr = v;/gl ,  Fr = v;/gl, 
correlations 

Dimensionless groups Nu = hlO/k Sh = kxlO/&dAB Sh = ~ , ~ O / P ~ A B  
that are different ~r = & p / k  Sc = p /pgAB Sc = p/pEbAB 

Gr = l&2gpAT/p2 Gr, = I&2g5A~A/p2 Gr, = l~p2g[Aw,/p2 
P6 = RePr = l,v,~,/k P6 = ReSc = IOvo/9AB P6 = ReSc = I , v , , / ~ ~ ,  

Notes: (a) The subscript 0 on I ,  and v, indicates the characteristic length and velocity respectively, whereas the subscript 0 on the mole 
(or mass) fraction and molar (or mass) flux means "evaluated at the interface." (b) All three of these Grashof numbers can be written as 
Gr = lipg AplP2, provided that the density change is caused only by a difference of temperature or composition. 
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Then, when the characteristic area is chosen to be the area of the interface WL, we see 
that 

Sh,  = - 

= 1 .128 (~e~c ) "~  (22.2-2) 

This equation expresses the Sherwood number (the dimensionless mass transfer coeffi- 
cient) in terms of the Reynolds number and the Schmidt number, with Re defined in 
terms of the maximum velocity v,,, in the film and the film length L. The Reynolds num- 
ber could also be defined in terms of the average film velocity with a different numerical 
coefficient. 

Similarly, for the dissolution of a slightly soluble material A from the wall into a 
falling liquid film of pure B, we can put Eq. 18.6-10 into the form of Eq. 22.1-3 as 
follows: 

Then, using the definition a = ~ g 6 / p  given just after Eq. 18.6-1 and the expression 
for the maximum velocity in the film in Eq. 2.2-19, we find the Sherwood 
follows: 

In this instance we have not only the Reynolds number and Schmidt number 
but also the ratio of the film length to the film thickness. 

number as 

(22.2-4) 

appearing, 

These two problems-gas absorption by a falling film and the dissolution of a solid 
wall into a falling film-illustrate two important situations. In the first problem, there is 
no velocity gradient at the gas-liquid interface, and the quantity ReSc appears to the 
$-power in the expression for the Sherwood number. In the second problem, there is a 
velocity gradient at the solid-liquid interface, and the quantity ReSc appears to the 

in the Sherwood number expression. 

Mass Transfer for Flow Around Spheres 

Next we consider the diffusion that occurs in the creeping flow around a spherical gas 
bubble and around a solid sphere of diameter D. This pair of systems parallels the two 
systems discussed in the previous subsection. 

For the gas absorption from a gas bubble surrounded by a liquid in creeping flow, 
we can put Eq. 20.3-28 in the form of Eq. 22.1-5 thus: 

The Sherwood number is then 

Here the Reynolds number is defined using the approach velocity v, of the fluid (or, al- 
ternatively, the terminal velocity of the rising bubble). 
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For the creeping flow around a solid sphere with a slightly soluble coating that dis- 
solves into the approaching fluid, we may modify the result in Eq. 12.4-34 to get 

This result may be rewritten in terms of the Sherwood number as 

As in the preceding subsection we have ReSc to the :-power for the gas-liquid system 
and ReSc to the $-power for the liquid-solid system. 

Both Eq. 22.2-6 and Eq. 22.2-8 are valid only for creeping flow. However, they are 
not valid in the limit that Re goes to zero. As we know from Problem 10B.l and Eq. 14.4- 
5, if there is no flow past the solid sphere or the spherical bubble, Sh, = 2. It has been 
found that a satisfactory description of the mass transfer all the way down to Re = 0 can 
be obtained by using the simple superpositions: Sh,, = 2 + 0.6415(~e~c) ' /~ and Sh, = 

2 + 0.991 ( ~ e S c ) ' / ~  in lieu of Eqs. 22.2-6 and 8. 

Mass Transfer in Steady, Nonseparated Boundary 
Layers on Arbitrarily Shaped Objects 

For systems with a fluid-fluid interface and no velocity gradient at the interface, we 
found the mass flux at the surface to be given by Eq. 20.3-14: 

The local Sherwood number is 

in which the constant, 1 /G, is equal to 0.5642 and Re = lovop/p. 
Similarly for systems with fluid-solid interfaces and a velocity gradient at the inter- 

face, the mass flux expression is given in Eq. 20.3-26 as 

The analogous Sherwood number expression is 

where the numerical coefficient has the value 0.5384. In these equations 1, and v, are a 
characteristic length and a characteristic velocity that can be chosen after the shape of 
the body has been defined. Here again we see that the on ReSc appears in the 
fluid-fluid system, and the $-power on ReSc appears in the fluid-solid system- 
regardless of the shape. The radicands of the Sherwood number expressions are 
dimensionless. 
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Mass Transfer in the Neighborhood of a Rotating Disk 

For a disk of diameter D coated with a slightly soluble material A rotating with angular 
velocity fl in a large region of liquid B, the mass flux at the surface of the disk is inde- 
pendent of position. According to Eq. 19D.4-7 we have 

This may be expressed in terms of the Sherwood number as 

Here the characteristic velocity in the Reynolds number is chosen to be DO. 

522.3 CORRELATION OF BINARY TRANSFER 
COEFFICIENTS IN ONE PHASE 

In this section we show that correlations for binary mass transfer coefficients at low 
mass-transfer rates can be obtained directly from their heat transfer analogs simply by a 
change of notation. These correspondences are quite useful, and many heat transfer cor- 
relations have, in fact, been obtained from their mass transfer analogs. 

To illustrate the background of these useful analogies and the conditions under 
which they apply, we begin by presenting the diffusional analog of the dimensional 
analysis given in 514.3. Consider the steadily driven, laminar or turbulent isothermal 
flow of a liquid solution of A in B, in the tube shown in Fig. 22.3-1. The fluid enters the 
tube at z = 0 with velocity uniform out to very near the wall and with a uniform inlet 
composition XAl From z = 0 to z = L, the tube wall is coated with a solid solution of 
A and B, which dissolves slowly and maintains the interfacial liquid composition con- 
stant at xAO. For the moment we assume that the physical properties p, p, c, and 9 A B  are 
constant. 

The mass transfer situation just described is mathematically analogous to the heat 
transfer situation described at the beginning of 514.3. To emphasize the analogy, we pre- 
sent the equations for the two systems together. Thus the rate of heat addition by con- 
duction between 1 and 2 in Fig. 14.3-1 and the molar rate of addition of species A by 

Nozzle 

Fluid enters 
with uniform 4 

composition XA, ; composition XAb2 -k - C - - 

assumed to be small 

Fig. 22.3-1. Mass transfer in a pipe with a soluble wall. 



680 Chapter 22 Interphase Transport in Nonisothermal Mixtures 

diffusion between 1 and 2 in Fig. 22.3-1 are given by the following expressions, valid for 
either laminar or turbulent flow: 

heat transfer: 

Equating the left sides of these equations to hl(.rrDL)(To - TI) and kxl(.rrDL)(xAo - xA1) re- 
spectively, we get for the transfer coefficients 

heat transfer: 
h,(t) = .rrDL(To - TI) IL o /2w(+k$r=JR o 

dB dz 

/ L / 2 * ( + c 9 A B $ i r = J ~ d ~ d z  mass transfer: kXl(f) = - xA,) 

We now introduce the dimensionless variables ? = r/D, i = z / D ,  f = (T - To)/(Tl - To), 
and ?A = (x, - xAO)/(xAl - xAO) and rearrange to obtain 

heat transfer: hlD /""["(-g NU,@) = - = - 
k 2nL/Do dr ?=+ 

mass transfer: kXlD - / "" lo2" (-5 1 di Shl(t) = 7 - ------- 
&JAB 2vLID o dr -,=? 

Here Nu is the Nusselt number for heat transfer without mass transfer, and Sh is the 
Sherwood number for isothermal mass transfer at small mass-transfer rates. The Nus- 
selt number is a dimensionless temperature gradient integrated over the surface, and 
the Sherwood number is a dimensionless concentration gradient integrated over the 
surface. 

These gradients can, in principle, be evaluated from Eqs. 11.5-7, 8, and 9 (for heat 
transfer) and Eqs. 19.5-8, 9, and 11 (for mass transfer), under the following boundary 
conditions (with ir and 6' defined as in 514.3 and with time averaging of the solutions if 
the flow is turbulent): 

velocity and pressure: 

at i = 0, ir = 6, f o r O ~ ? < f  
" 1 a t r= , , i r=O for5 L 0 

a t?=Oand i = O , @  = O  

temperature: 

concentration: 

The boundary condition in Eq. 22.3-8, on the velocity at the wall, is accurate for the heat- 
transfer system and also for the mass-transfer system provided that xA&WAO + WBO) is 
small; the latter criterion is discussed in 5322.1 and 8. No boundary conditions are 
needed at the outlet plane, z = L/D, when we neglect the d2/dz2 terms of the consenra- 
tion equations in the manner of 34.4 and 514.3. 
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If we can neglect the heat production by viscous dissipation in Eq. 11.5-9 and if there 
is no production of A by chemical reaction as in Eq. 19.5-11, then the differential equa- 
tions for heat and mass transport are analogous along with the boundary conditions. It 
follows then that the dimensionless profiles of temperature and concentration (time 
smoothed, when necessary) are similar, 

? = F(F, 8,i, Re, Pr); 2, = F(?, O,i, Re, Sc) (22.3-14,15) 

with the same form of F in both systems. Thus, to get the concentration profiles from the 
temperature profiles, one replaces $! by k, and Pr by Sc. 

Finally, inserting the profiles into Eqs. 22.3-5 and 6 and performing the integrations 
and then time-averaging give for forced convection 

Nu, = G(Re, Pr, LID); Shl = G(Re, Sc, LID) (22.3-1 6,171 

Here G is the same function in both equations. The same formal expression is obtained 
for Nu,, Nul,, Nu,,, as well as for the corresponding Sherwood numbers. This important 
analogy permits one to write down a mass transfer correlation from the corresponding 
heat transfer correlation merely by replacing Nu by Sh, and Pr by Sc. The same can be 
done for any geometry and for both laminar and turbulent flow. Note, however, that to 
get this analogy one has to assume (i) constant physical properties, (ii) small net mass- 
transfer rates, (iii) no chemical reactions, (iv) no viscous dissipation heating, (v) no ab- 
sorption or emission of radiant energy, and (vi) no pressure diffusion, thermal diffusion, 
or forced diffusion. Some of these effects will be discussed in subsequent sections of this 
chapter; others will be treated in Chapter 24. 

For free convection around objects of any given shape, a similar analysis shows that 

Nu, = H(Gr, Pr); Sh, = H(Gr,, Sc) (22.3-18,191 

Here H is the same function in both cases, and the Grashof numbers for both processes 
are defined analogously (see Table 22.2-1 for a summary of the analogous quantities for 
heat and mass transfer). 

To allow for the variation of physical properties in mass transfer systems, we extend 
the procedures introduced in Chapter 14 for heat transfer systems. That is, we generally 
evaluate the physical properties at some kind of mean film composition and tempera- 
ture, except for the viscosity ratio pb/pO. 

We now give three illustrations of how to "translate" from heat transfer to mass 
transfer correlations: 

Forced Convection Around Spheres 

For forced convection around a solid sphere, Eq. 14.4-5 and its mass-transfer analog are: 

Nu, = 2 + 0.60 ~ e ~ / ~  Pr1/3; Sh,,, = 2 + 0.60 Sc'l3 (22.3-20,21) 

Equations 22.3-20 and 21 are valid for constant surface temperature and composition, re- 
spectively, and for small net mass-transfer rates. They may be applied to simultaneous 
heat and mass transfer under restrictions (i)-(vi) given after Eq. 22.3-17. 

Forced Convection along a Flat Plate 

As another illustration of the use of analogies, we can cite the extension of Eq. 14.4-4 for 
the laminar boundary layer along a flat plate, to include mass transfer: 
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The Chilton-Colburn j-factors, one for heat transfer and one for diffusion, are defined as1 

The three-way analogy in Eq. 22.3-22 is accurate for Pr and Sc near unity (see Table 
12.4-1) within the limitations mentioned after Eq. 22.3-17. For flow around other objects, 
the friction factor part of the analogy is not valid because of the form drag, and even for 
flow in circular tubes the analogy with ifio, is only approximate (see 514.4). 

The Chilton-Colburn Analogy 

The more widely applicable empirical analogy 

j, = j, = a function of Re, geometry, and boundary conditions (22.3-25) 

has proven to be useful for transverse flow around cylinders, flow through packed beds, 
and flow in tubes at high Reynolds numbers. For flow in ducts and packed beds, the 
"approach velocity" v, has to be replaced by the interstitial velocity or the superficial ve- 
locity. Equation 22.3-25 is the usual form of the Chilton-Colburn analogy. It is evident 
from Eqs. 22.3-20 and 21, however, that the analogy is valid for flow around spheres 
only when Nu and Sh are replaced by (Nu - 2) and (Sh - 2). 

It would be very misleading to leave the impression that all mass transfer coeffi- 
cients can be obtained from the analogous heat transfer coefficient correlations. For mass 
transfer we encounter a much wider variety of boundary conditions and other ranges of 
the relevant variables. Non-analogous behavior is addressed in gs22.5-8. 

A spherical drop of water, 0.05 cm in diameter, is falling at a velocity of 215 cm/s through 
dry, still air at 1 atm pressure with no internal circulation. Estimate the instantaneous rate of 

from a evaporation from the drop, when the drop surface is at To = 70°F and the air (far from the 
Freely Falling Drop drop) is at T, = 140°F. The vapor pressure of water at 70°F is 0.0247 atm. Assume quasi- 

steady state conditions. 

SOLUTION Designate water as species A and air as species B. The solubility of air in water may be ne- 
glected, so that WBO = 0. Then assuming that the evaporation rate is small, we may write Eq. 
22.1-3 for the entire spherical surface as 

The mean mass transfer coefficient, k,,, may be predicted from Eq. 22.3-21 in the assumed ab- 
sence of internal circulation. 

The film conditions needed for estimating the physical properties are obtained as 
follows: 

T. H. Chilton and A. P. Colburn, Ind. Eng. Chem., 26,1183-1187 (1934). 
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In computing xAfr we have assumed ideal gas behavior, equilibrium at the interface, and com- 
plete insolubility of air in water. The mean mole fraction, xAf, of the water vapor is sufficiently 
small that it can be neglected in evaluating the physical properties at the film conditions: 

c = 3.88 X lop5 g-moles/cm3 

p = 1.12 x g/cm3 

p = 1.91 X lod4 g/cm . s (from Table 1.1-1) 

%AB = 0.292 cm2/s (from Eq. 17.2- 1) 

When these values are used in Eq. 22.3-21 we get 

Sh, = 2 + 0.60(63)~/~(0.58)'/~ = 5.96 

and the mean mass transfer coefficient is then 

C ~ A B  (3.88 X 1OP5)(O.292) (5.96) kxm = - 
D 

Sh, = 
0.05 

Then from Eq. 22.3-26 the evaporation rate is found to be 

This result corresponds to a decrease of 1.23 X lop3 cm/s in the drop diameter and indicates 
that a drop of this size will fall a considerable distance before it evaporates completely. 

In this example, for simplicity, the velocity and surface temperature of the drop were 
given. In general, these conditions must be calculated from momentum and energy balances, 
as discussed in Problem 22B.1. 

EXAMPLE 22.3-2 

The Wet  and D y Bulb 

We next turn to a problem for which the analogy between heat and mass transfer leads to a sur- 
prisingly simple and useful, if approximate, result. The system, shown in Fig. 22.3-2, is a pair of 
thermometers, one of which is covered with a cylindrical wick kept saturated with water. The 

Psychrometer wick will cool by evaporation into the moving air stream and for steady operation will ap- 
proach an asymptotic value known as the wet bulb temperature. The bare thermometer, on the 
other hand, will tend to approach the actual temperature of the approaching air, and this value 
is called the dry bulb temperature. Develop an expression for determining the humidity of the air 
from the wet and dry bulb temperature readings neglecting radiation and assuming that the re- 
placement of the evaporating water has no significant effect on the wet bulb temperature mea- 
surement. In Problem 228.2 we will see how radiation can be taken into account. 

SOLUTION For simplicity, we assume that the fluid velocity is high enough that the thermometer read- 
ings are unaffected by radiation and by heat conduction along the thermometer stems, but 
not so high that viscous dissipation heating effects become significant. These assumptions are 
usually satisfactory for glass thermometers and for gas velocities of 30 to 100 ft/s. The dry 
bulb temperature is then the same as the temperature T ,  of the approaching gas, and the wet 
bulb temperature is the same as the temperature To of the outside of the wick. 

Let species A be water and species B be air. An energy balance is made on a system that 
contains a length L of the wick (the distance between planes 1 and 2 in the figure). The rate of 
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Dry-bulb Wet-bulb 
/ thermometer thermometer \ 

q Surface 2 

Wick saturated 

Fig. 22.3-2. Sketch of a wet-bulb and dry-bulb psychrometer installation. It is assumed that no heat or mass 
moves across plane 2. 

heat addition to the system by the gas stream is h,(nDL)(T, - To). Enthalpy also enters via 
plane 1 at a rate WAIHAl in the liquid phase and leaves at the mass transfer surface at a rate 
w ~ ~ J ~ ~ ,  both of these occurring at a temperature To. Hence the energy balance gives 

since the water enters the system at plane 1 at the same rate that it leaves as water vapor at 
the mass transfer interface 0. To a very good approximation, HA, - HA, may be replaced by 
A&,,, the molar heat of vaporization of water. 

From the definition of the mass transfer coefficient 

in which WBo = 0 as in the preceding example. Combination of Eqs. 22.2-32 and 33 gives then 

Then using the definitions of Nu, and Sh,, and noting that p?p = ct,, we may rewrite Eq. 
22.3-34 as 

Because of the analogy between heat and mass transfer, we can expect that the mean Nusselt 
and Sherwood numbers will be of the same form: 

Nu, = F(Re)Prn; Sh, = F(Re)Scn (22.3-36,37) 

where F is the same function of Re in both expressions. Therefore, knowing the dry and wet 
bulb temperatures and the mole fraction of the water vapor adjacent to the wick (x,,), we can 
calculate the upstream composition XA, of the air stream from 

The exponent n depends to a slight extent on the geometry, but is not far from & and the 
quantity (Sc/PrI1-" is not far from unity.* Furthermore, the wet bulb temperature is seen to be 

A somewhat different equation, with 1 - n = 0.56, was recommended for measurements in air by 
C. H. Bedingfield and T. B. Drew, Ind. Eng. Chem., 42,1164-1173 (1950). 
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independent of the Reynolds number under the assumption introduced in Eqs. 22.3-36 and 
37. This result would also have been obtained by using the Chilton-Colburn relations, which 
would give n = $ directly. 

The interfacial gas composition xAo can be accurately predicted, at low mass-transfer 
rates, by neglecting the heat and mass transfer resistance of the interface itself (see s22.4 
for further discussion of this point). One can then represent xAO by the vapor-liquid 
equilibrium relationship: 

A relation of this kind will hold for given species A and B if the Iiquid is pure A as assumed 
above A commonly used approximation of this relationship is 

in which PA,",, is the vapor pressure of pure A at temperature To. This relation assumes tacitly 
that the presence of B does not alter the partial pressure of A at the interface, and that A and B 
form an ideal gas mixture. 

If an air-water mixture at 1 atm pressure gives a wet bulb temperature of 70°F and a dry 
bulb temperature of 140°F, then 

pA,vap = 0.0247 atm 

xA0 = 0.0247, from Eq. 22.3-40 

C, = 6.98 Btu/lb-mole. F at 105"F, the film temperature 

A&, = 18,900 Btu/lb-mole at 70°F 

Sc = 0.58 (see Example 22.2-1) 

Pr = 0.74, from Eq. 9.3-16 

Substitution into Eq. 22.3-37, with n = $, then gives 

From this the mole fraction of water in the approaching air is 

Since we assumed that the film concentration was X A  = 0 as a first approximation, we 
could go back and make a second approximation by using an average film concentration 
of i(0.0247 + 0.0033) = 0.0140 in the physical property calculations. The physical proper- 
ties are not known accurately enough here to justify recalculation. 

The calculated result in Eq. 22.3-43 is in only fair agreement with published humidity 
charts, because these are typically based on the adiabatic saturation temperature rather than 
the wet bulb tem~erature.~ 

EXAMPLE 22.3-3 

Mass Transfer in 
Creeping Flow Through 

Many important adsorptive operations, from purification of proteins in modern biotechnol- 
ogy to the recovery of solvent vapor by dry-cleaning establishments, occur in dense particu- 
late beds and are typically carried out in steady creeping flow-that is, at Re = D,vg/p < 20. 
Here D, is the effective particle diameter and v, is the superficial velocity, defined as volumet- 

Packed Beds ric flow rate divided by the total cross section of the bed (see 56.4). It follows that the dimen- 
sionless velocity v/vo will have a spatial distribution independent of the Reynolds number. 
Detailed information is available only for spherical packing particles. 

0. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part I ,  2nd edition, 
Wiley, New York, (1954), p. 120. 
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SOLUTION 

Using the dimensional analysis discussion at the beginning of this section, predict the 
form of the steady-state mass transfer coefficient correlation for creeping flow. 

The dimensional analysis procedure in s19.5 may be used, with Dp as the characteristic length 
and v, the characteristic velocity. Then, from Eq. 19.5-11, we see that the dimensionless con- 
centration depends only on the product ReSc, in addition to the dimensionless position coor- 
dinates and the geometry of the bed. 

The most extensive data are for creeping flow at large Peclet numbers. Experimental data 
on the dissolution of benzoic acid spheres in water4 have yielded the result 

1 09 Sh, = E (R~sc )"~  ReSc >> 1 (22.3-43) 

where E is the volume fraction of the bed occupied by the flowing fluid. Equation 22.3-43 is 
reasonably consistent with the relation 

Sh, = 2 + 0.991(Re~c)~'~ (22.3-44) 

which incorporates the creeping flow solution for flow around an isolated sphere5 (E = 1) (see 
5522.2b). This suggests that the flow pattern around an isolated sphere is not much different 
from that around a sphere surrounded by other spheres, particularly near the sphere surface 
where most of the mass transport takes place. 

No reliable data are available for the limiting behavior at very low values of ReSc, but 
numerical calculations for a regular packing6 predict that the Sherwood number asymptoti- 
cally approaches a constant near 4.0 if based on a local difference between interfacial and bulk 
compositions. 

Behavior within the solid phase is far more complex, and no simple approximation is 
wholly trustworthy. However, experiments to date7 show that where intraparticle mass trans- 
port is described by Fick's second law, one can use the approximation 

where kc, is the effective mass transfer coefficient within the solid phase and 9,, is the diffu- 
sivity of A in the solid phase. The equation is for "slow" changes in the solute concentration 
bathing the particle. This is an asymptotic solution for a linear change of surface concentra- 
tion with time: and has been justified9 by calculations. For a Gaussian (bell-shaped) concen- 
tration wave, "slow" means that the passage time (temporal standard deviation) of the wave 
is long relative to the particle diffusional response time, which is of the order of D;/69,,. 
Fick's second law must be solved with the detailed history of surface concentration when this 
inequality is not satisfied. 

In packed beds, as with tube flow, one must keep in mind the fact that there will be 
nonuniformities in the concentration as a function of the radial coordinate. This was dis- 
cussed in 514.5 and s20.3. 

E. J. Wilson and C. J. Geankopolis, Ind. Eng. Chem. Fundamentals, 5,9-14 (1966). See also 
J. R. Selman and C. W. Tobias, Advances in Chemical Engineering, 10,212-318 (1978), for an extensive 
summary of mass transfer coefficient correlations obtained by electrochemical measurements. 

V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J. (1962), §14. 
J. P. s e n s e n  and W. E. Stewart, Chem. Eng. Sci., 29,811-837 (1974). 
A. M. Athalye, J. Gibbs, and E. N. Lightfoot, J.  Chromatography, 589,7145 (1992). 
H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd edition, Oxford University Press 

(19591, s9.3, Eqs. 10 and 11. 
J. F. Reis, E. N. Lightfoot, P. T. Noble, and A. S. Chiang, Sep. Sci. Tech., 14,367-394 (1979). 
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In both gas-liquid10 and liquid-liquid" contactors, sprays of liquid drops or clouds of bubbles 
are frequently encountered. Contrast their mass transfer behavior with that of solid spheres. 

Mass Transfer to  Drops 
and Bubbles SOLUTION 

Many different types of behavior are encountered, and surface forces can play a very impor- 
tant role. We discuss surface forces in some detail in 522.7. Here we consider only some limit- 
ing cases and refer readers to the above-cited references. 

Very small drops and bubbles behave like solid spheres and can be treated by the corre- 
lations in Example 22.3-3 and in Chapter 14. However, if both adjacent phases are free of sur- 
factants and small particulate contaminants, the interior phase circulates and carries the 
adjacent regions of the exterior phase along. This stress-driven "Hadamard-Rybczinski circu- 
lation"12 increases the mass transfer rates markedly, often by almost an order of magnitude, 
and the rates can be estimated from of the "penetration model" discussed in 
518.5. Thus, for a spherical bubble of gas A with diameter D rising through a clean l ik id  B, 
the Shenvood number on the liquid side lies in the range16 

where v, is the terminal velocity (see Eqs. 18.5-19 and 20). 
The size at which the transition from the solid-like behavior to circulation occurs de- 

pends on degree of surface contamination and is not easily predicted. 
Very large drops or bubbles ~scillate,'~ and both phases follow a modified penetration 

model, 

with angular frequency of o~cillation'~ 

where u is the interfacial tension, and p~ and p, are the densities of the drops and the continu- 
ous medium. 

The success of this model implies that the boundary layer is refreshed once every oscilla- 
tion, but there is also a small effect of periodic stretching of the surface. 

522.4 DEFINITION OF TRANSFER COEFFICIENTS 
IN TWO PHASES 

Recall that in g10.6 we introduced the concept of an overall heat transfer coefficient, U, to 
describe the heat transfer between two streams separated from each other by a wall. This 
overall coefficient accounted for the thermal resistance of the wall itself, as well as the 
thermal resistance in the fluids on either side of the wall. 

lo J. Stichlmair and J. F. Fair, Distillation Principles and Practice, Wiley, New York (1998). 
I' J. C. Godfrey and M. M. Slater, Liquid-Liquid Extraction Equipment, Wiley, New York (1994). 
l2 J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijhoff, The Hague (1983). 
l3 J. B. Angelo, E. N. Lightfoot, and D. W. Howard, R I C h E  Journal, 12,751-760 (1966). 
l4 J. B. Angelo and E. N. Lightfoot, AlCkEJournal, 14,531-540 (1968). 
l5 W. E. Stewart, J. B. Angelo, and E. N. Lightfoot, MCkE Journal, 16,771-786 (1970). 
l6 R. Higbie, Trans. AICkE, 31,365-389 (1935). 
l7 R. R. Schroeder and R. C. Kintner, AlCkE Journal, 11,5-8 (1965). 
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Fig. 22.4-1. Concentration profiles 
in the neighborhood of a gas-liquid 
interface 

Distance from interface 

We now treat the analogous situation for mass transfer, except that here we are con- 
cerned with two fluids in intimate contact with one another, so that there is no wall resis- 
tance or interfacial resistance. This is the situation most commonly met in practice. Since 
the interface itself contains no significant mass, we may begin by assuming continuity of 
the total mass flux at the interface for any species being transferred. Then for the system 
shown in Fig. 22.4-1 we write 

for the interfacial flux of A toward the liquid phase. Then using the definition given in 
Eq. 22.1-9, we get 

in which we are now following the tradition of using x for mole fractions in the liquid 
phase and y for mole fractions in the gas phase. We now have to interrelate the interfa- 
cial compositions in the two phases. 

In nearly all situations this can be done by assuming equilibrium across the inter- 
face, so that adjacent gas and liquid compositions lie on the equilibrium curve (see Fig. 
22.4-2), which is regarded as known from solubility data: 

8 Equilibrium curve 
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xA = mole fraction of A in the liquid 

Fig. 22.4-2. Relations 
among gas- and liquid- 
phase compositions, and 
the graphical interpreta- 
tions of m, and my. 
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Exceptions to this are: (i) extremely high mass-transfer rates, observed for gas phases at 
high vacuum, where N,, approaches p A O / s ~ ,  the equilibrium rate at which gas 
molecules impinge on the interface; and (ii) interfaces contaminated with high concen- 
trations of adsorbed particles or surfactant molecules. Situation (i) is quite rare, and situ- 
ation (ii) normally acts indirectly by changing the flow behavior rather than causing 
deviations from equilibrium. In extreme cases surface contamination can provide addi- 
tional transport resistances. 

To describe rates of interphase transport, one can either use Eqs. 22.4-2 and 3 to cal- 
culate interface concentrations and then proceed to use the single-phase coefficients, or 
else work with overall mass transfer coefficients 

Here yAe is the gas phase composition in equilibrium with a liquid at composition xAb, 
and x,, is the liquid phase composition in equilibrium with a gas at composition yAb. The 
quantity q,Io, is the overall mass transfer coefficient "based on the gas phase," and e,,,, 
is the overall mass transfer coefficient "based on the liquid phase." Here again the molar 
flux NAO is taken to be positive for transfer to the liquid phase. 

Equating the quantities in Eqs. 22.4-2 and 4 gives two relations 

connecting the two-phase coefficients with the single-phase coefficients. 
The quantities xA, and yAe introduced in the above three relations may be used to de- 

fine quantities m, and my as follows: 

As we can see from Fig. 22.4-2, m, is the slope of the line connecting points (xAO, yAO) 
and (x,,, yAb) on the equilibrium curve, and my is the slope of the line from (xAb, yAe) to 
(~'40, YAO). 

From the above relations we can then eliminate the concentrations and get relations 
among the single-phase and two-phase mass transfer coefficients: 

The first of these was obtained from Eqs. 22.4-5,2, and 7, and the second from Eqs. 22.4- 
6,2, and 8. If the equilibrium curve is nearly linear over the range of interest, then m, = 

my = m, which is the local slope of the curve at the interfacial conditions. We see, then, 
that the expressions in Eqs. 22.4-9, 10 both contain a ratio of single-phase coefficients 
weighted with a quantity m. This quantity is of considerable importance: 

If k~,loc/rnk~,lo, << 1, the mass-transport resistance of the gas phase has little ef- 
fect, and it is said that the mass transfer is liquid-phase controlled. In practice, this 
means that the system design should favor liquid-phase mass transfer. 

If kO,,loc/m$,loc >> 1, then the mass transfer is gas-phase controlled. In a practical 
situation, this means that the system design should favor gas-phase mass 
transfer. 

If 0.1 < ko,,loc/m$,loc < 10, roughly, one must be careful to consider the interac- 
tions of the two phases in calculating the two-phase transfer coefficients. Out- 
side this range the interactions are usually unimportant. We return to this point 
in the example below. 
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The mean two phase mass transfer coefficients must be defined carefully, and we con- 
sider here only the special case where bulk concentrations in the two adjacent phases do 
not change significantly over the total mass-transfer surface S. We may then define e,,, by 

so that, when Eq. 22.3-9 is used, 

Frequently area mean overall mass transfer coefficients are calculated from area mean 
coefficients for the two adjoining phases: 

The two mean values in Eqs. 22.4-12 and 13 can be significantly different (see Example 
22.4-3). 

Oxygen is to be removed from water using nitrogen gas at atmospheric pressure and 20°C in 
the form of bubbles exhibiting internal circulation, as shown in Fig. 22.4-3. Estimate the rela- 

Determination of the tive importance of the two mass transfer coefficients k: ,<,, and k: ,,,<. Let A stand for O,, B for 
Controlling Resistance H,O, and c for N ~ .  

SOLUTION We can do this by assuming that the penetration model (see s18.5) holds in each phase, so that 
7 

where c, and cg are the total molar concentrations in the liquid and gas phases, respectively. 
The effective exposure time, t,,,, is the same for each of the phases. 

Nitrogen 
gas 

Oxygen- , containing 
water 

Fig. 22.4-3. Schematic diagram of an oxygen stripper, in 
which oxygen from the water diffuses into the nitrogen 
gas bubbles. 
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The solubility of 0, in water at 20°C is 1.38 X moles per liter at an oxygen partial 
pressure of 760 mm Hg, the vapor pressure of water is 17.535 mm Hg, and the total pressure 
in the solubility measurements is 777.5 mm Hg. At 20°C, the diffusivity of O2 in water is 
91AB = 2.1 X lop5 cm2/s, and in the gas phase the diffusivity for O2 - N2 is = 0.2 cm2/s. 
We can then write 

(22.4-15) 

Into this we must substitute 

It follows that 

Therefore, only the liquid-phase resistance is significant, and the assumption of penetration 
behavior in the gas phase is not critical to the determination of liquid-phase control. It may 
also be seen that the dominant factor is the low solubility of oxygen in water. One may gener- 
alize and state that absorption or desorption of sparingly soluble gases is almost always liq- 
uid-phase controlled. Correction of the gas-phase coefficient for net mass transfer is clearly 
not significant, and the correction for the liquid phase is negligible. 

EXAMPLE 22.4-2 

Interaction of Phase 

There are many situations for which the one-phase transfer coefficients are not available for 
the boundary conditions of the two-phase mass transfer problem, and it is common practice 
to use one-phase models in which interfacial boundary conditions are assumed, without re- 

Resistances gard to the interaction of the diffusion processes in the two phases. Such a simplification can 
introduce significant errors. Test this approximate procedure for the leaching of a solute A 
from a solid sphere of B of radius R in an incompletely stirred fluid C, so large in volume that 
the bulk fluid concentration of A can be neglected. 

SOLUTION The exact description of the leaching process is given by the solution of Fick's second law 
written for the concentration of A in the solid in the region 0 < r < R: 

The boundary and initial conditions are: 

B.C. 1: at r = 0, 

B.C. 2: at u = R, 

I.C.: at t = 0, 

The diffusional process on the liquid side of the solid-liquid interface is described in terms of 
a mass transfer coefficient, defined by 

in which c,,(t) is the concentration in the liquid phase adjacent to the interface. The behavior of 
the diffusion in the two phases is coupled through Eq. 22.4-22, which describes the equilibrium 
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at the interface. Because of the coupling, it is convenient to use the method of Laplace trans- 
form. First, however, we restate the problem in dimensionless form, using ,$ = r/R, T = 

BABt/R2, Cs = CAs/Co, C1 = (mCAl + b)/Co, and N = k$./m%AB. E ~ s .  22.3-20 and 24 become 

with C, finite at the sphere center, C, = C1 at the sphere surface, and C, = 1 throughout the 
sphere initially. 

When we take the Laplace transform of this problem, we get 

with Cs finite at the sphere center, and C, = Cl at the sphere surface. The solution of Eqs. 22.4- 
27 (which is a nonhomogeneous analog of Eq. C.l-6a) and 28 is 

The Laplace transform of MA, the total amount of A within the sphere at any time t, is 

Inversion by using the Heaviside partial fractions expansion theorem for repeated roots' gives 

The constants A, and B, are found to be, for finite kc (or N), 

I\IZ sin2 A, A, cot A, - (1 - N) = 0; B = - 
hi (A, - sin A, cos A,) 

(22.4-32,33) 

and for infinite kc (or N), 

Note that we have succeeded in getting the total amount of A transferred across the interface, 
MA(t), without finding the expression for the concentration profile in the system. This is an 
advantage in using the Laplace transform. 

We may now define two overall mass transfer coefficients: (i) the correct overall coeffi- 
cient for this system based on the solid phase 

where cAb is the volume-average concentration of A in the solid phase, and (ii) an approximate 
overall coefficient, based on the separately calculated behavior of the two phases, calculated 
by Eq. 22.4-13, 

where the superscript 0 indicates "zero external resistance" and kc is the liquid-phase transfer 
coefficient. 

A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, McGraw- 
Hill (1954), p. 232, Formula 21. 
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1.15 Fig. 22.4-4. Ratio of exact to approxi- 
Y 

fi mate overall mass transfer coefficient = .Y 
d2 a% in the leaching of a solute from a 
z $ 8 1.10 solute from a sphere, for large m o :: 

W S ~ I  9*,t/R2, plotted versus the dimen- 
0 0% 
0 7+ E; 
'3 a* sionless ratio md9,,/3RkC. 
a 1.05 
T% * a 

E 
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m ? ~ ~ c $ l ~ ~ / 3 ~ k ,  = p 2 / 3 ~  

We can now make a comparison between K, and Ks,app,ox. We do this only for large values 
of 9,,t/R2, for which the leading term of the sum in Eq. 22.4-31 suffices. For this situation, we 
obtain 

and 

where A, is to be calculated for the actual value of kc; keep in mind that A, is obtained from Eq. 
22.4-32, in which N = kJ!/mgA,. A plot of Eq. 22.4-39 is shown in Fig. 22.4-4. There we see 
that the maximum error in the two-film model occurs near r 2 / 3 N  = 1, and that departures 
from the two-film theory are appreciable but not very large. 

Consider a characteristic section of a packed tower for which the separately measured single- 
phase mass transfer coefficients yield a calculated ratio 

Area Averagin$ ln 

but in which the liquid phase wets only half of the packing surface. Here the subscript m 
refers to the mean value over a typical area S of the packing surface. The gas-phase transfer 
coefficient, on the other hand, is uniform over the entire surface. This hypothetical example is 
a special case of nonuniform wetting. Calculate the true and approximate values of k:,,/C, 
according to Eqs. 12.4-12 and 13. 

SOLUTION We begin with Eq. 22.4-12 and note that for half of the area = 0, and that over the other 
half 

whereas, for the gas phase 

k!,~oc = k0ym 

Eq. 22.4-12 thus yields 

C .  J. King, AIChE Journal, 10,671-677 (1964). 
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From this and Eqs. 22.4-40 and 22.4-9, we find that the correct value for k;,/grn is 

whereas the approximate value from Eq. 22.4-13 is 

Thus the maldistribution of the liquid-phase mass transfer coefficient halves the rate of mass 
transfer, even though the liquid phase resistance "on the average" is very low. The general 
unavailability of such detailed information is one more reason for the uncertainty in predict- 
ing the behavior of complex contactors. 

522.5 MASS TRANSFER AND CHEMICAL REACTIONS 

Many mass transfer operations are accompanied by chemical reactions, and the reaction 
kinetics can have a profound effect on transport rates. Important examples include ab- 
sorption of reactive gases and reactive distillation. There are two situations of particular 
interest: 

(i) Absorption of a sparingly soluble substance A into a phase containing a second 
reactant B in large concentration. Absorption of carbon dioxide into NaOH or 
amine solutions is an industrially important example, and here the reaction 
may be considered pseudo-first-order because reactant B is present in great 
excess: 

An example of this type of problem was given in 918.4. 

(ii) Absorption of a rapidly reacting solute A into a solution of B. Here to a first ap- 
proximation it may be assumed that the two species react so rapidly that they 
cannot coexist. An illustration of this was given in Example 20.1-2. 

We shall be particularly interested in liquid boundary layers, and heat-of-reaction 
effects tend to be modest because the ratio of Sc to Pr is usually very large. Macroscopic 
heating effects do occur, and these are discussed in Chapter 23. Here we limit ourselves 
to a few illustrative examples showing how one can use models of absorption with 
chemical reaction to predict the performance of operating equipment.' 

EXAMPLE 22.5-1 

Estimation of the 

Mass transfer measurements with irreversible first-order reaction have often been used to es- 
timate interfacial area in complex mass transfer equipment. Show here how this method can 
be justified. 

Interfacial Area in a 
Packed Coluwn SOLUTION 

The system we consider here is the absorption of carbon dioxide into a caustic solution, which 
is limited by hydration of dissolved C02 according to the reaction 

' T. K. Shemood, R. L. Pigford, and C. R. Wilke, Mass Transfer, McGraw-Hill, New York (1975), 
Chapter 8. 
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The carbonic acid then reacts with NaOH at a rate proportional to carbon dioxide concentra- 
tion. The kinetics of this reaction are well characterized.' 

The solution of this diffusion problem has been given in Problem 20C.3. From Eq. 20.3-3, 
we find that for long times2r3 

WAD = (22.5-3) 

which can be solved for the total surface area. It follows that the total surface area A under 
consideration is given by 

here MA,tot is the number of moles of carbon dioxide absorbed by time t. 
This development is readily extended to a falling film of length L and surface velocity v,, 

provided that k,L/v, >> 1. First-order reaction in mass transfer boundary layers is discussed 
in Example 18.4-1 for a simple film model and in Example 20.1-3. The development can be 
further extended to estimate the interfacial area in packed columns, in which the liquid phase 
is supported as a falling film on solid surfaces, a common design. 

We next consider gas absorption with first-order reaction in an agitated tank and take as a 
starting point the reaction 

Estimation of 
Volumetric Mass O2 + 2Na2S03 + 2Na2S04 (22.5-5) 

Transfer Coefficients already discussed in Example 18.4-1, using a thin stagnant film of liquid as a mass transfer 
model. 

SOLUTION This is not a realistic model, but the development in Example 18.4-1 can be rephrased in a 
model-insensitive form by writing 

so that 

The subscript AB should be changed to 02S, where S represents the sulfite solution. 
One can now test the model sensitivity of the system by comparing the film model with 

the penetration model. This is done in Fig. 22.5-1, where it can be seen that there is no signifi- 
cant difference between the two.4 Moreover, there is a substantial region of parameter space 
where the predicted rate of oxygen absorption is identical to that for physical absorption in 
an oxygen-free tank. This chemical system has therefore proven a popular means for estimat- 
ing volumetric mass transfer coefficients. It has long been used to characterize the oxygena- 
tion effectiveness of aerobic biorea~tors.~ 

P. V. Danckwerts, Trans. Faraday Soc., 46,300-304 (1950). 
R. A. T. 0. Nijsing, Absorptie van gassen in vloeistoffen, zonder en met chemiscke reactie, Academisch 

Proefschrift, Delft (1957). 
E. N. Lightfoot, AlChE Journal, 8,710-712 (1962). 
A. M. Friedman and E. N. Lightfoot, Ind. Eng. Chern., 49,1227-1230 (1957); J. E. Bailey and 

D. F. Ollis, Biochemical Engineering Fundamentals, McGraw-Hill, New York (1986); V. Linek, P. Benes, 
and J. Sinkule, Biotechno1.-Bioen, 35,766-770 (1990). 
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Fig. 22.5-1. Effect of irreversible first-order reaction on 
pseudosteady-state absorption of a sparingly soluble gas 
in an agitated tank. Comparison of the penetration and 
stagnant-film models. 

Next consider the absorption with rapid irreversible reaction, and seek to simplify and gener- 
alize the discussion of Example 20.1-2. Do this in terms of the Hatta numbeuqefined as 

Model-Insensitive 
Correlations for Ha = - N ~ o  

j p h v s  
(22.5-8) 

Absorption wi th  A O' 

~ a ~ i d  Reaction here the superscript phys denotes absorption of solute A in the same system but without reac- 
tion. This dimensionless group provides a convenient measure of the promoting effect of 
chemical reaction on the rate of absorption. 

SOLUTION In the absence of solute B, species A would undergo physical absorption (that is, absorption 
without reaction) at a rate 

since e r f V ' x  goes to unity with decreasing c,,/c,,,. We now divide the result in Eq. 20.1- 
39 by Eq. 22.5-9 to get 

which can be further simplified in the following 

S. Hatta, Technological Reports of TGhoku University, 10,613462 (1932). ShirBji Hatta (1895-1973) 
taught at TBhoku University from 1925 to 1958 and in 1954 he was appointed Dean of Engineering; after 
"retiring" he accepted a position at Chiyoda Chemical Engineering and Construction Co. He served as 
editor-in-chief of Kagaku K6gaku and as president of Kagaku K6gakkai. 

E. N. Lightfoot, Chem. Eng. Sci., 17,1007-1011 (1962). 
D. H. Cho and W. E. Ranz, Chem. Eng. Puog. Symposium Series # 72,63,3745 and 46-58 (1967). 
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(i) For small values of cB,/c,,, or for equal diffusivities, 

acgm 
H a = 1 + -  

~ C A O  

(ii) For large values of cBZ/cAO, 

(iii) For all values of cB,,/cAO (approximate), 

Equation 22.5-11 is particularly useful, since it is accurate for the common situation of nearly 
equal diffusivities as well as for small cBm /cAO. Equation 22.5-13 is useful because it is valid for 
both large and very small values of a ~ , , ~ , ~ / b c ~ ~ ~ , , .  In addition, the exact solution always 
lies in the space between the curve of Eq. 22.5-13 and those portions of the curves of Eqs. 22.5- 
11 and 12 that are closest to it. This is shown in Fig. 22.5-2, where these bounding approxima- 
tions are compared to the exact solution. 

We next note that we can replace the diffusivity ratio by the corresponding ratio of non- 
reactive Sherwood numbers, 

where the superscript 0 denotes the observed Sherwood number in the absence of chemical 
reaction. We may thus obtain a set of model-insensitive bounding solutions 

These equations have been shown7 to provide convenient bounds for laminar and turbulent 
boundary layers as well as the penetration model of Example 20.1-2. They thus form a highly 
model-insensitive correlation and are widely useful. 

Fig. 22.5-2. Model- 
insensitive correlations 
for absorption with 
rapid chemical reaction, 
derived from the pene- 

0.01 0.1 1 10 100 tration model, foithe 
Stoichiometric ratio, acB,/bcAo case that BAS = 29IBs. 
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522.6 COMBINED HEAT AND MASS TRANSFER 
BY FREE CONVECTION 

In this section we consider briefly some important interactions among the transfer 
processes, with emphasis on free convection. This is an extension of our earlier discus- 
sion of free-convection heat transfer in 514.6 and is reasonably well understood. 

Combined heat and mass transfer by free convection is among the simple examples 
of interaction between all three transport phenomena. The dimensionless equations de- 
scribing them have been given in Eqs. 19.5-8 to ll. Numerical integration of these equa- 
tions is possible,' but we can obtain simple, useful results via boundary layer theory. We 
consider two particularly simple problems in the examples that follow. 

Develop an expression for the combined free-convection heat and mass transfer for the spe- 
cial case of equal Prandtl and Schmidt numbers. Assume that transfer is between a surface of 

of Grashof constant temperature and composition, and a large uniform surrounding fluid. 
Numbers 

SOLUTION 

This is a direct extension of the boundary conditions of Example 11.4-5. Then if the dimen- 
sionless temperature and composition are defined analogously, it follows that ? = 5, every- 
where within the system under investigation. 

It then follows that the solution of this mixed convection problem is identical to that for 
heat or mass transfer alone, but with Gr or Gr, replaced by the sum (Gr + Gr,). This simplifi- 
cation is widely used for the air-water system, where the small difference between the Sc and 
Pr numbers does not have a significant effect. 

Thus for evaporation from a water-wetted vertical plate (with Sc = 0.61 and Pr = 0.73), 
one may use Eq. 11.4-11 with C = 0.518 to obtain 

Nu, = 0.518[0.73(Gr + ~ r , ) ] ' / ~  

Sh, = 0.518[0.61(Gr + ~ r , ) ] ' / ~  

Note that the i-th powers of Pr and Sc are 0.92 and 0.88, respectively. This difference is 
hardly significant in view of the uncertainties of any actual situation and the boundary layer 
model on which these results are based. Note also that the thermal Grashof number is nor- 
mally by far the larger, so that neglect of this interaction would greatly underestimate the 
evaporation rates. 

There are many situations-for example, the evaporation of solvents with low volatility- 
where thermal Grashof numbers are much larger than their mass transfer counterparts (Gr > 

Free-Convecti0n Heat Gr,) and the Schmidt numbers exceed the Prandtl numbers (Sc > Pr). Under these conditions, 
Transfer as a Source of the thermal buoyant forces provide a momentum source, which in turn provides a convective 
Forced-Convection flow to drive mass transfer. It has been shown2 that the thermally induced gradient of up- 
Mass Transfer ward velocity at the surface of a vertical flat plate of length L is given by 

Here z is the distance measured upward along the plate, y is measured outward into the fluid, 
and AT is the difference between the plate temperature and the temperature of the surround- 
ings. This is an asymptotic expression for large Prandtl number, but is also useful for gases. 
Develop expressions for the local and mean Sherwood numbers. 

' W. R. Wilcox, Chem. Eng. Sci., 13,113-119 (1961). 
A. Acrivos, Pkys. Fluids, 3,657-658 (1960). 
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SOLUTION The thermal free convection provides a velocity field within which the mass transfer bound- 
ary layer develops. Given this velocity field, we may use the mass transfer analog of Eqs. 
12.4-30 and 29 along with the definition NuIoc = D/I'($)& to obtain a description of the mass 
transfer rate in two-dimensional flow: 

Here 

is the dimensionless velocity gradient at the wall ( I ,  and v, are arbitrary reference quantities 
used in the definition of the Reynolds number). For free convection it is convenient to use the 
plate height L for I ,  and v/L for v,. Then the Reynolds number is unity, and the quantity To is 
To = (L2/v)(dv,/dy)ly,,. Then Eq. 22.6-4 becomes 

The mean Sherwood number, obtained by averaging over the plate surface, is 

Sh,  = 0.79(GrS~)"~ - w2 
Note that these last two equations show features of both free and forced convection in lami- 
nar boundary layers: the $-power of the Grashof number for free convection and the $power 
of the Schmidt number for forced convection. 

Moreover, we can now test the effect of Sc/Pr, because we know from the preceding ex- 
ample and Table 14.6-1 that, for Pr = Sc, 

Sh, = 0.67(GrS~)'/~ (22.6-8) 

in which the coefficient is lower than that in Eq. 22.6-7 by the ratio 0.85. The Sherwood num- 
ber Sh, will lie between the predictions of Eqs. 22.6-7 and 8 for Sc r Pr and Pr >> 1. 

Arguments similar to those used in Eq. 14.6-6 now suggest the following extension of 
Eqs. 22.67 and 68, 

Sh, = 0.73(1 + 0.1) 
(G~SC)'/~(SC/P~)"'* 

[ l  + ( 0 . 4 9 2 / ~ r ) ~ / ' ~ ] ~ ' ~  

for Sc r Pr and Pr 1 0.73. This result is correct for the limits Pr = 0.73 and Pr = and hence 
can include the evaporation of solvents in air. This analysis can also be extended to other 
shapes. 

522.7 EFFECTS OF INTERFACIAL FORCES 
ON HEAT AND MASS TRANSFER 

In this section we consider briefly some important interactions among the three transfer 
processes, with emphasis on the effects of variable interfacial tension (Marangoni effects). 
The importance of this subject stems from the prevalence of direct fluid-fluid contact in 
mass transfer systems, but it can also be important in similar heat transfer operations. 
Still poorly understood diffusional processes permit violation of the no-slip condition on 
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fluid flow over solid surfaces in the neighborhood of advancing menisci.' As for the dis- 
torting effects of surface tension gradients on mass and heat transfer in gas-liquid con- 
tacting, these will enter through a description of the boundary conditions. 

According to Eq. llC.6-4, if the stresses in the gas (phase 11) are ignored, the interfa- 
cial tangential stresses acting on an interface with normal unit vector n are given bf 

[(6 - nn) [n 711 = -VSa (22.7-1) 

where u is the surface tension V9s the two-dimensional gradient operator in the inter- 
face, and (8 - nn) is a "projection operator" that selects those components of [n - 71 that 
lie in the interfacial tangent plane. For example, if n is taken to be the unit vector in the z 
direction, Eq. 22.7-1 gives 

which are the interfacial tension forces in the x and y directions acting in the xy-plane. 
The surface-tension-induced stresses are typically of the same order as their hydro- 

dynamic counterparts, and the flow phenomena that may result from them are known 
collectively as Marangoni  effect^.^ It has been shown4 that mass transfer rates can be in- 
creased up to threefold by Marangoni effects, but can also be reduced in other circum- 
stances. 

The nature and extent of Marangoni effects depend strongly on the system geometry 
and the transport properties, and it will be convenient to consider here four specific 
examples: 

(i) drops and bubbles surrounded by a liquid continuum 

(ii) sprays of drops in a gaseous continuum 

(iii) supported liquid films in a gaseous or liquid continuum 

(iv) foams of gas bubbles in a liquid continuum 

These systems, each important in practice, show very different behavior from one an- 
other. 

For drops and bubbles moving through a liquid continuum, the primary problems 
are surfactants or microscopic particles that can reduce or eliminate the "Hadamard- 
Rybczinski circulation" and also hinder the periodic mixing accompanying oscillation in 

V. Ludviksson and E. N. Lightfoot, AlCkE Journal, 14,674-677 (1968); P. A. Thompson and 
S. M. Troian, Phys. Rev. Letters, 63,766-769 (1997); A. Marmur, in Modern Approach to Wettability: Theory 
and Applications (M. E. Schrader and G. Loeb, eds.), Plenum Press (1992); D. Schaeffer and P.-Z. Wong, 
Phys. Rev. Letters, 80,3069-3072 (1998). 

In Eq. 3.2-6 of D. A. Edwards, H. Brenner, and D. T. Wasan, Interfacial Transport Processes and 
Rheology, Butterworth-Heinemann, Boston (1991), the operator (8 - nn) is called the "dyadic surface 
idemfactor"; the same quantity is called the "projection tensor" by J. C. Slattery, Interfacial Transport 
Phenomena, Springer Verlag, New York (1990), p. 1086. Both books contain a wealth of information on 
surface tension, surface viscosity, surface viscoelasticity, and other properties of interfaces and their 
methods of measurement. 

C. G. M. Marangoni, Tipographia deifrntelli Fusi, Pavia (1865); Ann. Phys. (Poggendorf), 143,337-354 
(1871). Historical articles on the Marangoni effects are L. E. Scriven and C. V. Sternling, Nature, 187, 
186-188 (1960), and S. Ross and P. Becher, J. Coll. Interfac. Sci., 149,575-579 (1992). 

A good overview of Marangoni effects and related phenomena, with emphasis on liquid-liquid 
systems, is provided in J. C. Godfrey and M. J. Slater, Liquid-Liquid Extraction Equipment, Wiley, New 
York (1994), pp. 68-75. A theory offered by C. V. Sternling and L. E. Scriven, AlChE Journal, 5,514-523 
(1959), provides useful insight but is considered too simple to give reliable predictions of the onset of 
instabilities. 
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larger drops or  bubble^.^ These are discussed briefly in Example 22.3-4. These situations 
are important in gas absorbers and liquid extractors. For sprays of drops in a gas, impor- 
tant in large distillation columns, Marangoni forces play no significant role.6 

Foam beds, important in smaller distillation columns, and supported films, impor- 
tant in a wide variety of packed columns, are particularly interesting. Both are strongly 
affected by surface-tension gradients resulting from the changes of surface tension with 
composition of the adjoining streams. 

Foam beds are stabilized when the buik liquid has a lower surface tension than that in 
equilibrium with the bulk gas, called a "positive system." In such a situation, interfacial 
tension tends to be higher where bubbles are close together than where they are far apart, 
and the shrinking of high-surface-tension regions tends to drive the bubbles apart, thus 
stabilizing the foam. Where there are only small differences in surface tension, or where 
the direction is reversed, a "negative system," there is no stabilizing effect and the foaming 
is poor. Concentration of ethanol from water is interesting, because it has strong positive 
surface tension gradients where the relative volatility is high, but becomes very nearly 
neutral as the azeotrope is approached. Thus, for a bubble-cap column, stage efficiencies 
are high where least needed and low as the azeotropic composition is approached. 

In packed columns, where the descending liquid is supported on solid surfaces as 
thin films, the situation is quite different. Here the surface tension of the descending liq- , 

uid decreases downward for a positive system and is subject to hydrodynamic instabil- 
ity to form narrow rivulets. These markedly decrease interfacial area and mass transfer 
effectiveness. In negative systems, on the other hand, films are stabilized, and mass 
transfer is more effective than for neutral systems. No quantitative analysis of this situa- 
tion appears to be available, but it has been shown that instabilities found by Zuiderweg 
and Harmens for wetted-wall columns can be predicted by linearized stability analy~is .~  
Stability analysis also suggests that the presence of a positive surface-tension gradient 
should improve the efficiency of condensers. Another study of stability for very small 
films opens up new possibilities for microfluidic processors.8 

EXAMPLE 22.7-1 

Elimination of 

The presence of surfactants can stop Hadamard-Rybczinski circulation in a rising gas bubble. 
Explain this phenomenon (see Fig. 22.7-1). 

Circulation in a SOLUTION 
Rising Gas Circulation results in stretching of the surface at the top of a rising bubble and shrinking of 

the surface at the bottom. As a result, surfactant accumulates at the bottom, producing a 
higher than average concentration there, whereas a lower-than-average concentration exists 
at the top. Since surfactants reduce surface tension, this results in a surface-tension-induced 
stress (in spherical coordinates) 

tending to oppose the interfacial deformation (see Eq. 22.7-1). If the magnitude of this stress 
reaches the value that would occur on a rising solid sphere (see Eq. 2.6-6) 

- 3 w ' m  
rrol r=R - 7 sin 0 

circulation will stop. 

J. B. Angelo and E. N. Lightfoot, AICkE Journal, 12,751-760 (1966). 
F. J. Zuiderweg and A. Harmens, Chem. Eng. Sci., 9,89-103 (1958). 
K. H. Wang, V. Ludviksson, and E. N. Lightfoot, AIChE Journal, 17,1402-1408 (1971). 
D. E. Kataoka and M. S. Troian, Nature, 402,794-797 (16 December 1999). 
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Surfactant 
adsorption 

Surfactant 
release 

Fig. 22.7-.1 Surfactant transport during Hadamard- 
Rybuynski circulation 

As a practical matter, even small amounts of surfactant prevent circulation. Small con- 
centration of microscopic suspended particulates have a similar effect, being swept to the rear 
of bubbles and forming a rigid surface. 

Among the simplest mass-transfer-induced Marangoni effects is instability in a falling film re- 
sulting from counterflow adsorption of vapors with a high heat of solution. An important 

Marangoni Instability representative example is the counterflow absorption of HCI vapor into water, which is so in- 
in a Falling Film efficient that cocurrent flow is preferable. Explain this effect. 

S 0 L UTION This situation can be simulated by allowing a film of water to flow down a plate that is colder 
at the top than at the bottom. If sufficient care is taken, one can obtain a sinusoidally varying 
film thickness, as shown9 by interferometry in Fig. 22.7-2(a). Here each new dark line repre- 
sents a line of constant thickness, differing from its neighbors by one-half wavelength of light 
in the water. 

This situation corresponds to a series of parallel roll cells of the type pictured in Fig. 22.7- 
2(b), driven by lateral surface tension gradients. These gradients, in turn, result from small 
variations in film thickness caused by inevitable small spatial variations of surface velocity: 
the thicker regions move faster and thus tend to be colder than the thin regions. A simple per- 
turbation analysis1 shows that perturbations of some widths grow faster than others, and the 
fastest growing ones tend to dominate. The periods of the sinusoidal lines in Fig. 22.7-2(a) 
correspond to these fastest growing disturbances. 

Such regularity is, however, seldom observed in practice. More commonly one sees occa- 
sional thick rivulets surrounded by large thin regions. These thin regions, taking up most of 
the available surface, are both slowly moving and quickly saturated and are thus ineffective 
for mass transfer. Only the rivulets are effective, and their total surface area is very small. 
Similar behavior is observed for surface-tension gradients caused by vertical variations in 
composition. However, in that case the behavior is more complicated and requires an analy- 
sis of interphase mass t ran~fer .~ 
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Fig. 22.7-2. (a) Initiation of Marangoni instability 
in a draining liquid fluid film. (b )  Fully developed 
Marangoni instability. (c) Qualitative picture of 
vertical roll-cell disturbances [V. Ludviksson and 
E. N. Lightfoot, AIChE Journal, 14,620-626 (1968)l. 

522.8 TRANSFER COEFFICIENTS AT HIGH 
NET MASS TRANSFER RATES 

High net mass transfer rates across phase boundaries distort the boundary-layer profiles 
of velocity and temperature as well as species concentration, and they also alter the 
boundary layer thicknesses. Both of these effects tend to increase friction factors and the 
heat and mass transfer coefficients, if the mass transfer is toward the boundary, and to 
reduce them in the reverse situation. These usual trends are reversed, however, in free 
convection and in flows driven by a rotating surface. The magnitudes of such changes 
are dependent on the system geometry, boundary conditions, and the magnitudes of the 
governing parameters such as the Reynolds, Prandtl, and Schmidt numbers, and they 
are accompanied by the effects of changes in physical properties. They can also either in- 
crease or decrease the hydrodynamic stability. Accurate allowance for the effects of net 
mass transfer thus requires extensive calculation and/or experimentation, but some of 
the more salient features can be illustrated by using idealized physical models, and this 
is the approach we follow here. 

We begin with the classic stagnant-film model, which provides simple estimates of the 
profile distortion, but is incapable of predicting changes in the effective film thickness. 
We then discuss the perzetratiorz model and the flat-plate laminar boundary layer model. We 
conclude with several illustrative examples, the last of which is a complete numerical ex- 
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ample of boundary layers on a spinning disk. This example will provide a useful ap- 
praisal of model sensitivity. 

As pointed out in 922.1, when high net mass transfer rates are being considered, we 
introduce a modified notation for the transfer coefficients: 

The black dots in k;,,,, and hioc imply that the distortions of the concentration and temper- 
ature profiles resulting from high net mass transfer rates are being included. 

The relations between these transfer coefficients and those defined in Eqs. 22.1-7 and 8 
are 

= lim &,,oc 
4'10c NAo+NB,,-+O 

(22.8-2a) 

This shows explicitly the limiting process that relates the two types of transfer coefficients. 

The Stagnant-Film 

We have already discussed this model briefly in 518.2 and more fully in Example 19.4-1. 
By combining the expressions in Eqs. 19.4-16 and 17 with the definitions in Eqs. 22.8-la 
and lb, we get for the system in Fig. 22.8-1 

Interface 

Velocity Temperature Concentration 
profile profile profile 

Fig. 22.8-1. Steady flow along a flat surface with rapid mass trans- 
fer into the stream. The unbroken curves represent the true pro- 
files, and the broken curves are predicted by the film model. 

' W. K. Lewis and K. C. Chang, Trans. AIChE, 21,127-136 (1928). 
' G. Ackerman, Forschungsheft, 382,l-16 (1937). 
A. P. Colburn and T. B. Drew, Trans. AIChE, 33,197-212 (1937). 
H. S. Mickley, R. C. Ross, A. L. Squyers, and W. E. Stewart, NACA Tech. Note 3208 (1954). 
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By following the limiting processes indicated in Eqs. 22.8-2a and 2b, we then get expres- 
sions for the transfer coefficients in the low net mass transfer limit: 

These limiting values are found by expanding the right sides of Eqs. 22.8-3 and 4 in Tay- 
lor series and retaining two terms. Substitution of Eqs. 22.7-5 and 6 into Eqs. 19.4-16 and 
17 enables us to eliminate the film thicknesses (which are ill-defined) in favor of the 
transfer coefficients at low mass-transfer rates (which are measurable): 

These equations are the principal results of the film model. They show how the conduc- 
tive energy flux and the diffusion flux at the wall depend on NAo and NBo. In this model, 
the effects of net mass transfer on the conductive and diffusive interfacial fluxes are 
clearly analogous. Although these relations were derived for laminar flow and constant 
physical properties, they are also useful for turbulent flow and for variable physical 
properties (see Problem 22B.3). 

The results for heat and mass transfer can be summarized in two equations: 

Equation 22.8-9 gives the correction factors 6, and OT by which the coefficients kX,,,, and 
bloc must be multiplied to obtain the coefficients at high net mass transfer rates. Equation 
22.8-10 gives the concentration and temperature profiles. The meanings of the symbols 
are summarized in Table 22.8-1. 

Table 22.8-1 Summary of Dimensionless Quantities to be Used for All 
Models Discussed in 522.8. Mass-based versions appear in 520.2 and s22.9. 

--  

0 = correction factors R = flux ratios 
4 = rate factors II = profiles 
7 = dimensionless distance from wall 

Mass transfer Heat transfer 
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Fig. 22.8-2. The variation of the transfer 
coefficients with mass transfer rate, as 
given by the film model (see Eq. 22.8-9). 

Equation 22.8-9 is given graphically in Fig. 22.8-2. This shows that for net transfer of 
A and B into the stream (positive +), the transfer coefficients decrease, whereas net trans- 
fer of A and B out of the stream (negative 4) causes the transfer coefficients to increase. 

Some sample profiles from Eq. 22.8-10 are shown in Fig. 22.8-3. In the limit of small 
mass-transfer rates (i.e., 4 + 0 or R + O), Eq. 22.8-10 becomes simply IT = q. The film 
model regards the region outside the film as perfectly mixed, thus giving a profile that is 
flat beyond q = 1. 

The Penetration Model 

We next turn to the transfer coefficient at large net mass transfer rates for systems in 
which there is no significant drag at the interface. We have already studied several sys- 
tems of this type: gas absorption into a falling liquid film and from a rising bubble 
(§18.5), and unsteady-state evaporation (520.1). These systems are generally lumped to- 
gether under the heading of penetration theory. 

Fig. 22.8-3. Temperature and concentra- 
1.0 tion profiles in a laminar film, as calcu- 

lated by the film model (see Eq. 22.8-10). 
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A falling film system is shown in Fig. 22.8-4. The time of travel from the liquid inlet 
to the liquid outlet (the "exposure time") is sufficiently short that the diffusing species 
does not penetrate very far into the liquid. In such a situation, we can (from a mathemat- 
ical point of view) regard the falling film as infinitely thick. We may then take over the 
results from Example 20.1-1. 

Equation 20.1-23 gives the concentration profiles for a corresponding unsteady-state 
system with large net mass transfer rate, and an analogous equation can be written 
down for the temperature profiles: 

T - To erf(qT - 9,) + erf (0, 
rIT = - - 

Tm - TO 1 + erf p, 

Here Q = y/m and q, = y/G are dimensionless distances from the interface, 
and p in each formula is a dimensionless molar average velocity at the interface: 

From these results and the definitions for the transfer coefficients in Eqs. 22.8-1 and 2, we 
may now get the rate factors 4, the flux ratios R, and the correction factors 0, defined in 
the preceding subsection: 

From the definitions in Eqs. 22.8-1 and 2 and the profiles in Eqs. 22.8-11 and 12, we can 
also get the expressions for the transfer coefficients at low net mass transfer rates: 

z = distance into liquid film 

Liquid 

Liquid 

in 

out 

Fig. 22.8-4. Diffusion into a 
falling liquid film. Here tmp is 
the total time of exposure of a 
typical element of volume near 
the surface. 
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The corresponding coefficients at high net mass transfer rates can be obtained by multi- 
plying by the correction factor in Eq. 22.8-16. 

From the last two equations we get the relation 

A similar relation, with an exponent of $ (instead of 3 )  is obtained from the Chilton-Col- 
burn relations given in Eqs. 22.3-23 to 25. The latter are valid for flows adjacent to rigid 
boundaries, whereas Eq. 22.8-19 pertains to fluid-fluid systems with no velocity gradient 
at the interface. 

The proportionality of k,,,,, to the square root of the diffusivity, given in Eq. 22.8-17, 
has been confirmed experimentally for the liquid phase in several gas-liquid mass trans- 
fer systems, including short wetted-wall columns, packed columns, and liquids around 
gas bubbles in certain instances. The penetration model has also been applied to absorp- 
tion with chemical reactions (see Example 20.1-2). 

The Flat-Plate Boundary Layer Model 

The steady-state transport in the boundary layer along a flat plate for a fluid with con- 
stant physical properties was discussed in g20.2. The eneral expression for the profiles, 
n(q, A, K), was given in Eq. 20.2-43. There q = y e vJ2vx is a dimensionless position co- 
ordinate measured from the plate, A is the physical property group (i.e., 1, Pr, or Sc), and 
K = ( v , / v , ) w  is a dimensionless net mass flux from the plate. 

Once again we introduce the notations defined in Table 22.8-1. Then for the bound- 
ary layer calculation we have 

In the boundary layer calculation it was assumed that the heat capacities of both species 
are identical. 

The momentum, heat, and mass fluxes for the flat plate are given in Fig. 22.8-5. Then 
in the following two figures, Figs. 22.8-6 and 22.8-7, two plots are given, comparing the 
correction factors, 8, for the film model, the penetration model, and the boundary layer 
model. The boundary layer model gives a dependence on A that is not found in the other 
models, because this model includes the effect of the tangential velocity profiles on the 
temperature and concentration profiles. The film model predicts the smallest depen- 
dence of the transfer coefficients on net mass-transfer rate. 

Correction factors considerably different from 1 arise when either $J or R is of mag- 
nitude 1 or greater for T or XA; see Figures 22.8-6, 7 and 8, and the relation 0 = +/R. 
Large net interfacial mass fluxes, by these measures, are common when the mass trans- 
fer is mechanically driven as in ultrafiltration (Example 22.8-5) and transpiration cooling 
(Problem 20B.7(c)). Large net mass fluxes can also occur in vaporization, condensation, 
melting and other changes of state, and in heterogeneous chemical reactions, when ac- 
companied by correspondingly large temperature differences or radiation intensities to 
transfer the requisite latent heat or energy of reaction. More moderate net fluxes, and 
correction factors near unity, are common in multistage and packed-column separation 
processes, where the differences of temperature and composition within a separation 
stage or flow cross-section are normally rather small. The energy flux ratio R, is an im- 
portant criterion for assessing the net-flux corrections, as illustrated in Examples 22.8-2 
and 3. 
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l + R f o r R < O  Asymptote for 4 + -m: R + -1 

Fig. 22.8-6. The variation of the 
transfer coefficients with mass 
transfer rate as predicted by 
various models. The line for 
A + w holds for the nonsepa- 
rated, steady state boundary- 
layer regions on rigid surfaces, 
whatever their geometry. 
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Fig. 22.8-5. Heat and mass fluxes between a flat plate and a laminar 
boundary layer [W. E. Stewart, ScD thesis, Massachusetts Institute of 

/ 
, , , , , , , , , , , , , , , , . , , , , , , , , , 

For positive R, read positive + from lower curves..- 
For negative R, read negative + on upper curves. -- 
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Fig. 22.8-7. The variation of the 
transfer coefficients with the 
flux ratio R as predicted by var- 
ious models. The line for A += 03 

holds for the nonseparated, 
steady state boundary-layer re- 
gions on smooth rigid surfaces, 
whatever their geometry. 

EXAMPLE 22.8-1 

Rapid Evaporation 
of a Liquid from a 

Solvent A is evaporating out of a coat of lacquer on a plane surface exposed to a tangential 
stream of noncondensable gas B. At a given point on the surface, the gas-phase mass transfer 
coefficient k,,,,, at the prevailing average fluid properties is given as 0.1 lb-mole/hr . ft2; the 
Schmidt number is Sc = 2.0. The interfacial gas composition is XAO = 0.80. Estimate the local 

Plane Surfnce rate of evaporation, using (a) the stagnant film model, (b) the flat-plate boundary layer 
model, and (c) the uncorrected mass transfer coefficient k,,,,,. 

SOLUTION (a) Since B is noncondensable, NBo = 0. Application of Eq. 22.8-7 (which is the same as 1 + 
R, = exp 4,) to the gas phase then gives 

From this we get, after taking the logarithm, 

as the result of the stagnant-film model. This corresponds to a correction factor 8, = +,/R, = 

0.40. 

(b) As in part (a), R, = 4.0. Then from Fig. 22.8-5, at R, = 4.0 and A, = 2.0, we find that 4, = 

1.3. By setting NBo = 0 in the formula for 4, in Table 22.8-1, we get 

as the result of the flat-plate boundary layer model. The corresponding correction factor 0, is 
0.33. 

(c) If the mass transfer coefficient k,,l,, is used without correction for the net interfacial flux, 
we get from Eq. 22.1-5, with NBO = 0 

whence NAO = 0.400. This result is much too high and shows that the corrections for net molar 
flux are important at these conditions. The boundary layer solution in part (b) should be accu- 
rate if the flow is laminar and the variation in the physical properties is not too great. 
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Adjust the results of Example 22.3-1 for the net molar flux by applying the correction factors 
6, and 19, from the film model and from the flat-plate boundary layer model. 

Correction Factors in 
Droplet Evaporation 

SOLUTION 

In Example 22.3-3 the molar flux ratio R, at any point on the surface of the drop is 

From Eq. 22.8-9 (film model) or Fig. 22.8-7 (flat-plate boundary layer model), the predicted 
correction factor 6, is about 0.99 at all points on the drop. Hence the corrected mass transfer 
rate is (by adjustment of Eq. 22.3-31) 

This result differs only slightly from that obtained in Example 22.3-1. Thus the assumption of 
a small mass-transfer rate was satisfactory under the given conditions. 

Extend the analysis of Example 22.3-2 to include the corrections for net mass-transfer rate, 
using the stagnant film model. 

Wet-Bulb Performance 
Corrected for  ass- 
Transfer Rate SOLUTION 

By rewriting the energy balance, Eq. 22.3-32, for any point on the wick, we obtain for finite 
mass-transfer rate 

Multiplication of both sides by CpA/(AiiArVaphioc) gives, since Nm = 0, 

NAO& - &(T- - To) 
R T = ~ -  

bloc ~ ~ A , u a p  

The right-hand member of this equation is easily calculated if TO, T,, and p are given. 
Next we write the expression r#~ = ln(1 + R) for both heat and mass transfer, taking into 

account the fact that NBO = 0: 

Solving both equations for NA, and equating the resulting expressions gives 

hloc In(1 + RJ = - ln(1 + R,) (22.8-33) 
kx,locC,A 

Then substituting the expressions for R, and RT from Table 22.8-1 yields 

This equation shows that xAo and To will be constant over the surface of the wick if 
h,,/(k&,,,) is constant and thus equal to h,,,/(k,,l<,A). This constancy is assumed here for 
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EXAMPLE 22.8-4 

Comparison of Film 
and Penetration 
Models for Unsteady 
Evaporation in a 
Long Tube 

simplicity. Such an assumption is particularly satisfactory for the water-air system, for which 
Pr and Sc are nearly equal. With this substitution, Eq. 22.8-34 becomes 

This solution simplifies exactly to Eq. 22.3-35 at low mass-transfer rates. 
For the numerical problem in Example 22.3-2, the following values apply: 

xAo = 0.0247 

CPA = 8.03 Btu/lb-mole . F for water vapor at 105°F 

h,/k,, = 5.93 Btu/lb-mole . F from the Chilton-Colburn analogy (Eq. 22.3-25) 

Insertion of these values into Eq. 22.8-35 gives 

Solving this equation, we get 

x,, = 0.0034 (22.8-37) 

This result differs only slightly from the value 0.0033 obtained in Example 22.3-2 and justifies 
the previous omission of the correction factors under the given conditions. 

Numerical studies indicate that the simple Eq. 22.3-34 gives a close approximation to Eq. 
22.8-35 for the air-water system under all likely wet-bulb conditions. Eqs. 22.3-32 and 33 
overestimate the mass transfer rate almost equally, and when these equations are combined, 
the errors largely compensate. 

Compare the effects of net mass transfer for the unsteady evaporation system described in 
Example 20.1-1 with the predictions of (a) the generalized penetration model, and (b) the 
stagnant-film model introduced above. The latter calculation amounts to a quasi-steady-state 
treatment of this time-dependent system. 

SOLUTION 

We begin by noting that for this system x,, = 0 and N,, = 0. It follows from Eq. 22.8-la and 
Table 22.8-1 that 

The correction factor 8, is thus the ratio of the flux corrected for net mass transfer to the un- 
corrected flux. 

(a )  The penetration model. We note that the concentration gradient at the liquid surface can 
be obtained by differentiating Eq. 20.1-16 and rewriting the result in terms of x, and z. The re- 
sult is 

2 exp(-q2) x,, 
1 + erf cp .\/= 

For negligible net mass transfer, cp = 0. Thus, the ratio of the mass flux in the presence of net 
mass transfer to the flux in the absence of net mass transfer is 
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Table 22.8-2 Comparison of Film and Penetration Models. 

8, from penetration model 8, from film model 
X~~ (Eq. 22.8-41) (Eq. 22.8-42) 

in agreement with Eqs. 22.8-14 and 16. To get 8, as a function of x,,, we may use Fig. 22.8-7, or 
use Eq. 20.1-17 to write 

8, = (1 - xAO)+(xAO) (penetration model) (22.8-41) 

where +(xAO) is the quantity defined just after Eq. 20.1-22 and given in Table 20.1-1. 

(b) The stagnant-film model. The film model result may be obtained from Eq. 22.8-9 in the 
form 8 = (1 /R) ln(1 + R) to obtain 

1 - XAO 

X ~ O  
lxAO) (film model) 0, = - ln - 

Numerical values for both models are provided in Table 22.8-2 and also in Fig. 22.8-7. 
It is seen that the penetration model predicts a stronger correction 8, for net mass transfer 

than does the film model. This is in part because the net flow thickens the boundary layer, an 
effect that the film model does not consider. It may also be noted that this example is a realis- 
tic use of the penetration model, as there is little effect of solute concentration on the physical 
properties in this simple isothermal system. A much different situation is seen in the next 
example. 

Ultrafiltration of proteins is a concentration process, in which water from an aqueous protein 
solution is forced through a membrane impermeable to the protein but permeable to water 

Concentration and small solutes such as inorganic salts. Protein then accumulates in a polarization layer, or 
Polarization in region of high protein concentration adjacent to the membrane surface, as indicated in Fig. 
Ultrafiltration 22.8-8. Determine the relation between water permeation velocity and the transmembrane 

Protein boundary layer 
Membrane 

\ /n 

PP - 

Po Fig. 22.8-8. A spinning- 
pa disk ultrafilter. 
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SOLUTION 

pressure difference. Describe the effect of net mass transfer on the mass transfer coefficient for 
protein transport. Assume that the membrane is completely impermeable to protein so that 
the net transport of protein across the membrane surface is zero. 

For simplicity we choose a spinning-disk geometry as shown in Fig. 22.8-8, for which the pro- 
tein concentration will be a function only of the distance y from the disk surface and not of ra- 
dial position5 (see Problem 19D.4). However, we will have to consider the dependence of 
density, viscosity, and protein-water diffusivity on the protein concentration, and we will 
need the concept of osmotic pres~ure.~ 

The basis for our solution is the concept of hydraulic permeability of the filtration 
membrane: 

Here v, is the velocity, or volumetric flux, of the solvent leaving the downstream surface of 
the membrane. Equation 22.8-43 defines KH, the hydraulic permeability of the membrane. The 
quantities p, and p6 are the hydrodynamic pressures against the membrane as indicated in 
Fig. 22.8-8, and 7~ is the osmotic pressure at the upstream surface of the membrane. The inclu- 
sion of .rr recognizes that it is really the total thermodynamic potential that drives the trans- 
membrane transport (this point will be discussed further in Chapter 24.) 

For this situation, the interfacial protein velocity is zero, so that a solvent mass balance 
across the protein boundary layer gives 

in which y is the distance from the upstream membrane surface into the protein boundary 
layer. The quantity p'S' is the density of the pure solvent, and pso = PS(y=O and vso = vSy(y=O are 
the mass concentration and velocity of solvent at the upstream membrane surface. 

The osmotic pressure ?.r is a function of the protein concentration p,, and we will provide 
an example of this in Problem 22C.1. We find then that the water flux across the membrane 
depends on the protein concentration at the membrane surface as well as the hydrodynamic 
pressure drop across the membrane. This concentration, in turn, can be related to v, through 
the membrane impermeability condition for the protein and the definition of the mass trans- 
fer coefficient. Then at y = 0, we describe the impermeability of the membrane to protein by 

where k;, has been defined analogously to k;.. Combination with Eq. 22.8-44 then gives 

This equation may now be solved for the filtrate velocity: 

Here p, = pp, + pso and 0 = & / k p  is a mass transfer correction factor, analogous to O,, which 
now must include the effects of property changes as well as the net velocity correction intro- 
duced in Table 22.8-1. We return to a discussion of this quantity below (see Eq. 22.8-48). The 
term p,, is the solution density at the upstream membrane surface. 

We can now calculate the desired quantities, v, and the transmembrane pressure differ- 
ence, if we have sufficient information about the transport and equilibrium properties. Here 
we consider the approaching protein concentration pp, to be given, and for convenience we 

D. R. Olander, J .  Heat Transfer, 84,185 (1972). 
R. J. Silbey and R. A. Alberty, Physical Chemistry, 3rd edition, Wiley, New York (20011, p. 206. 
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begin by selecting values of the protein concentration p,, at the membrane surface over the 
range between p,, and the solubility limit of the protein: 

(i) For any chosen value of pp,, we can calculate the corresponding value of v, from Eq. 
22.8-47 with appropriate values for k, and 8. These values also permit calculation of 
osmotic pressure 7~ from the appropriate equilibrium relationship. 

(ii) We may then calculate the transmembrane pressure difference required for this flow 
from Eq. 22.8-43 and an appropriate value of K,. 

The strong effects of protein concentration on system properties mean that the solution must 
be obtained numerically. 

We content ourselves here to summarize the results of Kozinski and Lightfoot7 for 
bovine serum albumin; they were the first to make such calculations and seem still to have 
provided the best documentation. In their publications it is shown that the effective mass 
transfer coefficient can be expressed as the product of two factors, one accounting for the con- 
centration effects and another taking account of the additional effect of property variations: 

where, over the parameter space investigated, 

and 

Equations 22.8-49 to 52 must be considered empirical. Equation 22.8-47 overpredicts us for 
small polarization levels, but for that situation the effect of osmotic pressure on flow is small. 
The subscript re1 means "relative to the free-stream value." 

The mass transfer coefficient in the limit of slow mass transfer and small property varia- 
tions is given7 as 

v(m) kpL = 0.6205(&)1/2(-)1'3 Sh ,  = Shl,, = - 
9 p J w )  v(a) %ps(m) 

in which L is the disk diameter and IR is the rate of rotation in radians per unit time. The inde- 
pendence of mass transfer rate on disk size is the reason that this geometry is so popular for 
careful mass transfer studies. Other geometries are considered briefly by Kozinski and Light- 

A comparison of a priori predictions from the above model with experimental data is 
shown in Fig. 22.8-9, where we see that the two agree well. This good agreement may result 
in part because the albumin molecules behave much like incompressible particles at the high 
solvent ionic strength at which the data were taken. It may also be seen that osmotic effects 
are negligible below pressure drops of about 5 psi; here the predicted behavior is indistin- 
guishable from that of the protein-free solvent, essentially water. It is only in this unimpor- 
tant region that Eq. 22.8-48 is unreliable. Details of the calculations are provided in Problem 
22C.1. 

The effect of increasing pressure difference across the protein boundary layer is quite dif- 
ferent from that for a nonselective membrane. At first, the concentration boundary layer gets 
thinner, as would be expected, and the mass transfer coefficient &, increases. However, with 

A. A. Kozinski, PhD thesis, University of Wisconsin (1971); A. A. Kozinski and E. N. Lightfoot, 
AIChE Journal, 18,1030-1040 (1972). 
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Fig. 22.8-9. Protein ultrafiltration 
with a spinning disk at 273 rpm. 
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further increase in the pressure difference the boundary layer thickness, k; and 19, all approach 
asymptotic limits. In practice, these asymptotes are closely approached before the effect of po- 
larization becomes appreciable, relative to the membrane flow resistance, and these asymp- 
totes suffice to predict the relation between the transmembrane pressure difference and 
transmembrane flow. 

The behavior can be seen more clearly inserting Eq. 22.8-48 and 49 and the approximate 
formula 

into Eq. 22.8-47. Then, to a surprisingly good approximation, Eq. 22.8-47 takes the form 

06 lo  20 30 40 

1 

The quantity in the first set of parentheses has the form of the simple film model, but with k, 
multiplied by 1.39. It is probably Eq. 22.8-55 that has made the simple film model attractive to 
many for correlating ultrafiltration and reverse osmosis data. However, neglect of the multi- 
plier 1.39 has caused corresponding underestimation of v,, even before addressing the effects 
of property variations. 

Bovine serum 
albumin, 2.2 g/lOO ml 

522.9 MATRIX APPROXIMATIONS FOR MULTICOMPONENT 
MASS TRANSPORT 

Multicomponent mass transport occurs widely in chemical, physiological, biological, 
and environmental processes and is analyzed by various mathematical methods. Here 
we review some matrix approximation methods for mass transport by convection and 
ordinary diffusion in multicomponent gases. A fuller treatment, including mass trans- 
port in liquids, is given in the text by Taylor and Krishna.' 

Multicomponent mass transport problems are commonly approximated by lin- 
earization-that is, by replacing the variable properties in the governing equations with 
constant reference values. This approach is a useful complement to purely numerical 
methods, especially for complex flows, and can give good predictions when the property 

R. Taylor and R. Krishna, Multicomponent Mass Transfer, Wiley, New York (1993). 
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variations are not too large. Multicomponent analyses of this sort have been presented 
by many investigators, for quiescent media2 and for forced-convection systems."' 

We begin with the species continuity equations as given in Eq. 19.1-15, and apply 
them to an N-component gas system with N - 1 independent mole fractions x, and an 
equal number of independent diffusion fluxes J:. Let [XI and [J"] denote, respectively, 
the column arrays of independent mole fractions x,, . . . , x,-, and independent diffusion 
fluxes J:, . . . , JG-,; then approximating the molar density c in Eq. 19.1-15 by a reference 
value c,,, gives the linearized equation system 

for laminar or turbulent flows free of homogeneous chemical reactions. 
For multicomponent ordinary diffusion, the flux expression may be written either as 

a matrix generalization2f4 of Fick's first law (Eq. B of Table 17.8-2), 

or as a matrix statement3t5 of the Maxwell-Stefan equation (Eq. 17.9-1): 

The matrices [Dl and [A] must be (N - 1) X (N - 1) and nonsingular to give the stated 
number of independent fluxes (in Eq. 22.9-2), and of independent mole fractions (in Eq. 
22.9-3). Consistency of these two equations then requires that [Dl = [Alp' at any given 
state. 

In the moderate-density gas region, the elements of the matrix [A] are predictable 
accurately from Eq. 17.9-1, giving 

in which the divisors BOP are the binary diffusivities of the corresponding pairs of 
species. In the first approximation of the Chapman-Enskog kinetic theory of gases, the 
coefficient for a given pair a ,  p depends only on c and T,  as in Eq. 17.3-11. These simple 
expressions lead us to prefer Eq. 22.9-3 over Eq. 22.9-2, unless measurements of [Dl are 
available at the desired conditions. Formally similar equations may be written in mass- 
or volume-based compositions and fluxes, after appropriate transformation of the coeffi- 
cient matrix [A] or [Dl. Mass units are preferred if the equation of motion is included in 
the problem formulation, since the mass average velocity is then essential as indicated in 
919.2. 

L. Onsager, Ann. N.Y. Acad. Sci., 46,241-265 (1948); P. J. Dunlop and L. J. Gosting, J .  Phys. 
Chem., 63,86-93 (1959); J .  S. Kirkaldy, Can. J. Phys., 37,30-34 (1959); S. R. de Groot and P. Mazur, 
Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1961); J. S. Kirkaldy, D. Weichert, and 
Zia-U1-Haq, Can. J. Phys., 41,2166-2173 (1963); E. L. Cussler, Jr., and E. N. Lightfoot, AKhE Journal, 10, 
702-703,783-785 (1963); H. T. Cullinan, Ind. Eng. Chem. Fund., 4,133-139 (1965). 

R. Prober, PhD thesis, Univ. of Wisconsin (1961). 
H. L. Toor, A K h E  Journal, 10,460465 (1964). 
W. E. Stewart and R. Prober, Ind. Eng. Chem. Fund., 3,224-235 (1964). 
9, Tambour and B. Gal-Or, Physics of Fluids, 19,219-225 (1976). 
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For multicomponent systems (N 2 31, each of these flux expressions normally has a 
nondiagonal coefficient matrix, giving a coupled system of diffusion equations. Equation 
22.9-3 can be decoupled by use of the transformation 

[PI -'[A] [PI = [" . v ] (22.9-5) 
AN- 1 

" " 
in which [PI is the matrix of column eigenvectors of [A], and A,, . . . , A,-, are the corre- 
sponding eigenvalues. These eigenvalues, the roots of the equation det[A - A11 = 0, are 
positive at any locally stable state of the mixture; they are also invariant to similarity 
transformations of [A] to other composition units. Here I is the unit matrix of order N - 1. 
The matrix [Dl, when used, is reducible in like manner with the same matrix [PI, and its 
eigenvalues Dl, . . . , DN-, are the reciprocals of A,, . . . , AN-,. For economy of effort, [A] 
(or [Dl) and the arrays derived therefrom will always be evaluated at reference property 
values, so will not need the subscript ,,*; however, a subscript w will be added in [A], [Dl, 
[PI, and [PI-' when these arrays are based on quantities in mass units. 

Equation 22.9-5 suggests that the following transformed compositions and trans- 
formed diffusion fluxes should be useful: 

Hereafter, an accent (') will be placed on such transformed yariabks and on the corre- 
sponding diagonal matrix elements, including the eigenvalues A, and D,. Premultiplication 
of Eq. 22.9-3 by [PI-' and use of Eqs. 22.9-5 through 9 then gives uncoupled flux equations 

formally equivalent to Fick's first law for N - 1 binary systems. The multicomponent 
continuity equation 22.9-1 correspondingly transforms to 

Thus, the transformed compositions %a and fluxes j: for each a satisfy the continuity and 
flux equations of a binary problem with the same v" function (laminar or turbulent) as the 
multicomponent system, and with a diffusivity 91AB equal to the eigenvalue D, = 1 /A,. 

The initial and boundary conditions on [?I and [j'] are obtained from those on 1x1 
and [ J"1 by application of Eqs. 22.9-6 and 8. The resulting quasi-binary problems may 
then be solved, using theory or correlations of experiments, and the results combined5 
via Eqs. 22.9-7 and 9 to get the multicomponent solution in terms of [XI and [ J"]. 

Local mass transfer rates in binary systems are expressible in the form 

as indicated in Eq. 22.1-7 and s22.8. The notation . . . after 9,, stands for any additional 
variables (such as 4, of 922.8) on which the binary mass transfer coefficient k; may de- 
pend. The corresponding set of equations in the notation of Eqs. 22.9-10 and 11 is 
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or in matrix form, 

Transformation of this result into the original variables gives the interfacial diffusion 
fluxes J:,, . . . , J&,,, into the gas phase as 

or the composition differences for given fluxes Jao as 

Here [kl is the diagonal matrix shown in Eq. 22.9-14, and [h-' is formed from the reci- 
procals of the same diagonal elements. 

As for binary systems, further information is needed to calculate the species fluxes 
N,, relative to the interface, which give the local transfer rates. A flux ratio r = NAo/NBo 
was specified in Eq. 21.1-9 to solve for N,,; analogous specifications are required for 
multicomponent systems. The calculation of the fluxes N,, from diffusion fluxes co and 
relative transfer rates is called the "bootstrap problem,"',7 and is treated well in Ref. 1. 
This problem becomes simpler if Eq. 22.9-14 is rewritten as follows, using the array [No] 
of interfacial molar fluxes N,,,, . . . , NN-l,O relative to the interface, 

to allow direct insertion of relations among the species transfer rates. The corresponding 
result for the array [no] of interfacial mass fluxes n,,,, . . . , n,-,,, relative to the interface 
is: 

Several special forms of these results will now be given. 
For systems with no net molar interfacial flux, the N-term summation in Eq. 22.9-17 

vanishes, and this equation takes the convenient form 

in which the diagonal array [ k ]  needs no net-flux correction. This result can be extended 
to moderate net molar interfacial flux by approximating each transfer coefficient kx(Da, $,,I 
in Eq. 22.9-14 as a linear function of the net molar interfacial flux, using the tangent line 
at 4 = 0 of the 8-curve in Fig. 22.8-2 for the chosen mass transfer model. This gives the 
linear equation system8 

for the stagnant-film model given in 322.8. In the same manner, one obtains 

' R. Krishna and G. L. Standart, Chem. Eng. Commun., 3,201-275 (1979). 
W .  E. Stewart, AlChE Journal, 19,398400 (1973); Erratum, 25,208 (1979). 
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for the penetration model given in g20.4 and 522.8, and 

for the limit A + w in laminar boundary layers, shown in Figs. 22.8-5,6 and valid for non- 
separated boundary layers in three-dimensional steady flows.9 

In systems with no net mass interfacial pux, as in steady-state solid-catalyzed reac- 
tions, Eq. 22.9-18 reduces to 

The elements of the matrix $ can be predicted from expressions for the binary Sherwood 
number or j, factor as defined for mass-based units in Table 22.2-1, with eigenvalues f im 
inserted in place of binary diffusivities a,,. 

For a given flow field, the product [ ~ ] [ k , l [ ~ l ~ '  in Eqs. 22.9-19 through 22 is a func- 
tion of the matrix [A]. This matrix triple product, here called [k,], is non-diagonal for 
N r 3 whereas [ k l  is diagonal as noted above. A simple, efficient method for approxi- 
mating such functions has been developed by Alopaeus and Nord6n.lo Let f be a scalar 
real-valued function defined on the eigenvalues of a matrix [A], in which the diagonal el- 
ements are dominant as in Eq. 22.9-4. The proposed approximations to the elements of 
the matrix [B] = f [A] are then as follows: 

for diagonal elements, Bii = f(Aii) (22.9-24) 

df(Aii) 
A" d ~ ,  if A~~ = A~~ 

for off-diagonal elements, Bij = 
f(AJ - f(Aji) 

(22.9-25) 

Aij A - A , .  otherwise. 
" I1 

Alopaeus and Nordenlo tested these approximations to mass-transfer coefficient matrices 
[k,] of the form b[DI1-P or the form b[AlP-', and to the corresponding fluxes N,,, in sys- 
tems of 3 to 25 gaseous species. Exponents p from 0.25 to 0.66 were used; values from 0 to 
0.5 appear in the mass transfer expressions of this chapter. Comparisons were made 
against exact calculations of elements kxap and N,, via Eq. 22.9-19, and against a film model 
given by Krishna and Standart" in which each element kXop is calculated independently 
with the corresponding binary diffusivity gap. The calculations from Eqs. 22.9-24 and 25 
were 3 to 5 times quicker than those with Eq. 22.9-19 and proved quite accurate (relative 
errors typically less than 1% and seldom as large as lo%), especially when done directly 
from the diagonally dominant Stefan-Maxwell matrix [A] rather than from its inverse, [Dl. 
Calculations with the Krishna-Standart film model were slower than those with Eqs. 22.9- 
24 and 25, and the typical errors were several times as large. Therefore, Eqs. 22.9-24 and 25 
are recommended as practical approximations to the elements of the product matrix 
[B] = [~l[k,][P]-' in Eqs. 22.9-19 through 22 whenever Eq. 22.9-4 is used. This approxima- 
tion may be used in Eq. 22.9-23 also, with [Bl transformed at the end into mass-based 
units; however, Eq. 22.9-20 or 22 will be more convenient and comparably accurate at the 
moderate net molar fluxes normally encountered in heterogeneous catalysis. 

The accuracy of the linearized solutions depends on the choice of the reference prop- 
erty values, especially when the property variations are large. In the following discus- 
sion all properties are evaluated at a common reference state, with composition given as 
a mole fraction 

[xref1 = a,[xb1 + (1 - a,)[xol (22.9-26) 

W. E. Stewart, AlChE Jouvnal, 9,528-535 (1963). 
lo V. Alopaeus and H. V. Norden, Computers O. Chemical Engineering, 23,1177-1182 (1999). 
" R. Krishna and G. L. Standart, MChE Journal, 22,383-389 (1976). 
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or a mass fraction 

[wref1 = ao[mb1 + (1 - a,)[w,I (22.9-27) 

Note that [x,,,] remains open to choice even for Eq. 22.9-20, 21, or 22, since the average 
compositions shown there provide net-flux corrections and not physical property values. 

Equations 22.9-17, 18 and several other approximations for multicomponent mass 
transfer have been tested" against detailed variable-property integrations for isothermal 
systems. The conclusions from this study were as follows: 

For twenty problems of unsteady-state gaseous diffusion, covering a wide range 
of net mass transfer rates, linearization in molar units approximated the exact so- 
lutions best. Rates of isobutane evaporation and condensation, for the system i- 
C4H,,-N2-H, in the geometry of Example 20.1-1, were approximated with a 
standard deviation of 1.6% by Eq. 22.9-17, using reference mole fractions calcu- 
lated from Eq. 22.9-26 with a, = 0.5. Linearization in mass-based units, via Eq. 
22.9-18, proved inferior because of the large variations in p and [A,]. This 
method, with its preferred a, value of 0.8, gave a standard deviation of 3.8% for 
the interfacial fluxes N,, of the single transferable species (isobutane). Quasi- 
steady-state film approximations proved less accurate; use of correction factors 
Ox, = $,,/(exp$,, - 1) (as given by Stewart and Prober5 for the film model of 
522.8) gave a standard deviation of 7.88% with n, optimized to 1.0. The film 
model of Krishna and Standart,'' which does not use linearization, gave a stan- 
dard deviation of 14.3% independent of a, and a,. These results favor the use of 
Eq. 22.9-17 (or, for moderate transfer rates, Eq. 22.9-21) with a, = 0.5 for the gas 
phase in transfer operations described by a penetration model. 

2. For twenty problems of momentum and mass transfer in laminar gaseous bound- 
ary layers of Hz, Nz and CO, on a porous flat plate, solved accurately by Prober; 
linearization in mass-based units approximated the exact solutions best. The de- 
tailed variable-property solutions for n,, were approximated12 for all three 
species with a standard deviation of 0.55% by Eq. 22.9-18, using mass transfer co- 
efficients ib predicted via Eq. 20.2-47 and 22.9-27 with a, optimized to 0.4. The 
film models of Stewart and Prober5 and of Standart and ~ r i s h n a ' ~  gave standard 
deviations of 4.78% (with a, = 1.0) and 8.25%, respectively, for the species trans- 
fer rates. 

The methods presented here are coming into widespread use in the engineering of 
multicomponent separation processes. Advances in computing technology have facili- 
tated the use of these methods and stimulated investigations toward better ones, to deal 
with nonlinear phenomena including complex chemical reactions. 

QUESTIONS FOR DISCUSSION 

1. Under what conditions can the analogies in Table 22.2-1 be applied? Can they be applied in 
systems with chemical reaction? 

2. Why is the heat transfer coefficient in Eq. 22.1-6 defined differently from that in Eq. 14.1-1-or 
is it? 

3. Some of the mass transfer coefficients in this chapter have a superscript 0 and others have a 
superscript *. Explain carefully what these superscripts denote. 

4. What conclusions can you draw from the analytical calculations of mass transfer coefficients 
in §22.2? 

l2 T. C. Young and W. E. Stewart, Ind. Eng. Chenz. Res., 25,476-482 (1986). 
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PROBLEMS 2 2 ~ . 1 .  

What is the significance of the 2 in Eqs. 22.3-20 and 21? 
What is the meaning of the subscripts 0, e, and b in §22.4? 
What is meant by the term "model insensitive"? 
In what way does surface tension have an influence on interphase mass transfer? How is sur- 
face tension defined? How does surface tension depend on temperature? 
Discuss the physical basis for the film model, the penetration model, and the boundary layer 
model for heat and mass transfer. 
How are the heat and mass transfer coefficients affected by high mass-transfer rates across 
the interface? 

Prediction of mass transfer coefficients in closed channels. Estimate the gas-phase mass 
transfer coefficients for water vapor evaporating into air at 2 atm and 25"C, and a mass flow 
rate of 1570 IbJhr, in the systems that follow. Take a,, = 0.130 cm2/s. 
(a) A 6-in. i.d. vertical pipe with a falling film of water on the wall. Use the following correla- 
tion' for gases in a wetted-wall column: 

Sh,,, = 0.023 Re0.83~~0.44 (Re > 2000) (22A.1-1) 

(b) a 6-in.-diameter packed bed of water-saturated spheres, with a = 100 W' 

Calculation of gas composition from psychrometric data. A stream of moist air has a wet- 
bulb temperature of 80°F and a dry-bulb temperature of 130°F, measured at 800 mm Hg total 
pressure and high air velocity. Compute the mole fraction of water vapor in the air stream. 
For simplicity, consider water as a trace component in estimating the film properties. 
Answer x,, = 0.0158 (using n = 0.44 in Eq. 22.3-38) 

Calculating the inlet air temperature for drying in a fixed bed. A shallow bed of water-satu- 
rated granular solids is to be dried by blowing dry air through it at 1.1 atm pressure and a su- 
perficial velocity of 15 ft/s. What air temperature is required initially to keep the solids at a 
surface temperature of 60"F? Neglect radiation. See 514.5 for forced-convection heat transfer 
coefficients in fixed beds. 

Rate of drying of granular solids in a fixed bed. Calculate the initial rate of water removal in 
the drying operation described in Problem 22A.3, if the solids are cylinders with a = 180 ft-l. 

Evaporation of a freely falling drop. A drop of water, 1.00 mm in diameter, is falling freely 
through dry, still air at pressure of 1 atm and a temperature of 100°F with no internal circula- 
tion. Assume quasi-steady-state behavior and a small mass-transfer rate to compute (a) the 
velocity of the falling drop, (b) the surface temperature of the drop, and (c) the rate of change 
of the drop diameter in cm/s. Assume that the film properties are those of dry air at 80°F. 
Answers: (a) 390 cm/s; (b) 54°F; (c) 5.6 X W4 cm/s 

Effect of radiation on psychrometric measurements. Suppose that a wet-bulb and dry-bulb 
thermometer are installed in a long duct with constant inside surface temperature T, and that 
the gas velocity is small. Then the dry-bulb temperature Tdb and the wet-bulb temperature TWb 
should be corrected for radiation effects. We assume, as in Example 22.3-2, that the ther- 
mometers are so installed that the heat conduction along the glass stems can be neglected. 
(a) Make an energy balance on a unit area of the dry bulb to obtain an equation for the gas 
temperature T, in terms of T,,, T,, h,,, e,,, and adb (these last two are the emissivity and absorp- 
tivity of the dry bulb). 

' E. R. Gilliland and T. K. Sherwood, Ind. Eng. Chem., 26,516-523 (1934). 
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(b) Make an energy balance on a unit area of the wet bulb and obtain an expression for the 
evaporation rate. 
(c) Compute x,, for the pressure and thermometer readings of Example 22.3-2, with the ad- 
ditional information that v, = 15 ft/s, T, = 130°F, edb = adb = eWb = aWb = 0.93, dry-bulb diame- 
ter = 0.1 in., and wet-bulb diameter = 0.15 in. including the wick. 
Answer: (c) xAm = 0.0021 

22B.3. Film theory with variable transport properties. 
(a) Show that for systems in which the transport properties are functions of y, Eqs. 19.4-12 
and 13 may be integrated to give for y a 6, or y 5 6 ,  respectively, 

(b) Make the corresponding changes in Eqs., 19.4-16 and 17 as well as in Eqs. 22.8-5 and 6. 
Then verify that Eqs. 22.8-7 and 8 remain valid. Thus it is not necessary to work with the inte- 
grals in calculating transfer rates if hloc and kX,,,, can be predicted. 
(c) Show that h,,, and kx,loc have to be evaluated in terms of the physical properties and flow 
regime (laminar or turbulent) that prevail at the conditions for which hi,, and k&, are desired. 

22B.4. An evaporative ice maker. Consider a circular shallow dish of water 0.5 m in diameter and 
filled to the brim, resting on an insulating layer, such as loose straw, and in a windless area. 
At what air temperature can the water be cooled to freezing if the relative humidity of the air 
is 30%? Make the following assumptions: (i) neglect radiation, (ii) consider radiation to a 
night sky of effective temperature 150K, and (iii) assume that the dish has a lip around the 
edge 2 mm high. 

228.5. Oxygen stripping. Calculate the rate at which oxygen transfers from quiescent oxygen- 
saturated water at 20°C to a bubble of pure nitrogen 1 mm in diameter, if the bubble acts as 
a rigid sphere. Note that it will first be necessary to determine the bubble velocity of rise 
through the water. 

22B.6. Controlling diffusional resistance. Water drops 2 mm in diameter are being oxygenated by 
falling freely through pure oxygen at 20°C and a pressure of 1 atm. Do you need to know the 
gas-phase diffusivity to calculate the rate of oxygen transport? Why? The solubility of oxy- 
gen under these conditions is 1.39 mmols/liter, and its diffusivity in the liquid phase is 
about 2.1 x cm2/s. 

Curve fit: 
log ~ H ~ O  = 0.6715 + 0.030 T 

- 0.0000798 T' 

Fig. 22B.7. Water vapor pres- 
sure under its own vapor data 
from Lange's Handbook of 
Chemistry 0. Dean, ed.), 
15th edition, McGraw-Hill, 

Temperature, C New York (1999). 
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22B.7. Determination of diffusivity (Fig. 22B.7). The diffusivity of water vapor in nitrogen is to be 
determined at a pressure of 1 atm over the temperature range from 0°C to 100°C by means of 
the "Arnold experiment" of Example 20.1-1. It will, therefore, be necessary to use the correc- 
tion factor OA, to the penetration model. Calculate this factor as a function of temperature. The 
vapor pressure of water in this range may be obtained from Fig. 22B.7 or calculated from 

where p~~~ is the vapor pressure in mm Hg, and T is the temperature in degrees centigrade. 

22B.8. Marangoni effects in condensation of vapors. In many situations the heat transfer coeffi- 
cient for condensing vapors is given as h = k/S, where k is the thermal conductivity of the 
condensate film, and 6 is the film thickness. Correlations available in the literature are nor- 
mally based on the assumption of zero shear stress at the free surface of the film, but if the 
surface temperature decreases downward, there will be a shear stress 7, = duldz, where u is 
the surface tension, and z is measured downward, that is, in the direction of flow. How much 
will this effect change a heat transfer coefficient of 5000 kcal/hr m2 . C for a water film? The 
kinematic viscosity of water may be assumed to be 0.0029 cm2/s, the density is 0.96 g/cm3, 
the thermal conductivity 0.713 kcal/hr. m . C, and du/dT = -0.2 dynes/cm C for the pur- 
poses of this problem. 

(p:i2)( 3 b ) Partial Answer: p(v,) = - I + - -  
2 P@ 

The term in .r, represents the effect of surface tension gradients, and when this term is 
small, its denominator will be near the value for no gradient. For the conditions of this prob- 
lem, pg6 = 14.3 dyn/cm2. Surface tension effects will thus be small for systems such as the 
one under consideration, where the surface tension increases downward. In the opposite 
case, however, even small gradients can cause hydrodynamic instabilities and thus can 
have major effects. 

22B.9. Film model for spheres. Derive the results that correspond to Eqs. 22.8-3,4 for simultaneous 
heat and mass transfer in a system with spherical symmetry. That is, assume a spherical mass 
transfer surface and assume that T and X A  depend only on the radial coordinate r. Show that 
Eqs. 22.8-7 and 8 do not need to be changed. What difficulties would be encountered if one 
tried to use the film theory to calculate the drag on a sphere? 

22B.10. Film model for cylinders. Derive the results that correspond to Eqs. 22.8-3, 4 for a system 
with cylindrical symmetry. That is, assume a cylindrical mass transfer surface and assume 
that T and X A  depend only on r. Verify that Eqs. 22.8-7,8 do not need to be changed. 

22C.1. Calculation of ultrafiltration rates. Check the accuracy of the predictions shown in Fig. 22.8-9 
for the following data and physical properties: 

Physical system: 
Rotation rate of disk filter = 273 rpm 
Bovine serum albumin at p, = 2.2 g/100 ml 
Diffusivity in phosphate buffer (at pH 6.7) = 7.1 X cm2/s 
Kinematic viscosity of buffer = 0.01 cm2/s 
Partial specific volumes of protein and buffer are 0.75 and 1.00 ml/g, respectively 
Hydraulic permeability, KH = 0.0098 cm/min psi 

Effect of protein concentration: 
Solution density p = 0.997 + 0 . 2 2 4 ~ ~  in g/ml 
Protein-buffer diffusivity ratio '9ps(0)/9ps(pp) = 21.34,/tanh(21.34$, where 4, = 

w ~ ~ ~ / ( w ~ + ~  + uses) is the volume fraction of protein, with cp and Vs being the par- 
tial specific volumes of protein and solvent 

Protein-buffer viscosity ratio ~(O)/p(p,) = 1.11 - 0.054p, + 0.00067p$, with pp in g/100 ml 
Osmotic pressure .rr = 0.013& in psi (100 rnl/g)' 
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The operating data are as follows: 

Transmembrane 
pressure difference, 
(PO - psh psi 

4.0 

Percolation velocity 
vfir cmlmin 

0.032 
0.049 
0.049 
0.061 
0.066 
0.074 
0.078 
0.079 
0.081 
0.082 



Chapter 23 

Macroscopic Balances for 
Multicomponent Systems 
523.1 The macroscopic mass balances 

523.2' The macroscopic momentum and angular momentum balances 

523.3 The macroscopic energy balance 

523.4 The macroscopic mechanical energy balance 

523.5 Use of the macroscopic balances to solve steady-state problems 

523.6O Use of the macroscopic balances to solve unsteady-state problems 

Applications of the laws of the conservation of mass, momentum, and energy to engi- 
neering flow systems have been discussed in Chapter 7 (isothermal systems) and Chap- 
ter 15 (nonisothermal systems). In this chapter we continue the discussion by 
introducing three additional factors not encountered in the earlier chapters: (a) the fluid 
in the system is composed of more than one chemical species; (b) chemical reactions may 
be occurring, along with changes of composition and production or consumption of 
heat; and (c) mass may be entering the system through the bounding surfaces (that is, 
across surfaces other than planes 1 and 2). Various mechanisms by which mass may 
enter or leave through the bounding surfaces of the system are shown in Fig. 23.0-1. 

Fig. 23.0-1. Ways in which mass may enter or leave Water in Heated CH4, 4 ,  and 
through boundary surfaces: (a) benzoic acid enters Air + NH, + H,O ,/ combustion products 

system by dissolution of the wall; (b) water vapor en- - - Surface 2 
ters the system, defined as the gas phase, by evapo- 
ration, and ammonia vapor leaves by absorption; 
(c )  oxygen enters the system by transpiration 
through a porous wall. 

Ho 
Surface 1 Surface 2 

Aqueous 
Water benzoic - Surface 1 acid 

Cold CH4 
N H ~  Aqueous 

ammonia out 

(a )  (b)  (4 

Surface 2 

Surface 1 
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In this chapter we summarize the macroscopic balances for the more general situa- 
tion described above. Each of these balances will now contain one extra term, to account 
for mass, momentum, or energy transport across the bounding surfaces. The balances 
thus obtained are capable of describing industrial mass transfer processes, such as ab- 
sorption, extraction, ion exchange, and selective adsorption. Inasmuch as entire treatises 
have been devoted to these topics, all we try to do here is to show how the material dis- 
cussed in the preceding chapters paves the way for the study of mass transfer opera- 
tions. The reader interested in pursuing these topics further should consult the available 
textbooks and treatises.'-" 

The main emphasis on this chapter is on the mass balances for mixtures. For that 
reason, 523.1 is accompanied by five examples, which illustrate problems arising in envi- 
ronmental science, isotope separation, economic evaluation, and biomedical science. In 
ss23.2 to 23.4 the other macroscopic balances are given. In Table 23.5-1 they are summa- 
rized for systems with multiple inlets and outlets. The last two sections of the chapter il- 
lustrate applications of the macroscopic balances to more complex systems. 

523.1 THE MACROSCOPIC MASS BALANCES 

The statement of the law of conservation of mass of chemical species a in a multicompo- 
nent macroscopic flow system is 

This is a generalization of Eq. 7.1-2. Here ma,,, is the instantaneous total mass of a in the 
system, and -Awn = w,, - w,, = p,l(v,)S, - pa2(v2)S2 is the difference between the mass 
rates of flow of species a across planes 1 and 2. The quantity w,,, is the mass rate of addi- 
tion of species a to the system by mass transfer across the bounding surface. Note that 
w,,, is positive when mass is added to the system, just as Q and W, are taken to be posi- 
tive in the total energy balance when heat is added to the system and work is done on 
the system by moving parts. Finally, the symbol r,,t,, stands for the net rate of produc- 
tion of species a by homogeneous and heterogeneous reactions within the system.' 

Recall that in Table 15.5-1 the molecular and eddy transport of momentum and en- 
ergy across surfaces 1 and 2 in the direction of flow were neglected with respect to the 
convective transport. The same is done everywhere in this chapter-in Eq. 23.1-1 and in 
the other macroscopic balances presented here. 

W. L. McCabe, J. C. Smith, and P. Harriot, Unit Operations of Chemical Engineering, McGraw-Hill, 
New York, 6th edition (2000). 

T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Mass Transfer, McGraw-Hill, New York (1975). 
R. E. Treybal, Mass Transfer Operations, 3rd edition, McGraw-Hill, New York (1980). 
C. J. King, Separation Processes, McGraw-Hill, New York (1971). 
C. D. Holland, Multicomponent Distillation, McGraw-Hill, New York (1963). 
T. C. Lo, M. H. I. Baird, and C. Hanson, eds., Handbook of Solvent Extracfion, Wiley-Interscience, 

New York (1983). 
R. T. Yang, Gas Separations by Adsorption Processes, Butterworth, Boston (1987). 
J. D. Seader and E. J. Henley, Separation Process Principles, Wiley, New York (1998). 
The quantities ma,,,, w,,, and r,,,, may be expressed as integrals: 

in which n is the outwardly directed unit normal vector, and So is that portion of the bounding surface 
on which mass transfer occurs. The integrands in r,,,, are the net rates of production of species a by 
homogeneous and heterogeneous reactions, respectively. 
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If all N equations in Eq. 23.1-1 are summed, we get 

in which w, = Saw,,,, and use has been made of the law of conservation of mass in the 
form Z,r,,,, = 0. 

It is often convenient to write Eq. 23.1-1 in molar units: 

Here the capital letters represent the molar counterparts of the lowercase symbols in Eq. 
23.1-1. When Eq. 23.1-3 is summed over all species, the result is 

Note that the last term is not in general zero, because moles are produced or consumed 
in many reaction systems. 

In some applications, such as spatially continuous mass transfer operations, it is cus- 
tomary to rewrite Eq. 23.1-1 or 3 for a differential element of the system (that is, in the 
"d-form" discussed in 515.4). Then the differentials dw,, , or d W,, can be expressed in 
terms of local mass transfer coefficients. 

A fluid stream emerges from a chemical plant with a constant mass flow rate w and dis- 
charges into a river (Fig. 23.1-la). It contains a waste material A at mass fraction w,,, which is 

Disposal of an unstable and decomposes at a rate proportional to its concentration according to the expres- 
Unstable Waste sion r, = -k';bA-that is, by a first-order reaction. 
Product To reduce pollution it is decided to allow the effluent stream to pass through a holding 

tank of volume V, before discharging into the river (Fig. 23.1-lb). The tank is equipped with 

Volume flow rate Q = w / p  
p 

Concentration of A 
-+ 

in effluent PAO 

(a) 

Volume flow 
rate Q = w / p  

Concentration, 

Well-stirred tank 
with volume V 

(b)  

Fig. 23.1-1. (a) Waste stream with unstable pollutant emptying directly into a river. (b)  Waste stream with 
holding tank that allows the unstable pollutant to decay prior to going into the river. (c)  Sketch showing the 
concentration of pollutant being discharged into the river after the holding tank has been filled (the dimen- 
sionless quantity K is k;"V/Q). 
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SOLUTION 

an efficient stirrer that keeps the fluid in the tank at very nearly uniform composition. At time 
t = 0 the fluid begins to flow into the empty tank. No liquid flows out until the tank has been 
filled up to the volume V. 

Develop an expression for the concentration of the fluid in the tank as a function of time, 
both during the tank-filling process and after the tank has been completely filled. 

(a) We begin by considering the period during which the tank is being filled-that is the pe- 
riod t 5 pV/w, where p is the density of the fluid mixture. We apply the macroscopic mass 
balance of Eq. 23.1-1 to the holding tank. The quantity mA,tot on the left side is wto, at time t. 
The mass rate of flow entering the tank is wwAo, and there is no outflow during the tank-filling 
stage. No A is entering or leaving through a mass transfer interface. The mass rate of produc- 
tion of species A is Y,,~,, = (wt/p)(-k;"pA) = -k~m,,t,t. Therefore the macroscopic mass balance 
for species A during the filling period is 

This first-order differential equation can be solved with the initial condition that mA,tot = 0 at 
t = 0 to give 

This may be written in terms of the instantaneous mass fraction of A in the tank by using the 
relation mA,tot = wtw,: 

The mass fraction of A at the instant when the tank is full, o,, is then given by 

in which K = kYpv/w = k;"V/Q. 

(b) The mass balance on the tank after it has been filled is 

or, in dimensionless form, with T = (w/pV)t, 

This first-order differential equation can be solved with the initial condition that w, = w,, at 
r = 1 to give 

This shows that as time progresses the mass fraction of the pollutant being discharged into 
the river decreases exponentially, with a limiting value of 

The curve for the mass concentration as a function of time after the filling of the tank is shown 
in Fig. 23.1-l(c). This curve can be used to determine conditions such that the effluent concen- 
tration will be in the permitted range. Equation 23.1-12 can be used to decide on the size of 
holding tank that is required. 
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product Fig. 23.1-2. Binary splitter, in which a feed stream is split into 
P,  y, Y a product stream and a waste stream. 

EXAMPLE 23.1-2 

Bind y Splitters 

Describe the operation of a binary splitter, one of the commonest and simplest separation de- 
vices (see Fig. 23.1-2). Here a binary mixture of A and B enters the apparatus in a feed stream 
at a molar rate F, and by some separation mechanism it is split into a product stream with a 
molar rate P and a waste stream with molar rate W. The mole fraction of A (the desired com- 
ponent) in the feed stream is z,  and the mole fractions in the product and waste streams are y 
and x, respectively. 

SOL UTION We start by writing the steady-state macroscopic mass balances for component A and for the 
entire fluid as 

ZF =yP  + XW (23.1-13) 

F = P + W  (23.1-14) 

It is customary to define the ratio 0 = P/F of the molar rates of the product and feed streams 
as the cut. Equation 23.1-13 then becomes, after eliminating W by use of Eq. 23.1-14, 

Normally the cut 0 and the feed composition z are taken to be known. 
We now need a relation between the feed and waste compositions, and it is conventional 

to write an equation relating the compositions of the two outgoing streams: 

Here a is known as the separation facfor, also usually taken as known, and which characterizes 
the separation capability of the splitter. Here Y and X are the mole ratios defined by 

Y x = -  and X = - x 
1 - x  

(23.1-17,18) 
1 - Y  

In terms of the mole fractions, Eq. 23.1-16 may be written as 

Equations 23.1-15 and 19 (or 20) describe completely the splitter operation. 
For vapor-liquid splitting-that is, equilibrium distillation-it is typical to define the 

ideal splitter in terms of an operation in which the product and waste streams are in equilib- 
rium. For this situation, a is the relative volatility, and for thermodynamically ideal systems, it 
is just the ratio of the component vapor pressures. Even for nonideal systems, a changes rela- 
tively slowly with composition. 

For real splitters one can then define a in terms of an empirical correction factor-for ex- 
ample, the eficiency-defined by 

a = Ea* (23.1-21) 

where a* is the separation factor for the ideal model, and E is a correction factor that accounts 
for the failure of the actual system to meet the ideal behavior. 

We thus find that, for a given feed composition, the enrichment (y - z)/z produced by the 
splitter is a function of the cut 0 and the separation factor a. The enrichment can be calculated 
from the following equation, which is obtained by combining Eqs. 23.1-15 and 20: 
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Fig. 23.1-3. Behavior of a binary 
splitter. 

N 

1 
N 
I 
3 
0 
In 

0 = cut 

This is a quadratic equation for y that can be solved when z is given, and then the enrichment 
(y - z)/z is obtained. An example is given in Fig. 23.1-3 where both (y - z ) / z  and 58(y - z ) / z  
are plotted as functions of 8 for z = 5 and a = 1.25 (a reasonable value for many processes). It 
may be seen that, whereas the maximum enrichment (y - z)/z is obtained for vanishingly 
small cuts, the product of enrichment and product rate is greatest at an intermediate 9 value. 
Finding an optimum 8 value is a problem that must be addressed on economic grounds. 

Simple splitters of the general type pictured in Fig. 23.1-2 are very widely used as build- 
ing blocks in multistage separation processes. These include evaporators and crystallizers, 
which typically have a very high separation factor a per stage, and systems for distillation, 
gas absorption, and liquid extraction, where a can vary widely. All of these applications are 
well covered in standard texts on unit operations. 

Membrane processes are rapidly increasing in importance, and many of the design prin- 
ciples were developed for the isotope fractionation industry.' Discussions of modern applica- 
tions are also a~ailable.~ 

EXAMPLE 23.1-3 

The Macroscopic 
Balances and Dirac's 
"Separative Capacity" 
and "Value Function" 

During the Manhattan Project of World War 11, the British physicist D i r a ~ ~ , ~ , ~  used the macro- 
scopic mass balances for a binary splitter to develop a criterion for comparing the effective- 
ness of different separation processes-for example, thermal diffusion and centrifugation. 
The same criterion has also proven useful in the evaluation of bioseparations. 

We imagine the simple separation system shown in Fig. 23.1-2 in which F is the molar 
rate of flow of the feed stream, which contains a binary mixture of A and B, and P and Ware 
the molar rates of flow of the product and waste streams. The mole fractions of species A in 
the three streams are z, y, and x, respectively. 

In the system there is some mechanism (for example, a membrane) for increasing the 
concentration of A in the product stream and decreasing it in the waste stream. We then may 
define a separation factor a as in Eqs. 23.1-16 to 18 

E. Von Halle and J. Schacter, Diffusion Separation Methods, in Volume 8 of Kirk-Othmer Encyclopedia 
of Chemical Technology ( M .  Howe-Grant, ed.), 4th edition, Wiley, New York (19931, pp. 149-203. 

W. S. W. Ho and K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York (1992), 
p. 954; R. D. Noble and S. A. Stern, Membrane Separations Technology, Elsevier, Amsterdam (19951, p. 718. 

P. A. M. Dirac, British Ministry of Supply (1941); this is reprinted in The Collected Works of P. A. M .  
Dirac (1924-19481, (R. H.  Dalitz, ed.) Cambridge University Press (1995). Nobel Laureate Paul Adrien 
Maurice Dirac (1902-1984), one of the leaders in the development of quantum mechanics, developed the 
relativistic wave equation and predicted the existence of the positron. 

K. Cohen, Theory of Isotope Separation, McGraw-Hill, New York (1951). 
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SOLUTION 

We have written this in a second form, because we will consider only systems in which there 
is only a slight enrichment of species A, so that a - 1 is a very small quantity. When Eq. 23.1- 
23 is solved for y as a function of x we then get 

Next we define the Dirac separative capacity A of the system as the net increase in "value" 
(this could, for example, be the monetary value) of the streams that are participating in the 
system: 

in which v(x) is the Dirac value function. (In the separation science literature, the separative ca- 
pacity is often given the symbol 6U.) 

Show how the separative capacity and value function can be obtained by using the defin- 
ition in Eq. 23.1-25 along with the mass balances for the system. 

The total mass balance and the mass balance for species A are: 

We now divide Eq. 23.1-27 by F, and then use Eq. 23.1-26 to eliminate W. Then introducing 
the quantity 8 = P/F (called the "cuV), we get 

Next we divide Eq. 23.1-25 by F and introduce 8 to get 

Inasmuch as the differences between the concentrations of the streams are quite small, we can 
expand v(y) and v(x) about z and get 

where the primes indicate differentiation with respect to z. When these expressions are put 
into Eq. 23.1-29 and we use Eq. 23.1-28, we get 

When we use Eq. 23.1-24, this last equation becomes 

We now assume that the separative capacity of the system is virtually independent of concen- 
tration. Therefore we set the concentration-dependent factor in Eq. 23.1-33 equal to unity, so 
that 

is the final expression for the separative capacity. According to this expression, the separative 
capacity has a maximum when the system is operated at 0 = f .  

It remains to obtain the Dirac value function, which must satisfy the differential equation 
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When this equation is integrated, we get 

The two integration constants may be assigned arbitrarily, and several different choices have 
been used. However, the most common choice is v($) = 0 and v1(;) = 0. This leads to 

which is the symmetrical solution, in the sense that v(l - z) = v(z) and vl(l - z) = -vl(z). 
The value function v(z) and the separative capacity A have proven useful in comparing 

separations made in different kinds of equipment as well as different concentration ranges. 
From an economic standpoint v(z) as given by Eq. 23.1-37 has been found useful for determin- 
ing price differences for isotope mixtures of differing purity. 

EXAMPLE 23.1-4 

Compartmental 

One of the simplest and most useful applications of the species macroscopic mass balance is 
compartmental analysis, in which a complex system is treated as a network of perfect mixers, 
each of constant volume, connected by ducts of negligible volume, with no dispersion occur- 

Analysis ring in the connecting ducts. Imagine mixing units, labeled 1, 2,3, . . . , n, . . . , N, containing 
various species (labeled with indices a, P, y, . . .). Then the mass concentration p,, of species a 
in unit n changes with time according to the equation 

Here V ,  is the volume of unit n, Q,, is the volumetric flow rate of solvent flow from unit m to 
unit n, and r,, is the rate of formation of species a per unit volume in unit n. 

Show how such a model can be specialized to describe the removal of toxic metabolic 
products (that is, the toxic materials resulting from the human metabolism) from a patient by 
hemodialysis. Hemodialysis is the periodic removal of toxic metabolites achieved by contacting 
the blood and a dialysis fluid in countercurrent flow, separated by a cellophane membrane 
that is permeable to the metabolite. 

SOLUTION The simple two-compartment model of Fig. 23.1-4 has been found to be adequate for repre- 
senting the hemodialysis system. Here the large block, or compartment 1 (labeled "body") rep- 
resents the combined body fluids, except for those in the blood, which are represented by 
compartment 2. The blood circulates via a branching system of vessels through compartment 1 
at a volumetric rate Q, and in the process extracts solute across the vessel walls. This process is 
highly efficient, and a single solute is assumed to leave compartment 1 at concentration p,, 
equal to the concentration throughout that compartment. At the same time, the solute is being 
formed within the body fluids at a constant rate GI and during dialysis it is being extracted 
from the blood by the dialyzer at a rate Dp,. The proportionality constant D is known as the 
"dialyzer clearance" and is fixed by the dialyzer design and operating conditions. 

Fig. 23.1-4. Two-compartment model 
used to analyze the functioning of a 
dialyzer. 
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The very complex process actually taking place is modeled by the two equations 

with D = 0 between the dialysis periods. Because we are considering a single solute, the con- 
centrations have only one subscript to indicate the compartment. We measure the time t from 
the start of a dialysis procedure, when the blood and body fluids are very nearly in equilib- 
rium with each other, so that we may write the initial conditions as 

1. C.: at t = 0, PI = P2 = Po (23.1-41) 

where p, is a constant. We now want to get an explicit expression for the toxic metabolite con- 
centration in the blood as a function of time. 

We start by adding Eqs. 23.1-39 and 40 and solving for dp,/dt. The latter is then substi- 
tuted into the time derivative of Eq. 23.1-40 to obtain a differential equation for the metabolite 
concentration in the blood: 

with 

I. C.: at t = 0, 

The second initial condition is obtained by use of Eqs. 23.1-40 and 41. 
This equation is now to be solved with the following specific parameter values, which 

are typical for the removal of creatinine from a 70-kg adult human: 

v1 v2 Q D G Po 
Quantity (liters) (liters) (liters per min) (liters per min) (g/min) (g per liter) 

Magnitude 43 4.5 5.4 0.3 0.0024 0.140 

The differential equation and initial conditions now take the form: 

I. C.: at time t = 0, P2 = Po and dp2 = -0.00933 (23.1-45) 

in which concentration is in grams per liter and time is in minutes. The complementary func- 
tion that satisfies the associated homogeneous equation is 

P,,~, = C, exp(0.006043t) + C2 exp(1.386t) (23.1-46) 

and the particular integral is 

p2,pi = 0.0080 

The complete solution to the nonhomogeneous equation is given by the sum of the comple- 
mentary function and the particular integral. When the constants of integration are deter- 
mined from the initial conditions, we get 

during the dialysis period. 
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For the recovery period following dialysis, we assume here that the patient has no kid- 
ney function, so the clearance D is zero. Equation 23.1-42 takes the simpler form 

where p' is the concentration during the recovery period. The complementary function and 
particular integral are 

I Gt' 
= v1 + v2 

in which t' is the time measured from the start of the recovery period. Inserting the numer- 
ical values, we then get for the concentration during the recovery period and its time 
derivative 

The integration constants are to be determined from the matching conditions at t' = 0, 

We need a second initial condition for determining the integration constants in Eq. 23.1-53. 
This can be obtained from Eq. 23.1-40 and the corresponding equation for p; (i.e., with D = O), 
combined with the two relations in Eqs. 23.1-55 and 56. This relation is 

For illustrative purposes, we shall end the dialysis at 50 min, for which 

We now have enough information to determine the constants of integration, and therefore we 
get for the concentration in the blood during the recovery period 

Equations 23.1-48 and 59 are plotted in Fig. 23.1-5. 
Of perhaps more interest is Fig. 23.1-6, which shows the application of Eqs. 23.1-39 and 

40 to an actual patient. Here the points represent data and the lines are the model predictions. 
Here only the dialyzer clearance and the creatinine concentrations are known, and the data of 
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18 Fig. 23.1-6. Experimental (dots) and 
simulated creatinine data (solid curve) 

16 for a dialysis patient [R. L. Bell, K. Cur- 

2 14 tiss, and A. L. Babb, Trans. Amer. Soc. 
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the first cycle are used to estimate the remaining parameters. The resulting model is then 
used to predict the next three cycles. We see that this approach does an excellent job of corre- 
lating the data and has predictive value. Note that the sudden rise in creatinine concentration 
at 50 min results from the fact that the dialyzer is no longer removing it from the blood. As a 
result, the disequilibrium between the blood and the rest of the body then becomes smaller. 

Similar compartmental models have wide application in medicine, where they are re- 
ferred to as pharmacokinetic model~ .~  A priori pharmacokinetic modeling, where model para- 
meters are determined separately from the process being modeled, was pioneered by Bischoff 
and Dedr i~k .~  

In the foregoing example it is clear, even on casual inspection, that neither the body fluids nor 
the circulating blood have much in common with ideal mixing tanks, and it is therefore of 

Time and some interest to examine the success of the simple compartmental model critically. To make a 
Ahdel Insensitivity start in that direction, compare the response (that is, the output concentration) of two quite 

different systems in Fig. 23.1-7 to an exponentially decaying solute input: one in which the en- 

PFR 

Dimensionless time r = t / tO  

Fig. 23.1-7. Responses of the PFR and the CSTR to a pulse input. 

P. G. Welling, Pharmacokinetics, American Chemical Society (1997). 
K. B. Bischoff and R. L. Dedrick, J. Pkarm. Sci., 87, 1347-1357 (1968); AIChE Symposium Series, 64, 

32-44 (1968). 



523.1 The Macroscopic Mass Balances 737 

SOLUTION 

tering fluid moves through in plug flow (a plug flow reactor, PFR), and another that acts as a 
perfect mixer (or continuous stirred tank reactor, CSTR). As shown in Fig. 23.1-7, the responses 
to a pulse input are quite different for the PFR and the CSTR. Assume steady flow at a volu- 
metric flow rate Q through each system, and further assume that the tracer being followed is 
too dilute to affect the flow behavior of the carrier solvent. Assume that no reaction is occurring. 

For both systems we assume that the concentration is initially zero throughout and that the 
concentration of species a in the inlet stream is 

pa = PO exp(- t/to) (23.1 -60) 

where p, and t, are constants, specific to the problem. 
For the PFR, the exit stream concentration shows only a time delay and decay, and we 

may write at once for X = p,/po 

X = 0 for t < t,,, (23.1-61) 

where t,,, = V/Q is the mean solute residence time, a second time constant imposed on the sys- 
tem. The result for longer time is 

which is of more interest to us here. 
For the CSTR we begin with the basic differential equation 

with the initial condition that X = 0 at t = 0. This first-order linear differential equation has 
the solution 

in which a = to/t,,, and .r = t/to. Exit concentrations are plotted in Fig. 23.1-8 as functions of 
the dimensionless time r = t/t, for each reactor and for l /a  = t,,,/to of 0.1 and 1.0. 

It may be seen that for l / a  = t,,,/t, = 1.0 the two reactors produce much different efflu- 
ent concentrations, as one might expect. However, for t,,,/to << 1 and t significantly greater 
than t,,,, the effluent curves for the two reactors are virtually indistinguishable. This is the re- 
gion of validity for compartmental analysis, and we see that in addition to the time constants 
imposed by the system itself, there is also another time constant tabs, the time at which the ob- 

PFR 

Fig. 23.1-8. Response of the PFR 
and the CSTR to an exponentially 
decaying input. 
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servations of the effluent concentration begin. We may then define the range of validity of 
compartmental analysis by the inequalities 

Thus, compartmental analysis is most useful as a long-time approximate description of a sys- 
tem that responds slowly relative to solute residence times of its component units. It may im- 
mediately be seen that these conditions are met in Example 23.1-4, where the long-time 
metabolite concentrations are of primary interest. 

Equation 23.1-66 summarizes the requirements for pharmacokinetics, which are met in a 
very wide variety of biological transport-reaction problems. They are also satisfied in a great 
many environmental situations.' 

523.2 THE MACROSCOPIC MOMENTUM AND 
ANGULAR MOMENTUM BALANCES 

The macroscopic statements of the laws of conservation of momentum and angular mo- 
mentum for a fluid mixture, with gravity as the only external force, are 

These (seldom used) equations are the same as Eqs. 7.2-2 and 7.3-2, except for the addi- 
tion of the terms Fo and To, which are the net influxes' of momentum and angular mo- 
mentum into the system by mass transfer. For most mass transfer processes these terms 
are so small that they can be safely neglected. 

523.3 THE MACROSCOPIC ENERGY BALANCE 

For a fluid mixture, the macroscopic statement of the law of conservation of energy is 

I I 

This equation is the same as Eq. 15.1-2, except that an additional term Qo has been 
added.' This term accounts for addition of energy to the system as a result of mass trans- 

' F. H. Shair and K. L. Heitner, Envir. Sci. and Tech., 8,444-451 (1974). 
These terms may be written as integrals, 

F, = - [n . p w ]  dS; I To = - [n . {r x p w ] ]  dS I (23.2-1 a, b) 
so 50 

in which n is the outwardly directed unit normal vector. 
This term may be written as an integral, 

in which n is the outwardly directed unit normal vector. The origin of this term may be seen by referring 
to Eq. 19.3-5 and Eq. (H) of Table 17-8-1. 
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fer. It may be of considerable importance, particularly if material is entering through the 
bounding surface at a much higher or lower temperature than that of the fluid inside the 
flow system, or if it reacts chemically in the system. 

When chemical reactions are occurring, considerable heat may be released or ab- 
sorbed. This heat of reaction is automatically taken into account in the calculation of the 
enthalpies of the entering and leaving streams (see Example 23.5-1). 

In some applications, in which the energy transfer rates across the surface are func- 
tions of position, it is more convenient to rewrite Eq. 23.3-1 in the d-form-that is, over a 
differential portion of the flow system as described in 915.4. Then the increment of heat 
added, dQ, is expressible in terms of a local heat transfer coefficient. 

523.4 THE MACROSCOPIC MECHANICAL ENERGY BALANCE 

A careful examination of the derivation of the mechanical energy balance in g7.8 shows 
that the result obtained there applies to mixtures as well as to pure fluids. If we now in- 
clude the surface So, then we get 

I I 

This is the same as Eq. 7.4-2, except for the addition of the term B,, which accounts for 
the mechanical energy transport across the mass transfer boundary.' The use of this 
equation is illustrated in Example 22.5-3. 

823.5 USE OF THE MACROSCOPIC BALANCES 
TO SOLVE STEADY-STATE PROBLEMS 

The macroscopic balances are summarized in Table 23.5-1 for systems with more than 
one entry and exit plane. The terms with subscript 0 describe the addition or removal 
of mass, momentum, angular momentum, energy, and mechanical energy at mass- 
transfer surfaces. Usually these balances are not used in their entirety, but it is conve- 
nient to have a complete listing of them for problem-solving purposes. For steady-state 
problems, the left sides of the equations may be omitted. As we saw in Chapters 7 and 
15, considerable intuition is required in using the macroscopic balances, and some- 
times it is necessary to supplement the equations with experimental observations. 

EXAMPLE 23.5-1 

Energy Balances for a 
Sulfur Dioxide 
Converter 

Hot gases from a sulfur burner enter a converter, in which the sulfur dioxide present is to be 
oxidized catalytically to sulfur trioxide, according to the reaction SO2 + ;o, S SO3. How 
much heat must be removed from the converter per hour to permit a 95% conversion of the 
SO, for the conditions shown in Fig. 23.5-I? Assume that the converter is large enough for the 
components of the exit gas to be in thermodynamic equilibrium with one another. That is, the 
partial pressures of the exit gases are related by the equilibrium constraint 

In terms of a surface integral, this term is given by 
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Table 23.5-1 Unsteady-State Macroscopic Balances for Nonisothermal 
Multicomponent Systems 

Mass of species a: 

d - dt %,tot = Zw.1 - Zw,, + w,, + r.tot = 1.2,3,.  . .N 

Momentum: 

Angular momentum: 

Mechanical energy: 

(Total) energy: 

Notes: 

(a) Bw,, = w,,, + walb + wale + . . , where w,,, = p,,,v,,S,,, and so on; Equations (A) and (B) can be written 
in molar units by replacing the lowercase symbols by capital letters and adding to Eq. (A) the term Z,R,,t,, to 
account for the fact that moles need not be conserved in a chemical reaction. 

(b) h, and h, are elevations above an arbitrary datum plane. 

(c) HI and H2 are enthalpies per unit mass (for the mixture) relative to some arbitrarily chosen reference 
state; see Example 19.3-1. 

(d) All equations are written for compressible flow; for incompressible flow, E, = 0. The quantities E, and E, 
are defined in Eqs. 7.3-3 and 4. 

(e) u, and u2 are unit vectors in the direction of flow. 

2 
1 T 2 = ?  

c----, I h = 1-00 atm 

I - SO3-rich gas 

1 (;== - + Coolant out .-/' 

SO,, 7.80 lb-moles hr-' 
02, 10.80 lb-moles hr-I 

N2, 81.40 lb-moles hr-' f Converter 

Coolant in 

i 
TI  = 440°C 
pl = 1.05 atm 

Fig. 23.5-1. Catalytic oxidation 
of sulfur dioxide. 
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SOLUTION 

Approximate values of K, for this reaction are 

It is convenient to divide this problem into two parts: (a) first we use the mass balance and 
equilibrium expression to find the desired exit temperature, and then (b) we use the energy 
balance to determine the required heat removal. 

( a )  ~etermination' of T,. We begin by writing the steady-state macroscopic mass balance, 
Eq. 23.1-3, for the various constituents in the two streams in the form: 

In addition, we take advantage of the two stoichiometric relations 

We can now get the desired molar flow rates through surface 2: 

Next, substituting numerical values into the equilibrium expression Eq. 23.5-1 gives 

This value of K, corresponds to an exit temperature T2 of about 510°C, according to the equi- 
librium data given above. 

(b) Calculation of the required heat removal. As indicated by the results of Example 15.3-1, 
changes in kinetic and potential energy may be neglected here in comparison with changes in 
enthalpy. In addition, for the conditions of this example, we may assume ideal gas behavior. 
Then, for each constituent, = ~ I , ( T ) .  We may then write the macroscopic energy balance, 
Eq. 23.3-1, as 

For each of the individual constituents we may write 

= H", + - P)  

Here H", is the standard enthalpy of formation2 of species a from its constituent elements 
at the enthalpy reference temperature To, and (C,,),,, is the enthalpy-mean heat capacityz 
of the species between T and To. For the conditions of this problem, we may use the 

' See 0. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part II,2nd edition, 
Wiley, New York (1959), pp. 1017-1018. 

See, for example, 0. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles, Part I ,  
2nd edition, Wiley, New York (19591, pp. 257,296. 
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EXAMPLE 23.5-2 

Height of a Packed- 
Tower ~bsorber? 

SOLUTION 

following2 numerical values for these physical properties (the last two columns are ob- 
tained from Eq. 23.5-12): 

[~al/~:more. Cl H:: from 25°C to 
cal/g-mole (w,H,), ( w,H,), 

Species at 25°C 440°C 510°C Btu/hr Btu/hr 

SO2 - 70,960 11 .05 11.24 -931,900 -44,800 
SO3 -94,450 - 15.87 0 1,158,700 

0 2  0 7.45 7.53 60,100 46,600 
N2 0 7.12 7.17 433,000 509,500 

Totals -438,800 - 647,400 

Substitution of the preceding values into Eq. 23.5-11 gives the required rate of heat 
removal: 

It is desired to remove a soluble gas A from a mixture of A and an insoluble gas B by contact- 
ing the mixture with a nonvolatile liquid solvent L in the apparatus shown in Fig. 23.5-2. The 
apparatus consists essentially of a vertical pipe filled with a randomly arranged packing of 
small rings of a chemically inert material. The liquid L is sprayed evenly over the top of the 
packing and trickles over the surfaces of these small rings. In so doing, it is intimately con- 
tacted with the gas mixture that is passing up the tower. This direct contacting between the 
two streams permits the transfer of A from the gas to the liquid. 

The gas and liquid streams enter the apparatus at molar rates of - WG and W,, respec- 
tively, on an A-free basis. Note that the gas rate is negative, because the gas stream is flowing 
from plane 2 to plane 1 in this problem. The molar ratio of A to G in the entering gas stream is 
YA2 = yA2/(1 - yA2), and the molar ratio of A to L in the entering liquid stream is X,, = 

xAl/(l - xAl). Develop an expression for the tower height z required to reduce the molar ratio 
YA in the gas stream from YA2 to Y,,, in terms of the mass transfer coefficients in the two 
streams and the stream rates and compositions. 

Assume that the concentration of A is always small in both streams, so that the operation 
may be considered isothermal and so that the high mass-transfer rate corrections to the mass 
transfer coefficients are not needed, and the mass transfer coefficients, k: and k!, defined in the 
second line of Eq. 22.2-14 can be used. 

Since the behavior of a packed tower is quite complex, we replace the true system by a hypo- 
thetical model. We consider the system to be equivalent to two streams flowing side-by-side 
with no back-mixing, as shown in Fig. 23.5-3, and in contact with one another across an inter- 
facial area a per unit volume of packed column (see Eq. 22.1-14). 

We further assume that the fluid velocity and composition of each stream are uniform 
over the tower cross section, and neglect both eddy and molecular transport in the flow direc- 
tion. We also consider the concentration profiles in the direction of flow to be continuous 
curves, not appreciably affected by the placement of the individual packing particles. 

The model resulting from these simplifying assumptions is probably not a very satisfac- 
tory description of a packed tower. The neglect of back-mixing and fluid-velocity nonunifor- 
mity are probably particularly serious. However, the presently available correlations for mass 

J. D. Seader and E. J. Henley, Separation Process Principles, Wiley, New York (1998). 
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Liquid stream in: 
Solute-free liquid rate = WL 
Mole ratio of solute = Xal 1 Gas stream out: 

Solute-free gas rate = WG 
Mole ratio of solute = YAl 

Distributor &- 

Gas stream in: 
Solute-free gas rate = WG - 
Mole ratio of solute = YA2 

'/'Liquid steam out: 
Solute-free liquid rate = WL 
Mole ratio of solute = XA2 

(a) Overall section 
of column 

(b)  Close-up view of 
typical random 

packing 

(c) Flow over individual 
packing particles 

Fig. 23.5-2. A packed-column mass transfer apparatus in which the descending phase is dis- 
persed. Note that in this drawing WG is negative; that is, the gas is flowing from 2 toward 1. 

transfer coefficients have been calculated on the basis of this model, which should therefore 
be employed when these correlations are used. 

We are now in a position to develop an expression for the column height, and we do this 
in two stages: (a) First we use the overall macroscopic mass balance to determine the exit 
liquid-phase composition and the relation between bulk compositions of the two phases at 

Liquid stream in: Gas stream out: 
Solute-free liquid rate = WL I t  Solute-free gas rate = WG 
Mole ratio of solute = XAl Mole ratio of solute = YAl 

Liquid steam out: I I Gas stream in: 
Solute-free liquid rate = WL Solute-free gas rate = WG 
Mole ratio of solute = XA2 Mole ratio of solute = YA2 

Fig. 23.5-3. Schematic representa- 
tion of a packed-tower absorber, 
showing a differential element on 
which a mass balance is made. 
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each point in the tower. (b) We then use these results along with the differential form of the 
macroscopic mass balance to determine the interfacial conditions and the required tower 
height. 

(a) Overall macroscopic mass balances. For the solute A we write the macroscopic mass bal- 
ance of Eq. 23.1-3 for each stream of the system between planes l and 2 as 

liquid stream 

gas stream 

Here the subscripts A1 and Ag refer to the solute A in the liquid and gas streams, respectively. 
Since the number of moles leaving the liquid stream must enter the gas stream across the in- 
terface, WAlr0 = - W,,,,, and Eqs. 23.5-14 and 15 may be combined to give 

This can now be rewritten in terms of the compositions of the entering and leaving streams by 
setting WAl2 = WLXA2, and so on, and then rearrangement gives 

Thus we have found the concentration of A in the exit liquid stream. 
By replacing plane 2 by a plane at a distance z down the column, Eq. 23.5-17 may be used 

to obtain an expression relating bulk stream compositions at any point in the tower: 

Equation 23.5-18 (the "operating line") is shown in Fig. 23.5-4 along with the equilibrium dis- 
tribution for the conditions of Problem 23A.2. 

(b) Application of the macroscopic-balances in the d-form. We now apply Eq. 23.1-3 to a dif- 
ferential increment dz of the tower, first to estimate the interfacial conditions and then deter- 
mine the tower height required for a given separation. 

(i) Determination of interfacial conditions. Because only A is transferred across the in- 
terface, we may write, according to the second line of Eq. 22.1-14 (which presumes 
low concentrations of A and small mass-transfer rates): 

Here a is the interfacial area per unit volume of the packed bed tower, S is the cross- 
sectional area of the tower, XAO and yAO are the interfacial mole fractions of A in the 
liquid and gas phases, respectively, and xA and yA are the corresponding bulk con- 
centrations (the index b is being omitted here, so that XA, yA, XA, and YA are all bulk 
compositions). 

Then, since (for the dilute solutions considered here) xA = XA/(XA + 1) = XA 
and yA = YA/(YA + 1) = YA, Eqs. 23.5-19 and 20 may be combined to give 

This equation enables us to determine YAO as a function of YA. For any YA, one may 
locate XA on the operating line (mass balance). One then draws a straight line of 
slope -(@a)/($a) through the point (YA, XA), as shown in Fig. 23.5-4. The intersec- 
tion of this line with the equilibrium curve then gives the local interfacial composi- 
tions (YAO, XAO). 
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Fig. 23.5-4. Calculation of interfacial conditions in the absorption of 
cyclohexane from air in a packed column (see Problem 23A.2). 

(ii) Determination of required column height. Application of Eq. 23.1-1 to the gas 
stream in a volume S dz of the tower gives 

WG~YA = ~ W A , O  (23.5-22) 

This expression may be combined with Eq. 23.5-20 for the dilute solutions being 
considered to obtain 

- WGdYA = (kyOa)(YA - YAO)S dz (23.5-23) 

This equation may now be rearranged and integrated from z = 0 to z = Z: 

Equation 23.5-24 is the desired expression for the column height required to effect the speci- 
fied separation. In writing Eq. 23.5-24 we have neglected the variation of the mass transfer co- 
efficient k: with composition. This is usually permissible only for dilute solutions. 

In general, Eq. 23.5-24 must be integrated by numerical or graphical procedures. How- 
ever, for dilute solutions, it may frequently be assumed that the operating and equilibrium 
lines of Fig. 23.5-4 are straight. If, in addition, the ratio @/k; is constant, then YA - Y,, varies 
linearly with Y,. We may then integrate Eq. 23.5-24 to obtain (see Problem 23B.1) 

where 

Equation 23.5-25 can be rearranged to give 
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Comparison of Eq. 23.5-27 and Eq. 15.4-15 shows the close analogy between packed towers 
and simple heat exchangers. Expressions analogous to Eq. 23.5-24 but containing the overall 
mass transfer coefficient K! may also be derived (see Problem 23B.1). Again, we may use the 
final results, Eqs. 23.5-25 or 27, for either cocurrent or countercurrent flow. Keep in mind, 
however, that the simplified model used to describe the packed tower is not as reliable as the 
corresponding one used for heat exchangers. 

EXAMPLE 23.5-3 

Linear Cascades 

We saw in Example 23.1-2 that the degree of separation possible in a simple binary splitter 
can be quite limited, and it is therefore often desirable to combine individual splitters in a 
countercurrent cascade such as that shown in Fig. 23.5-5. Here the feed to any splitter stage is 
the sum of the waste stream from the splitter immediately above it and the product from the 
splitter immediately below. 

Show how such an arrangement can increase the degree of separation relative to that ob- 
tained in a single splitter. 

SOLUTION For the system as a whole we can write a mass balance for the desired product and for the so- 
lution as a whole. That is, we treat the entire system as a splitter and write 

It will be assumed here that all of quantities in these equations are given, so that the problem 
is specified as far as the overall mass balances are concerned. It remains for us to determine 
the number of stages required to meet these conditions. 

We begin by writing a set of mass balances over the top portion of the column, here the 
top two stages for illustrative purposes (see Fig. 23.5-5): 

Here U, and D, are the upflowing and downflowing streams from stage n, and y, and x,, are 
the corresponding mole fractions of the desired solute. When P is eliminated between Eqs. 
23.5-3 and 31, we get 

This equation gives the relation between the compositions of the downflowing and upflowing 
streams passing each other at any column cross section above the feed stage, in terms of the cor- 
responding flow rates. This relation, when shown on an x-y plot (which is called a McCabe-Tkiele 
diag~arn~,~) is known as the operating line for the system. We concentrate for the moment on com- 
positions and return later to the problem of determining stream rate ratios. 

F $ 4  

I 

5 
Fig. 23.5-5. A linear cascade. Upward flows are shown by solid 

:+ lines, and downward flows by dashed lines. 

W. L. McCabe and E. W. Thiele, Ind. Eng. Chem., 17,605411 (1925). 
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The phase compositions in each stage are assumed to satisfy an equilibrium relation such 
as (see Eq. 23.1-19) 

or, more generally, y,, = f (xJ, where f ( x )  is taken to be a known function. 
Equations 23.5-32 and 33 (or its generalization) now permit determination of all composi- 

tions in the portion of the column above the feed point, usually known as the rectifying section, 
and similar calculations can be made for the stripping section, the portion below the feed point. 
We may then determine the number of stages required for the separation under consideration 
and the proper location of the feed stage. 

First, however, we need to determine the stream rate ratios required in Eq. 23.5-32, and 
we consider three special cases here: 

(a) Total reflux. This special mode of operation, in which P and Ware zero, is important, as 
it provides the smallest possible number of stages that can yield the desired output composi- 
tions. Here 

Un = Dn-l (23.5-34) 

for all n, and the operating line is given by 

This simple relation holds for all physical systems. The stage compositions are plotted in Fig. 
23.5-6 (for a product mole fraction of 0.9 and a waste mole fraction of 0.0, along with an equi- 
librium curve of the form of Eq. 23.5-33 with a = 2.5. 

The steplike lines between the equilibrium and operating lines in this figure suggest a 
graphical method of determining stage compositions: each "step" between the equilibrium 
and operating lines represents an incremental one-component splitter or stage. The diagram 
thus suggests that six stages are required for this rather simple separation. However, for the 
situation of total reflux and constant relative volatility a, it is simplest to recognize that 

For the situation pictured in Fig. 23.5-6, we have then 

0'9/0'1 = (N - 1) log 2.5 
log (m) 

log 81 
N = 1 + - = 5.796 

log 2.5 

which is more accurate but virtually equal to the graphical estimate. 

0.2 0.4 0.6 0.8 1 
Lower phase mole fraction, x 

Fig. 23.5-6. McCabe-Thiele diagram for 
total reflux, with a = 2.5 and 0.1 < x < 0.9. 
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If products are to be withdrawn, it is necessary to calculate the stream-rate ratios, and the 
means for doing so vary with the specific operation considered. 

(b) Thermodynamic constraints: adiabatic cascades and minimum reflux. For most of the 
common stagewise operations, stream ratios are determined by thermodynamic constraints, 
and these are thoroughly discussed in a wide variety of unit operations texts. We need not re- 
peat this readily accessible information here, but we briefly consider distillation, the most 
widely used of all, by way of example. In principle, stream ratios in distillation are deter- 
mined by assuming adiabatic columns and a set of "enthalpy balances" (see last paragraph of 
s15.1) corresponding to the mass balances just introduced. 

However, it is very often permissible to assume equal molar heats of vaporizatio_n for the 
various species and to neglect "sensible heats" (i.e., the CpAT contributions to AH). With 
these simplifications the stream rates U, and D, are constants. We may then write for any po- 
sition above the feed plate 

U =  D + P and y,_lU=x,D +ypP (23.5-39/40) 

and below the feed plate 

D = U+ W and x,D = y,, ,U + x,W (23.5-41/42) 

Here the stage indices n and rn refer respectively to the upper or rectifying section (above the 
feed point) and to the lower or stripping section of the column (below the feed point). 

By way of example we consider the system in part (a) for a saturated liquid feed, equimo- 
lar in the two species involved, and operated at minimum reflux: the smallest amount of re- 
turning liquid from the top plate that can produce the desired separation. This situation will 
occur when the operating line touches the equilibrium curve, and in the system being consid- 
ered, this "pinch will occur first at the feed plate. The vapor composition on the feed plate is 
then given by 

The operating line then has two branches, one above and one below the feed plate, as shown 
in Fig. 23.5-7. 

Any real column must operate between the limits of total and minimum reflux, but nor- 
mal operation is just a few percent above the minimum. This is because the cost of individual 
plates tends to be much lower than the costs associated with increasing the reflux (the liquid 
returned to the column by condensation of vapor from the top plate): increasing the steam 
load required to return vapor from the liquid leaving the bottom plate, the condenser load to 
return the overhead vapor, and the capital costs of larger column diameter, larger reboiler, to 
return vapor at the bottom, and condenser, to return liquid at the top. 

"0 0.2 0.4 0.6 0.8 1 
Lower phase mole composition, x 

Fig. 23.5-7. McCabe-Thiele diagram for min- 
imum reflux, with a = 2.5 and 0.1 < x < 0.9. 
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0.2 0.4 0.6 0.8 1 
Mole fraction of lower phase, x 

Fig. 23.5-8. McCabe-Thiele diagram for an 
ideal cascade, with a = 2.5 and 0.1 < x < 0.9. 

(c) Transport constraints and ideal cascades. For separation via selectively permeable mem- 
branes, the ratio of the product to waste streams is governed by the pressure exerted across 
the membrane, and the energy required to produce this pressure must be renewed for every 
stage of the cascade. This gives the designer an extra degree of freedom and has led to a wide 
variety of cascade configurations. First developed for isotopes; membrane cascades have 
now been developed for industrial gas separations6 and appear promising for many other 
applications. 

We consider here by example ideal cascades, which are those in which only streams of 
identical composition are mixed. In the terms of this example, that means 

and, by extension, 

It follows that just twice as many stages are needed as at total reflux, and that the operating 
line lies halfway between the "equilibrium" curve and the 45" line. As shown in Fig. 23.5-8, 
the operating line has a continuous derivative across the feed stage. 

Ideal cascades provide the smallest possible total stage stream flows, but the flows now 
vary with position: they are highest at the feed stage and decrease toward the ends of the cas- 
cade. For this reason these systems are known as tapered cascades (see Problem 23B.6). 

An equimolar mixture of CO, and Hz is confined at lOOOK and 1.50 atm in the large insulated 
pressure tank shown in Fig. 15.5-9. Under these conditions the reaction 

Expansion of a 
Reactive Gas Mixture C02 + H, & CO + H20 (23.5-47) 

ntrough a may take place. After being stored in the tank long enough for the reaction to proceed to equi- 
Adiabatic Nozzle librium, the gas is allowed to escape through the small converging nozzle shown to the ambi- 

ent pressure of 1 atm. 

E. von Halle and J. Schacter, Diffirsion Separation Methods, in Kirk-Othmer Encyclopedia of Chemical 
Technology, Volume 8, Wiley, New York (1993), pp. 149-203. 

R. Agrawal, Ind. Eng. Ckem. Research, 35,3607-3617 (1996); R. Agrawal and J. Xu, AlChE Journal, 42, 
2141-2154 (1996). 
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SOLUTION 

Estimate the temperature and velocity of the escaping gas through the nozzle throat (a) 
assuming that no appreciable reaction takes place during passage of gas through the nozzle, 
and (b)  assuming instant attainment of thermodynamic equilibrium at all points in the nozzle. 
In each case, assume that the expansion is adiabatic and frictionless. 

We begin by assuming quasi-steady-state operation, flat velocity profiles, and negligible 
changes in potential energy. We also assume constant heat capacities and ideal gas behavior, 
and we neglect diffusion in the direction of flow. We may then write the macroscopic energy 
balance, Eq. 23.3-1, in the form 

Here the subscripts 1 and 2 refer to conditions in the tank and at the nozzle throat, respec- 
tively, and, as in Example 15.5-4, the fluid velocity in the tank is assumed to be zero. 

To determine the enthalpy change, we equate d(iv2) from the d-form of the steady-state 
energy balance (Eq. 23.3-1) to d($v2) of the d-form of the steady-state mechanical energy bal- 
ance (Eq. 23.4-1) to get 

This result also follows from Eq: E of Table 19.2-4. In addition to Eq. 23.5-49, we use the ideal 
gas law and %n expression for H(T), obtained with the help of Table 17.1-1, Eq. 19.3-16, and 
the relation pH = ch, to get 

Here x, is the mole fraction of the species a at temperature T,and & is the molar enthalpy of 
species a at the reference temperature To. The evaluation of His  discussed separately for the 
two approximations. 

Approximation (a):Assumption of very slow chemical reaction. Here the x, are constant 
at the equilibrium values for 1000K, and we may write Eq. 23.5-51 as 

Hence we may write Eq. 23.5-49 in the form 

- 
Since x, and C,, are assumed constant, this equation may 
to get 

T (23.5-53) 

be integrated from (p,, T,) to (p,, T J  

We may now combine this expression with Eqs. 23.5-48 and 51 to obtain the desired expres- 
sion for the gas velocity at plane 2: 
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By substituting numerical values into Eqs. 23.5-54 and 55, we obtain (see Problem 23A.1) T2 = 

920K and v, = 1726 ft/s. It may be seen that this treatment is very similar to that presented in 
Example 15.5-4. It is also subject to the restriction that the throat velocity must be subsonic; 
that is, the pressure in the nozzle throat cannot fall below that fraction of p, required to pro- 
duce sonic velocity at the throat (see Eq. 15B.6-2). If the ambient pressure falls below this criti- 
cal value of p,, the throat pressure will remain at the critical value, and there will be a shock 
wave beyond the nozzle exit. 

Approximation 0: Assumption of ve y rapid reaction. We may proceed here as in part 
(a), except that the mole fractions x, must now be considered functions of the temperature de- 
fined by the equilibrium relation 

and the stoichiometric relations 

The quantity KJT)  in Eq. 23.5-56 is the known equilibrium constant for the reaction. It may be 
considered as a function only of temperature, because of the assumed ideal gas behavior and 
because the number of moles present is not affected by the chemical reaction. Equations 23.5- 
57 and 58 follow from the stoichiometry of the reaction and the composition of the gas origi- 
nally placed in the tank. 

The expression for the final temperature is now considerably more complicated. For this 
reaction, where C.,x,M, is constant, Eqs. 23.5-49 and 50 may be combined to give 

where, with the heat capacities approximated as constar~ts, 

In general, the integral in Eq. 23.5-60 must be evaluated numerically, since the x, and the 
dx,/dT are all complicated functions of temperature governed by Eqs. 23.5-56 to 59. Once T2 
has been determined from Eq. 23.5-61, however, v, may be obtained by use of Eqs. 23.548 
and 51. By substituting numerical values into these expressions, we obtain (see Problem 
23B.2) T2 = 937K and v2 = 1752 ft /s. 

We find, then, that both the exit temperature and the velocity from the nozzle are greater 
when chemical equilibrium is maintained throughout the expansion. The reason for this is 
that the equilibrium shifts with decreasing temperature in such a way as to release heat of re- 
action to the system. Such a release of energy will occur with decreasing temperature in any 
system at chemical equilibrium, regardless of the reactions involved. This is one consequence 
of the famous rule of Le Chatelier. In this case, the reaction is endothermic as written and the 
equilibrium constant decreases with falling temperature. As a result, CO and H,O are par- 
tially reconverted to H, and C02 on expansion, with a corresponding release of energy. 

It is interesting that in rocket engines the exhaust velocity, hence the engine thrust, are 
also increased if rapid equilibration can be obtained, even though the combustion reactions 
are strongly exothermic. The reason for this is that the equilibrium constants for these reac- 
tions increase with falling temperature so that the heat of reaction is again released on expan- 
sion. This principle has been suggested as a method for improving the thrust of rocket 
engines. The increase in thrust potentially obtainable in this way is quite large. 

This example was chosen for its simplicity. Note in particular that if a change in the num- 
ber of moles accompanies the chemical reaction, then the equilibrium constant, and hence the 
enthalpy, are functions of the pressure. In this case, which is quite common, the variables p 
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and T implicit in Eq. 23.5-60 cannot be separated, and a step-by-step integration of this equa- 
tion is required. Such integrations have been performed, for example, for the prediction of the 
behavior of supersonic wind tunnels and rocket engines, but the calculations involved are too 
lengthy for here. 

523.6 USE OF THE MACROSCOPIC BALANCES TO 
SOLVE UNSTEADY-STATE PROBLEMS 

In 523.5 the discussion was restricted to steady state. Here we move on to the transient 
behavior of multicomponent systems. Such behavior is important in a large number of 
practical operations, such as leaching and drying of solids, chromatographic separations, 
and chemical reactor operations. In many of these processes heats of reaction as well as 
mass transfer must be considered. A complete discussion of these topics is outside the 
scope of this text, and we restrict ourselves to several simple examples. More extensive 
discussions may be found elsewhere.' 

EXAMPLE 23.6-1 

Start-up of a Chemical 
Reactor 

SOLUTION 

It is desired to produce a substance B from a raw material A in a chemical reactor of volume V 
equipped with a stirrer that is capable of keeping the entire contents of the reactor fairly ho- 
mogeneous. The formation of B is reversible, and the forward and reverse reactions may be 
considered first order, with reaction-rate constants kyB and k;;, respectively. In addition, B un- 
dergoes an irreversible first-order decomposition, with a reaction-rate constant kqc, to a third 
component C. The chemical reactions of interest may be represented as 

At zero time, a solution of A at a concentration cA, is introduced to the initially empty reactor 
at a constant mass flow rate w. 

Develop an expression for the amount of B in the reactor, when it is just filled to its ca- 
pacity V, assuming that there is no B in the feed solution and neglecting changes of fluid 
properties. 

We begin by writing the unsteady-state macroscopic mass balances for species A and B. In 
molar units these may be expressed as 

Next we eliminate MA,tot from Eq. 23.6-3. First we differentiate this equation with respect to t 
to get 

In this equation, we replace dMA,tOt/dt by the right side of Eq. 23.6-2, and then use Eq. 23.6-3 
to eliminate MArtot. In this way we obtain a linear second-order differential equation for M,,,, 
as a function of time: 

' W. R. Marshall, Jr., and R. L. Pigford, The Application of Differential Equations to Chemical Engineering 
Problems, University of Delaware Press, Newark, Del. (1947); B. A. Ogunnaike and W. H. Ray, Process 
Dynamics, Modeling, and Control, Oxford University Press (1994). 
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This equation is to be solved with the initial conditions 

This equation can be integrated to give 

where 
111 111 2.+ = -(k'l:, + kli, + kyc) 2 d( kyA + kk',i, + ky;l2 - 4 ~ I B ~ I C  (23.6-9) - 

Equations 23.6-8 and 9 give the total mass of B in the reactor as a function of time, up to the 
time at which the reactor is completely filled. These expressions are very similar to the equa- 
tions obtained for the damped manometer in Example 7.7-2 and the temperature controller in 
Example 15.5-2. It can be shown, however, that s+ and s- are both real and negative, and 
therefore MB,tot cannot oscillate (see Problem 23B.3). 

EXAMPLE 23.62 

Unsteady Operation 
of a Packed Column 

There are many industrially important processes in which mass transfer takes place between 
a fluid and a granular porous solid: for example, recovery of organic vapors by adsorption on 
charcoal, extraction of caffeine from coffee beans, and separation of aromatic and aliphatic 
hydrocarbons by selective adsorption on silica gel. Ordinarily, the solid is held fixed, as indi- 
cated in Fig. 23.6-1, and the fluid is allowed to percolate through it. The operation is thus in- 
herently unsteady, and the solid must be periodically replaced or "regenerated," that is, 
returned to its original condition by heating or other treatment. To illustrate the behavior of 
such fixed-bed mass transfer operations, we consider as a physically simple case, the removal 
of a solute from a solution by passage through an adsorbent bed. 

In this operation, a solution containing a single solute A at mole fraction x,, in a solvent 
B is passed at a constant volumetric flow rate w / p  through a packed tower. The tower pack- 
ing consists of a granular solid capable of adsorbing A from the solution. At the start of the 

Fluid phase in: 
Total molar flow rate = WL 
Solute concentration = CAO A- 

T 
Fluid phase out: 

Total molar flow rate = WL 
Solute concentration = cA(Z, t )  

(a) 

Fig. 23.6-1. A fixed-bed 
absorber: (a) pictorial 
representation of equipment; 
(b) a typical effluent curve. 
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SOLUTION 

percolation, the interstices of the bed are filled with pure liquid B, and the solid is free of A. 
The percolating fluid displaces this solvent evenly so that the solution concentration of A is 
always uniform over any cross section. For simplicity, it is assumed that the equilibrium 
concentration of A adsorbed on the solid is proportional to the local concentration of A in the 
solution. It is also assumed that the concentration of A in the percolating solution is always 
small and that the resistance of the porous solid to intraparticle mass transport is negligible. 

Develop an expression for the concentration of A in the column as a function of time and 
of distance down the column. 

Paralleling the treatment of the gas absorber in Example 23.5-2, we think of the two phases as 
being continuous and existing side by side as pictured in Fig. 23.6-2. We again define the con- 
tact area per unit packed volume of column as a. Now, however, one of the phases is station- 
ary, and unsteady-state conditions prevail. Because of this locally unsteady behavior, the 
macroscopic mass balances are applied locally over a small column increment of height Az. 
We may use Eq. 23.1-3 and the assumption of dilute solutions to state that the molar rate of 
flow of solvent, WE, is essentially constant over the length of the column and the time of oper- 
ation. We now proceed to use Eq. 23.1-3 to write the mass conservation relations for species A 
in each phase for a column increment of height Az. 

For the solid phase in this increment of column we may apply Eq. 22.3-3 locally, keeping 
in mind that now MA,,,, depends on both z and t: 

Here use has been made of Eq. 22.1-14, and the symbols have the following meaning: 

E = volume fraction of column occupied by the liquid 

S = cross-sectional area of (empty) column 

c,, = moles of adsorbed A per unit volume of the solid phase 

x,  = bulk mole fraction of A in the liquid phase 

xAo = interfacial mole fraction of A in the fluid phase, assumed to be in equilibrium with cA, 

= fluid-phase mass transfer coefficient, defined in Eq. 22.1-14, for small mass-transfer rates 

Fluid in at total 
molar rate WL 

1 

Fig. 23.6-2. Schematic model for a fixed-bed absorber, 
Fluid ou; at total showing a differential element over which a mass balance 

molar rate WL is made. 
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Note that, in writing Eq. 23.6-11, we have neglected convective mass transfer through the 
solid-fluid interface. This is reasonable if xAO is much smaller than unity. We have also as- 
sumed that the particles are small enough so that the concentration of the solution surround- 
ing any given particle is essentially constant over the particle surface. 

For the fluid phase, in the column increment under consideration, Eq. 23.1-3 becomes 

Here c is the total molar concentration of the liquid. Equation 23.6-13 may be rewritten by the 
introduction of a modified time variable, defined by 

It may be seen that, for any position in the column, t' is the time measured from the instant 
that the percolating solvent "front" has reached the position in question. By rewriting Eqs. 
23.6-13 and 11 in terms of t', we get 

Equations 23.6-15 and 16 combine the equations of conservation of mass for each phase with 
the assumed mass transfer rate expression. These two equations are to be solved simultane- 
ously along with the interphase equilibrium distribution, xAO = mcAsl in which m is a constant. 
The boundary conditions are 

B.C. 1: at t' = 0, 

B.C. 2: at z = 0, 
cAs = 0 for all z > 0 

xA = XA, for all t' > 0 

Before solving these equations, it is convenient to rewrite them in terms of the following di- 
mensionless variables: 

In terms of these variables, the differential equations and boundary conditions take the form 

with the boundary conditions Y(f; 0) = 0 and X(0, r )  = 1. 
The solution2 to Eqs. 23.6-23 and 24 for these boundary conditions is 

Here JO(ix) is a zero-order Bessel function of the first kind. This solution is presented graphi- 
cally in several available  reference^.^ 

' This result was first obtained by A. Anzelius, Z. angew. Math. u. Mech., 6,291-294 (1926), for the 
analogous problem in heat transfer. One method of obtaining this result is outlined in Problem 23D.1. See 
also H. Bateman, Partial Differential Equations of Mathematical Physics, Dover, New York (19441, pp. 123-125. 

See, for example, 0. A. Hougen and K. M. Watson, Chemical Process Principles, Part 111, Wiley, New 
York (1947), p. 1086. Their y/yo, b ~ ,  and aZ correspond to our X, 7, and l. 
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For many complex systems, complete descriptions are either infeasible or unnecessary, and it 
is sufficient to obtain only a few basic characteristics. Specifically, we may ask how one may 

The of Low- determine the system volume V and the volume flow rate Q through it from observations of 
Order Moments short tracer pulses of mass m introduced at the inlet and then measured at the outlet. Con- 

sider for this purpose the macroscopically steady flow through a closed system of arbitrary 
geometry, but with a single inlet and outlet, such as that suggested in Fig. 7.0-1, except that 
there are no moving surfaces. The flow and diffusional behavior are arbitrary, except that the 
tracer distribution must be described by the diffusion equation (Eq. 19.1-7 with Eq. 17.7-3 in- 
serted for the mass flux) 

in which p, is the local tracer concentration and 9Ts is the pseudobinary diffusivity for the 
tracer moving through the solution that fills the system. Turbulent systems may be included 
by using time-smoothed quantities and an effective turbulent diffusivity. 

In developing the macroscopic balances we shall need to use the condition that there is 
no flow or diffusion through the walls of the enclosure 

(n . v) = 0 and (n V p T )  = 0 (23.6-27,281 

and that the diffusive flux of the tracer is small compared to the convective flux at the inlet 
and outlet to the system 

Here n is the outwardly directed unit normal vector. We take the inlet tracer concentration to 
be zero up to t = 0 and also after some finite time t = t,. In practice the concentration pulse 
duration should be quite short. 

SOLUTION The analysis4 is based on the moments I"') of the tracer concentration with respect to time, de- 
fined by: 

We now multiply Eq. 23.6-26 by t" and integrate with respect to time over the range of 
nonzero exit tracer concentration 

When the first term is integrated by parts and we make use of the notation introduced in Eq. 
23.6-30, we get 

for all systems that give finite moments. We now have a hierarchy of equations for the I'"' in 
terms of the lower-order moments, and the structure of these equations is very convenient. 

In physical terms, it was first noted by Spalding5 that Eq. 23.6-32 has the same form as the 
diffusion equation with chemical reaction, Eq. 19.1-16, but with the concentration replaced by 
I(") and the reaction term replaced by nI'"-~". Hence we can integrate these equations over the 
entire volume of the flow system and thereby develop a new set of macroscopic balances. 

E. N. Lightfoot, A. M. Lenhoff, and R. I. Rodrigues, Chem. Eng. Sci., 36,954-956 (1982). 
D. B. Spalding, Chem. Eng. Sci., 9,74-77 (1958). 
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We begin by integrating Eq. 23.6-33, for n = 0, over the entire volume of the flow system 
between planes 1 and 2: 

The volume integrals may be converted into surface integrals by using the Gauss divergence 
theorem to get 

where S = Sf + S, + SZ. The integral over the fixed surface Sf is zero according to Eq. 23.6-27 
and 28, and the integrals over the inlet and outlet planes S, and S2 can be simplified, so that 
we get 

Here we have made use of Eq. 23.6-29 to drop the diffusive terms at planes 1 and 2. If we as- 
sume that to' is constant over a cross section, we may remove it from the integral, and then 
we get 

For an incompressible fluid, the volume rate of flow, Q, is constant, so that (u,)S, = (v&, and 

That is, I"' evaluated at plane 1 is the same as Po' at plane 2, and at every point in the system. 
It is standard notation to abbreviate this quantity as Mo, the zeroth (absolute) moment. Equa- 
tion 23.6-38 is analogous to Eq. 23.1-2 for a steady-state system with no mass transport across 
the walls. Next we evaluate 4" for the introduction of a mass m of tracer over a time interval 
that is very small with respect to the mean tracer residence time t,,, = V/Q: 

The replacement, in the second step, of the upper limit by Q/V is permitted by the finite du- 
ration of the tracer pulse. From the last two equations we then get 

This provides the possibility of measuring blood flow rate from the mass of an injected tracer 
and the value of Go' = M,. The latter can be obtained by means of a catheter inserted into the 
blood vessel or by NMR techniques. 

This simple formula6 was first introduced in 1829 and has been extensively used since 
1897 for measurement of blood-flow rates,7 including cardiac output.' It is also widely used for 
many environmental systems, such as rivers, and also for systems in the process industries. 

Next we turn to Eq. 23.6-32, and integrate it over the volume of the flow system, once 
again making use of the fact that the diffusive tern over the inlet and outlet is much smaller 
than the convective term. This gives 

E. Hering, Zeits, f. Physik, 3,85-126 (1829). 
G. N. Stewart, J. Physiol. (London), 22,159-183 (1897). 
K. Zierler, Ann. Biomed. Eng., 28,836-848 (2000). 
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or, if I'"' is assumed constant over a cross-section, 

-n(+ I ~ ' ) ( r ,  t ) ~ )  = + ((v~)s~$) - ( v ~ ) s ~ @ ) )  (23.6-42) 
v 

Then, defining the quantity in parentheses on the left side as the volume average, we get 
finally3 

Now, if we set n = 1, we get the following: 

If the tracer is injected as a delta-function input, so that I'," = 0, we can use the notation I':' = MI 
(the first moment), and the last equation becomes 

This result, used in conjunction with Eq. 23.6-40, has long been applied by cardiologists for de- 
termining blood volume. It has since found many other environmental and process-industry 
calculations. 

Higher moments have also proven useful, in particular the central moments 

These are commonly applied for the special case of an impulsive tracer input. Then the nor- 
malized second central moment, or variance, is 

This is the square of the standard deviation, when the exit tracer profile is a Gaussian distrib- 
ution. The third central moment is a measure of the asymmetry about ire,, and the fourth a 
measure of the kurtosis. In practice, the fourth moment is nearly impossible to determine ac- 
curately from experimental data, and obtaining even the third proves to be quite difficult. 

Use of the second moment has found some very important applications in studying 
tracer dynamics of biological tissue? and again the large literature in the medical field has 
been extended to many other applications. It is also interesting to note the additivity relation- 
ships in serially connected systems. Thus Mo is invariant to the number of included subsys- 
tems, and M,, p2, and p3 are additive, but higher-order moments are not. 

QUESTIONS FOR DISCUSSION 

1. How are the macroscopic balances for multicomponent mixtures derived? How are they re- 
lated to the equations of change? 

2. In Eq. 23.1-1, how are homogeneous and heterogeneous reactions accounted for? What is the 
physical meaning of w,,? 

3. Give a specific example of a system in which the last term in Eq. 23.1-4 is zero. 
4. In using Table 23.5-1 one normally specifies the directions of the streams (that is, whether they 

are input or output streams). How could one proceed if the flow directions change with time? 

F. Chinard, Ann. Biomed Eng., 28,849-859 (2000). 
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5. Summarize the calculation procedures for the enthalpy per unit mass, fi = + in Eq. 23.3-1 
and the partial molar enthalpy in Eq. 23.3-la. What are these quantities for ideal gas mixtures? 

6. Review the derivation of the mechanical energy balance in s7.8. What would have to be 
changed in that derivation, if one wishes to apply it to a nonisothermal, reacting mixture in a 
flow system with no mass transfer surfaces? 

7. To what extent does this chapter provide the background for studying unit operations, such 
as absorption, extraction, distillation, and crystallization? 

8. What changes would have to be made in this chapter to describe processes in a space ship or 
on the surface of the moon? 

PROBLEMS 23A.1. Expansion of a gas mixture: very slow reaction rate. Estimate the temperature and velocity 
of the water-gas mixture at the discharge end of the nozzle in Example - 23.5-4 - if the reaction 
rate - is very slow. - Use the following data: loglo K, = -0.15, CprHz = 7.217, Cp,CO, = 12.995, 
Cp,HZO = 9.861, Cp,,, = 7.932 (all heat capacities are in Btu/lb-mole - F. Is the nozzle exit 
pressure equal to the ambient pressure? 
Answers: 920K, 1726 ft/s; yes, the nozzle flow is subsonic. 

23A.2. Height of a packed-tower absorber. A packed tower of the type described in Example 23.5-2 
is to be used for removing 90% of the cyclohexane from a cyclohexane-air mixture by absorp- 
tion into a nonvolatile light oil. The gas stream enters the bottom of the tower at a volumetric 
rate of 363 ft3/min, at 30°C, and at 1.05 atm pressure. It contains 1% cyclohexane by volume. 
The oil enters the top of the tower at a rate of 20 lb-mol/hr, also at 30°C, and it contains 0.3% 
cyclohexane on a molar basis. The vapor pressure of cyclohexane at 30°C is 121 mm Hg, and 
solutions of it in the oil may be considered to follow Raoult's law. 
(a) Construct the operating line for the column. 
(b) Construct an equilibrium curve for the range of operation encountered here. Assume the 
operation to be isothermal and isobaric. 
(c) Determine the interfacial conditions at each end of the column. 
(d) Determine the required tower height using Eq. 23.5-24 if k!a = 0.32 moles/hr . ft3, 
kia = 14.2 moles/hr . ft3, and the tower cross section S is 2.00 fi?. 

(e) Repeat part (d), using Eq. 23.5-25. 

Answer: (d) ca. 62 ft; (el 60 ft 

23B.1. Effective average driving forces in a gas absorber. Consider a packed-tower gas absorber of 
the type discussed in Example 23.5-2. Assume that the solute concentration is always low and 
that the equilibrium and operating lines are both very nearly straight. Under these conditions, 
both k;a and k:a may be considered constant over the mass-transfer surface. 
(a) Show that (YA - Y,,) varies linearly with YA. Note that Y, is the bulk mole ratio of A in 
the gas phase and Y,, is the equilibrium gas-phase mole ratio over a liquid of bulk composi- 
tion X, (see Fig. 22.4-2). 

(b) Repeat part (a) for (Y, - YAO). 
(c) Use the results of parts (a) and (b) to show that 

The overall mass transfer coefficient I$ is defined by Eq. 22.4-4. Note that this part of the 
problem may be solved by analogy with the development in Example 15.4-1. 

23B.2. Expansion of a gas mixture: very fast reaction rate. Estimate the temperature and velocity of 
the water-gas mixture at the discharge end of the nozzle in Example 23.5-4 if the reaction rate 
may be considered infinitely fast. Use the data supplied in Problem 23A.1 as well as 
the following: at 900K, loglo K,  = -0.34; 3H2 = +6340; HHz0(@ = -49,378; &, = -16,636; 
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ho, = -83,242 (all enthalpies are given in cal/g-mole). For simplicity, neglect the effect of 
temperature on heat capacity, and assume that loglo K, varies linearly with temperature 
between 900 and 1000K. The following simplified procedure is recommended: 
(a) It may be seen in advance that T2 will be higher than for slow reaction rates, and hence 
greater than 920K (see Problem 23A.1). Show that, over the temperature range to be encoun- 
tersd, fi varies very nearly linearly with the temperature according to the expression 
(dH/dT',,, = 12.40 cal/gm-mol K. 
(b) Substitute the result in (a) into Eq. 23.5-41 to show that T, = 937K. 
(c) Calculate HI and & and show by use of Eq. 23.5-29 that v, = 1750 ft/s. 

Startup of a chemical reactor. 
(a) Integrate Eq. 23.6-5 along with the given initial conditions to show that Eq. 23.6-8 cor- 
rectly describes MB,tot as a function of time. 
(b) Show that s+ and s- in Eq. 23.6-9 are real and negative. Hint: Show that 

(c) Obtain expressions for MA,t,, and Mc,tot as functions of time. 

Irreversible first-order reaction in a continuous reactor. A well-stirred reactor of volume V 
is initially completely filled with a solution of solute A in a solvent S at concentration cAo. At 
time t = 0, an identical solution of A in S is introduced at a constant mass flow rate w. A small 
constant stream of dissolved catalyst is introduced at the same time, causing A to disappear 
according to an irreversible first-order reaction with rate constant k y  sec-'. The rate constant 
may be assumed independent of composition and time. Show that the concentration of A in 
the reactor (assumed isothermal) at any time is 

in which t;' = [(w/pV) + k y ] .  

Mass and enthalpy balances in an adiabatic splitter. One hundred pounds of 40% by mass of 
superheated aqueous ammonia with a specific enthalpy of 420 Btu/lb is to be flashed adiabati- 
cally to a pressure of 10 atm. Calculate the compositions and masses of the liquid and vapor pro- 
duced. For the purposes of this problem you may assume that at thermodynamic equilibrium 

where YNHi and XNH3 are the mass ratios of ammonia to water. The enthalpies of saturated liq- 
uid and vapor at 10 atm may be assumed to be 

Btu/lb of saturated vapor, and 

Btu/lb of saturated liquid. Here xNH3 and yNH, are mass fractions of ammonia. 
A 

Answer: P = 36.5 Ibs,yp = 0.713, Hp = 877 Btu/lb,; W = 63.6 Ib,, x, = 0.22, h ,  = 157 Btu/lb, 

Flow distribution in an ideal cascade. Determine the upflowing and downflowing stream 
flows of individual stages for the ideal cascade described in Example 23.5-3. Express your re- 
sults as fractions of the feed rate, and start from the bottom of the cascade. Use 12 stages as 
the closest integer providing the desired separation. It is suggested that you begin by calculat- 
ing the upflowing and downflowing stream compositions and then use the mass balances 

below the feed plate and the corresponding balances above it. Use 10 stages with the bottoms 
(W) composition equal to a mole fraction of 0.1. 
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23B.7. Isotope separation and the value function. You wish to compare an existing isotope frac- 
tionator that processes 50 moles/hr of a feed containing 1.0 mole% of the desired isotope to a 
product of 90% purity and a waste of 10% with another that processes 50 moles/hr of 10 
mole% material to product and waste of 95% and 2%, respectively. Which fractionation is 
more effective? Assume the Dirac separative capacity to be an accurate measure of effectiveness. 

Irreversible second-order reaction in an agitated tank. Consider a system similar to that dis- 
cussed in Problem 23B.4, except that the solute disappears according to a second-order reac- 
tion; that is, RA,t,, = -k;'Vci. Develop an expression for c, as a function of time by the 
following method: 
(a) Use a macroscopic mass balance for the tank to obtain a differential equation describing 
the evolution of cA with time. 
(b) Rewrite the differential equation and the accompanying initial condition in terms of the 
variable 

The nonlinear differential equation obtained in this way is a Bernoulli difj'erential equation. 
(c) Now put v = l / u  and perform the integration. Then rewrite the result in terms of the 
original variable c,. 

23C.2. Protein purification (Fig. 23C.2). It is desired to purify a binary protein mixture using an 
ideal cascade of individual ultrafiltration stages of the type shown in the figure. The larger of 
the two membrane units is the source of separation and each protein flux across the mem- 
brane is expressed by 

where Ni is the transmembrane protein flux of species i, ci is its concentration in the upstream 
solution (assumed to be well mixed), v is the transmembrane superficial velocity, and Si is a 
protein-specific sieving factor. The smaller membrane unit is used solely to maintain a solvent 
balance and can be ignored for the purposes of this problem. 
(a) Show that the enrichment of protein 1 relative to 2 is given by 

where Y ,  and XI are the mole ratios of protein 1 to protein 2 in the product and waste 
streams, respectively, and a,, = S,/S2. 
(b) Determine the number of stages required in an ideal cascade to produce 99% pure protein 
1 from a 90% feed in 95% yield as a function of a,,. It is suggested that a,, be varied from 2 to 
200. 
(c) Calculate the output concentrations, yield, and stream flow rates for a three-stage cascade, 
with a,, = 40, and with a feed of 90% purity to the middle stage. 

(d) Compare the Dirac separative capacity of this three-stage cascade with that of a single 
unit with the same molar ratio of product to feed. 

23C.3. Physical significance of the zeroth and first moments. Consider some simple flow systems, 
such as plug flow and well-stirred vessels, individually and in series or parallel arrange- 
ments. Show that flow rates and volumes can be obtained from the moments defined in Ex- 
ample 23.6-3. 

F = P + W  
z F = y P + x W  

return 
Fig. 23C.2. A membrane-based binary splitter. 
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Fig. 23C.4. A schematic 
representation of a 
"sandwich-type'' cross- 
flow heat exchanger. 

23C.4. Analogy between the unsteady operation of an adsorption column and a cross-flow heat 
exchanger1 (Fig. 23C.4). In the heat exchanger shown in the figure, the two fluid streams flow 
at right angles to one another, and the heat flux parallel to the wall is neglected. Here ex- 
change of heat is clearly less than for a countercurrent exchanger of the same surface and 
overall heat transfer coefficient under otherwise identical conditions. The heat flow in these 
exchangers may be expressed for constant Ul,, as 

Here Q is the total rate of heat transfer, A is the heat transfer surface area, and ATl, is the loga- 
rithmic mean of (T,ll - T,,) and (T,, - Tcl), as defined in the figure. Note that Th2 and T,, are 
the flow-averaged temperatures of the two exit streams. We may then regard Y as the ratio of 
heat transferred in cross flow to that which would be transferred in counterflow. 

Use Eq. 23.6-27 to write an expression for Y as a function of the stream rates, physical 
properties, heat transfer area, and localpve~all heat transfer coefficient. Express the result in 
terms of definite integrals, and assume Cphr Cpcr and U,,, to be constant. 

23D.1. Unsteady-state operation of a packed column. Show that Eq. 23.6-25 is a valid solution of 
Eqs. 23.6-23 and 24. The following approach is recommended: 
(a) Take the Laplace transform of Eqs. 23.6-23 and 24 with respect to r. Eliminate the trans- 
form of Y from the resulting expressions. Show that the transform of X may be written for the 
given boundary conditions as 

- 
X = l , [s/(s+l)lt 

s (23D.1-1) 

in which k is the Laplace transform of X. 

W. Nusselt, Tech. Math. Therm., 1,417 (1930); D. M. Smith, Engineering, 138,479 (1934). 
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(b) Rewrite this expression in the form 

Invert this expression to obtain Eq. 23.6-25 by making use of the identity 

23D.2. Additivity of the lower moments. Consider a pair of flow systems meeting the requirements 
of Example 23.6-3 arranged in series. Show that (i) the zeroth moment is the same at the sys- 
tem inlets and outlets of the first and second systems, and (ii) the first absolute moment and 
the second and third central moments, but not the fourth central moment, are additive. Sug- 
gestion: For the second and higher moments it is helpful to recognize that the output from the 
second unit, following a pulse input to the first may be obtained by the use of the convolution 
integral 

where k is a system response to a pulse input. A simple way of proceeding is to recognize that 
the Laplace transform of c(t) may be written as 

It then follows that 

and similarly for the higher derivatives. Now it may also be shown that 

23D.3. Start-up of a chemical reactor. Rework Example 23.6-1 by use of Laplace transforms of Eqs. 
23.6-2 and 3. 

23D.4. Transient behavior of N reactors in ~ e r i e s . ~  There are N identical chemical reactors of vol- 
ume V connected in series, each equipped with a perfect stirrer. Initially, each tank is filled 
with pure solvent S. At zero time, a solution of A in S is introduced to the first tank at a con- 
stant volumetric flow rate Q and a constant concentration c,(O). This solution also contains a 
small amount of a dissolved catalyst, introduced just prior to discharge into the first tank, 
which causes the following first-order reactions to occur: 

k;Ls kYhc 
A S B S C  (23D.4-1) 

A ki'b 
The rate constants in these reactions are assumed constant throughout the system. Let h = Q/V, 
the inverse of the "effective residence time" in each tank. Obtain an expression for c,(n), the 
concentration of chemical species n in the nth tank at any time t. 

A. Acrivos and N. R. Amundson, Ind. Eng. Chem., 47,1533-1541 (1955). 
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In Chapter 1 we stated that the molecular transport of momentum is related to the veloc- 
ity gradient by Newton's law of viscosity. In Chapter 8 we gave Fourier's law, which 
says that molecular heat transport occurs because of a gradient in temperature. How- 
ever, when we discussed mixtures in Chapter 19, we pointed out an extra contribution to 
the molecular heat flux that accounts for the amount of enthalpy transported by the in- 
terdiffusion of the various species. In Chapter 17 we gave Fick's (first) law of diffusion, 
which says that molecular mass transport occurs as the result of a concentration gradi- 
ent. We indicated there that other driving forces may contribute to the mass flux. The 
purposes of this chapter are to describe the most important of these additional driving 
forces and to illustrate some applications. 

Important among these forces are the gradients of electrical potential and pressure, 
which govern the behavior of ionic systems and permselective membranes as well as ul- 
tracentrifuges. Electrokinetic phenomena in particular are rapidly gaining in importance. 
Induced dipoles can produce separations, such as dielectrophoresis and magnetophoresis, 
which are useful in specialized applications. In addition, we shall find that temperature 
gradients can cause mass fluxes by a process known as thermal diffusion1 or the Soret ef- 
fect, and that concentration gradients can produce heat transfer by the diffusion-therrn~,~ 
or the Dufour, effect. Finally, it is important to realize that in systems containing three or 
more components, the behavior of any one species is influenced by the concentration 
gradients of all other species present. 

Fortunately the wide range of behavior resulting from these various driving forces 
can be described compactly via the framework provided by nonequilibrium thermody- 

' The effect was first observed in liquids by C. Ludwig, Sitzber. Akad. Wiss. Wien 20,539 (1856), but 
is named after Ch. Soret, Arch. Sci. Phys. Nat., Genhe ,  2,4841 (1879); 4,209-213 (1880); Comptes Rendus 
Acad. Sci., Paris, 91,289-291 (1880). The first observations in gases were made by S. Chapman and 
F. W. Dootson, Phil. Mag., 33,248-253 (1917). 

L. Dufour, Arch. Sci. Pkys. Nut. Gentve, 45,9-12 (1872); Ann. Phys. (5) 28,490492 (1873). 
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narni~s;~ this topic is summarized in gg24.1 and 2. This discussion concludes with the 
generalized Maxwell-Stefan equations. In the remaining sections we show how various 
specializations of these equations can be used to provide convenient descriptions of se- 
lected diffusional processes. 

Those who do not wish to read the first two sections can go directly to the later sec- 
tions, where the essential results of nonequilibrium thermodynamics are summarized. 

524.1 THE EQUATION OF CHANGE FOR ENTROPY 

Nonequilibrium thermodynamics makes use of four postulates above and beyond those 
of equilibrium thermodynamics:' 

The equilibrium thermodynamic relations apply to systems that are not in equi- 
librium, provided that the gradients are not too large (quasi-equilibrium postulate). 

All fluxes in the system may be written as linear relations involving all the forces 
(linearity postulate). 

No coupling of fluxes and forces occurs if the difference in tensorial order of the 
flux and force is an odd number (Curie's postulate).' 

In the absence of magnetic fields the matrix of the coefficients in the flux-force re- 
lations is symmetric (Onsager's reciprocal relationsh3 

In this and the following section we will use these postulates, which arose from a need to 
describe various observed phenomena and also from kinetic theory developments. Note 
that the nonequilibrium theory we are using excludes consideration of non-Newtonian 
 fluid^.^ 

In Problem 11D.1 we saw how to derive Jaumann's entropy balance equation, 

in which s is the entropy per unit mass of a multicomponent fluid, s is the entropy-flux 
vector, and g, is the rate of entropy production per unit volume. At this point we do not 
know what s and g, are, and hence our first task is to find expressions for these quantities 

The discussion here is for multicomponent systems. A discussion for binary systems can be found 
in L. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Pergamon Press (1987), Chapter VI. See also 
R. B. Bird, Korean J .  Chem. Eng., 15,105-123 (1998). 

S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962). 
See also H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, New York (1985), 
Chapter 14. 

' P. Curie, Oeuvres, Paris (1903), p. 129. 
Nobel laureate Lars Onsager (1903-1976) studied chemical engineering at the Technical University 

of Trondheim; after working with Peter Debye in Ziirich for two years, he held teaching positions at 
several universities before moving on to Yale University. His contributions to the thermodynamics of 
irreversible processes are to be found in L. Onsager, Pkys. Rev., 37,405426 (1931); 38,2265-2279 (1931). 
A summary of experimental verifications of the Onsager reciprocal relations has been given by 
D. G. Miller, in Transporf Phenomena in Fluids (H. J. M. Hanley, ed.), Marcel Dekker, New York (19691, 
Chapter 11. 

TO describe nonlinear viscoelastic fluids one has to generalize the thermodynamic theory, as 
described in A. N. Beris and B. J. Edwards, Thermodymmics of Flowing Systems with Internal Microstructure, 
Oxford University Press (1994); M. Grmela and H. C. Ottinger, Pkys. Rev., E56,6620-6632 (1997); 
H.  C. Ottinger and M. Grmela, Phys. Rev., E56,66334655 (1997); B. J. Edwards, H. C. Ottinger, and 
R. J. J. Jongschaap, J .  Non-Equilibrium Thermodynamics, 27,356-373 (1997); H. C. Ottinger, Pkys. Rev., E57, 
1416-1420 (1998); H. C. Ottinger, Applied Rheology, 9,17-26 (1999). 
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in terms of the fluxes and gradients in the system. To do this we have to use the 
assumption that the equations of equilibrium thermodynamics are valid locally (the 
"quasi-equilibrium postulate"), which means that equations such as 

can be used in a system that is not too far from equilibrium. In this equation & is the 
partial molar Gibbs free energy and M, the molecular weight of species a. We now 
apply this relation to a fluid element moving with the mass average velocity v. Then we 
can replace the differential operators by substantial derivative operators. In that form, 
Eq. 24.1-2 enables us to express D S / D ~  in terms of DU/D~,  D(l/p)/DL, and Dw,/Dt. 
Then the equation of change for internal energy [Eq. (D) of Table 19.2-41, the overall 
equation of continuity [Eq. (A) of Table 19.2-31, and the equation of continuity for species 
a [Eq. (B) of Table 19.2-31 can be used for the three substantial derivatives that have been 
introduced. Thus, after considerable rearranging, we find 

The entropy production has been written as a sum of products of fluxes and forces. 
However, there are only N - 1 independent mass fluxes j,, and, because of the Gibbs- 
Duhem equation, there are also only N - 1 independent forces. When we take into ac- 
count this lack of independencef5 we may rewrite the entropy flux and the entropy 
production in the following form: 

N 

~ g ~  = - (@) . Vln T ) -  2 j, - -  
a=l ( '::dm) -(T:vv)- 

in which q(h) is the heat flux with the diffusional enthalpy flux subtracted off, 

and 

The second form in Eq. 24.1-8 is obtained5 by using the relation d< = RTd In a,, where a, 
is the activity. In the operation V In a,, the derivative is to be taken at constant T and p, 
and the quantity 4, = c,K is the volume fraction of species a. The d, introduced here 
are called diffusional driving forces, and they account for the concentration diffusion (term 

For the intermediate steps, see C. F. Curtiss and R. B. Bird, Ind. Eng. Chem. Research, 38,2515-2522 
(19991, errata 40,1791 (2001). 
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with V In a,), pressure diffusion (term with Vp), and forced diffusion (term with g). The d, 
are so defined that Z,d, = 0. 

The entropy production in Eq. 24.1-6, which is a sum of products of fluxes and 
forces, is the starting point for the nonequilibrium thermodynamics development. Ac- 
cording to the "linearity postulate" each of the fluxes in Eq. 24.1-6 (q'"', j,, 7, and - 
G,/M,) can be written as a linear function of all the forces (VT, d,, Vv, and r,). How- 
ever, because of "Curie's postulate," each of the j, must depend linearly on all of the 
d, as well as on VT, and q(h) must depend linearly on VT as well as on all the d,, but 
neither j, nor q(h) can depend on Vv or r,. Similarly the stress tensor .r will depend on 
the tensor Vv, and also on the scalar driving forces r, multiplied by the unit tensor. 
Since the "coupling" between .r and the chemical reactions has not been studied, we 
omit any further consideration of it. In the next section we discuss the coupling among 
all the vector forces and vector fluxes and the consequences of applying the "Onsager 
reciprocal relations." 

524.2 THE FLUX EXPRESSIONS FOR HEAT AND MASS 

We now employ the "linearity postulate" to obtain for the vector fluxes 

In these equations the quantities a,,,, a,,, a,,, and asp are the "phenomenological coeffi- 
cients" (that is, the transport properties). Because the j, and d, are not all independent, it 
must be required that a,, + 2,a,, = 0, where the sums are over all y (except y = P) from 
1 to N. Now according to the Onsager reciprocal relations, a,, = a,, and nap = a,, for all 
values of cr and /3 from 1 to N. 

Next we relate the phenomenological coefficients to the transport coefficients. First 
we relabel a,, and ao, as D:, the multicomponent thermal diffusion coefficients. These have 
the property that 2 ,~ :  = 0. Then we define the multicomponent Fick difisivities,' ID,,, by 
D,, = -cRTaap/papp. These diffusivities are symmetric (Elap = D,,) and obey the rela- 
tions C,U,D,~ = 0. Then Eq. 24.2-2 becomes 

, 

for the multicomponent mass fluxes. These are the generalized Fick equations. When the 
second form of Eq. 24.1-8 is substituted into Eq. 24.2-3 we see that there are four contri- 
butions to the mass-flux vector j,: the concentration diffusion term (containing the activ- 
ity gradient), the pressure diffusion term (containing the pressure gradient), the forced 
diffusion term (containing the external forces), and the thermal diffusion term (propor- 
tional to the temperature gradient). 

C. F. Curtiss, J. Chem. Pkys., 49,2917-2919 (1968); see also D. W. Condiff, 1. Chem. Pkys., 51, 
42094212 (1969), and C. F. Curtiss and R. B. Bird, Ind. Eng. Chem. Research, 39,2515-2522 (1999); errata 
41,1791 (2001). The Dap used here are the negatives of the Curtiss D,~, which, in turn, are different from 
the DaB used by J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theo y of Gases and Liquids, 
Wiley, New York (1954), second corrected printing (1964, Chapter 11. 
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Equation 24.2-3 can be turned "wrong-side out"',' and solved for the driving forces d,: 

These are the generalized Maxwell-Stefan equations, a special case of which was given in 
Eq. 17.9-1. The Bop are called the mulficomponent Maxwell-Stefan diffusivities, and they 
have been proven to be ~ymrnetric;~ their relation to the Dap will be discussed presently. 

When the expression for d, in Eq. 24.2-4 is substituted into Eq. 24.2-1, we get 

The thermal conductivity of a mixture is defined to be the coefficient of proportionality 
between the heat-flux vector and the temperature gradient when there are no mass 
fluxes in the system. Thus, the quantity in brackets is, by general agreement, the thermal 
conductivity k times the absolute temperature T. If we combine this result with the defin- 
ition in Eq. 24.1-7, w get for the final expression for the heat flux:3 

We see that the heat flux vector q consists of three terms: the heat conduction term (con- 
taining the thermal conductivity), the heat diffusion term (containing the partial molar 
enthalpies and the mass fluxes), and finally the Dufour term (containing the thermal dif- 
fusion coefficients and the mass fluxes). The heat diffusion term, already encountered in 
Eq. 19.3-3, is generally important in diffusing systems. The Dufour term is usually small 
and can usually be neglected. 

Equations 24.2-3,4, and 6 are the principal results of nonequilibrium thermodynam- 
ics. We now have the mass- and heat-flux vectors expressed in terms of the transport 
properties and the fluxes. 

Next we discuss the relation between the matrix of Fick diffusivities Dep and that of 
the Maxwell-Stefan diffusivities Bag. Both matrices are symmetric and of order N X N, 
and both have ~ N ( N  - 1) independent elements. The Bap are obtained thus:3 

in which (Ba)pY = - DPy + Day-that is, the p y-component of a matrix called B,, which is 
of order (N - 1) x (N - 1)-and adj B, is the matrix adjoint to B,. For binary and ternary 

H. J. Merk, Appl. Sci. Res., A8,73-99 (1959); E. Helfand, J. Chem. Phys., 33,319-322 (1960). Hendrik 
Jacobus Merk (1920-1988) performed the inversion of the mass-flux expressions when he was a graduate 
student in engineering physics at the Technical University of Delft; from 1953 to 1987 he was a professor 
at the same institution. 

C. F. Curtiss and R. B. Bird, Ind. Eng. C h m .  Research, 38,2515-2522 (1999); errata, 40,1791 (2001). 
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Table 24.2-1 Summary1 of Expressions for the Dmp in Terms of the Rp. [Note: Additional 
entries may be generated by cyclic permutation of the indices. Formulas for four-component 
systems are given in the references.] 

Binary: 

Ternary: 

systems, the explicit interrelations are given in Tables 24.2-1 and 2. In Eq. (C) of Table 
24.2-1, it can be seen that for a binary mixture the Dap and Bap differ by a factor that is a 
function of the concentration. However, they do have the same sign, which explains why 
the plus sign was chosen in Eq. 24.2-3 instead of a minus sign. 

We are now in a position to present the three final results of this section that are use- 
ful as starting points for solving diffusion problems. For multicomponent diffusion in gases 
OY liquids, combining Eqs. 24.1-8 and 24.2-4 gives 

This equation has been written in terms of the difference of molecular velocities, v, - v,+ 
Equations (D) to (I) of Table 17.8-1 may then be used to write this equation in terms of 
any desired mass or molar fluxes. 

Table 24.2-2 Summary' of Expressions for the R1, in Terms of the map. [Note: Additional 
entries can be generated by cyclic permutation of the indices. See the original references for 
four-component systems.] 

Xlx2 D12D33 - D13D23 Ternary: QI2 = - 
W1°2 DI2 + IDs3 - DI3 - [Di23 
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If one wishes to designate one species y as being special (for example, the solvent), 
then Eq. 24.2-8 can be rewritten thus (see Problem 24C.1): 

Note that in Eq. 24.2-8 there are N(N - 1)/2 symmetric diffusivities, Boa, and that the 
Go, do not appear and are hence not defined. However, in Eq. 24.2-9, there are 
N(N + 1)/2 symmetric diffusivities, but the B,, (N of them) now appear, and therefore 
we have to supply an auxiliary relation Z,(x,/Bffp) = 0, in which the sum is over all a. 
Equation 24.2-9, with the auxiliary relation, is equivalent to Eq. 24.2-8, and both of these 
generalized Maxwell-Stefan equations are equivalent to the generalized Fick equations 
of Eq. 24.2-3, together with its auxiliary relation. 

For multicomponent diffusion in gases at low density, the activity may be replaced by the 
mole fraction, and furthermore, to a very good approximation, the Bop may be replaced 
by 5?hap. These are the binary diffusivities for all pairs of species in the mixture. Since the 
Bffp vary only slightly with concentration, whereas the DUp are highly concentration- 
dependent, it is preferable to use the Maxwell-Stefan form (Eq. 24.2-4) rather than the 
Fick form (Eq. 24.2-3). 

For binary diffusion in gases or liquids, Eq. (C) of Table 24.2-1 and Eq. 17B.3-1 may be 
used to simplify Eq. 24.2-8 as follows: 

In this equation we have introduced the thermal difusion ratio, defined by k,  = - = 

+ ( D i / & B ) ( ~ A ~ B / ~ A ~ B ) .  Other quantities encountered are the thermal diffusion factor a,  
and the Soret coefficient a,, defined by k ,  = cu, x,x, = a, xAxBT. For gases a, is almost inde- 
pendent of composition, and a, is the quantity preferred for liquids. When k, is positive, 
species A moves toward the colder region, and when it is negative, species A moves toward 
the warmer region. Some sample values of k,  for gases and liquids are given in Table 24.2-3. 

For binary mixtures of dilute gases, it is found by experiment that the species with 
the larger molecular weight usually goes to the colder region. If the molecular weights 
are about equal, then usually the species with the larger diameter moves to the colder re- 
gion. In some instances there is a change in the sign of the thermal diffusion ratio as the 
temperature is lowered." 

In the remainder of the chapter, we explore some of the consequences of the mass- 
flux expressions in Eqs. 24.2-8,9, and 10. 

EXAMPLE 24.2-1 

Thermal Diffusion and 
the Clusius-Dickel 
- - 

In this example we discuss the diffusion of species under the influence of a temperature gra- 
dient. To illustrate the phenomenon we consider the system shown in Fig. 24.2-1, two bulbs 
joined together by an insulated tube of small diameter and filled with a mixture of ideal gases 
A and B. The bulbs are maintained at constant temperatures TI and T,, respectively, and the 

Column diameter of the insulated tube is small enough to eliminate convection currents substantially. 
Ultimately the system arrives at a steady state, with gas A enriched at one end of the tube and 
depleted at the other. Obtain an expression for xA2 - x,,, the difference of the mole fractions 
at the two ends of the tube. 

%. Chapman and T. G. Cowling, The Mathemnticnl Theory of Non-Uniform Gases, 3rd edition, 
Cambridge University Press (1970), p. 274. 
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SOLUTION 

Table 24.2-3 Experimental Thermal Diffusion Ratios 
for Liquids and Low-Density Gas Mixtures 

Liquids:" 

Components A-B 
C2H,C14-n-C6H14 
C2H,Br2-C2H4C12 
C2H2C14-CC14 
CBr,-CCl, 
CC14-CH30H 
CH30H-H20 
C Y C ~ O - C ~ H ~ ~ < ~ H ~  

Gases: 

Components A-B T (K) X A 

~ e - ~ e ~  330 0.80 
0.40 

N2-H2C 264 0.706 
0.225 

D,-H~~ 327 0.90 
0.50 
0.10 

a R. L. Saxton, E. L. Dougherty, and H. G. Drickamer, J. Chem. 
Phys., 22,1166-1168 (1954); R. L. Saxton and H. G. Drickamer, 
J. Chem. Phys., 22,1287-1288 (1954); L. J .  Tichacek, W. S. 
Kmak, and H. G. Drickamer, J. Phys. Chem., 60,660-665 (1956). 

B. E. Atkins, R. E. Bastick, and T. L. Ibbs, PYOC. Roy. SOC. 
(London), A172,142-158 (1939). 

' T .  L. Ibbs, K. E. Grew, and A. A. Hirst, Proc. Roy. Soc. 
(London), A173,543-554 (1939). 

H. R. Heath, T. L. Ibbs, and N. E. Wild, Proc. Roy. SOC. 
(London), A178,380-389 (1941). 

After steady state has been achieved, there is no net motion of either A or B, so that Jz = 0. If 
we take the tube axis to be in the z direction, then from Eq. 24.2-10 we get 

Here the activity aA has been replaced by the mole fraction xA, as is appropriate for an ideal 
gas mixture. Usually the degree of separation in an apparatus of this kind is small. We may 
therefore ignore the effect of composition on kT and integrate this equation to get 

This bulb maintained This bulb maintained 
at temperature TI at temperature T2 7 

Fig. 24.2-1. Steady-state binary thermal diffu- 
sion in a two-bulb apparatus. The mixture of 
gases A and B tends to separate under the in- 
fluence of the thermal gradient. 
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Because the dependence of k, on T is rather complicated, it is customary to assume k, constant 
at the value for some mean temperature T,. Equation 24.2-12 then gives (approximately) 

The recommended5 mean temperature is 

Equations 23.2-13 and 14 are useful for estimating the order of magnitude of thermal diffu- 
sion effects. 

Unless the temperature gradient is very large, the separation will normally be quite 
small. Therefore it has been advantageous to combine the thermal diffusion effect with free 
convection between two vertical walls, one heated and the other cooled. The heated stream 
then ascends, and the cooled one descends. The upward stream will be richer in one of the 
components-say, A-and the downward stream will be richer in B. This is the principle of 
the operation of the Clusius-Dickel c ~ l u r n n . ~ ~  By coupling many of these columns together in a 
"cascade" it is possible to perform a separation. During World War I1 this was one of the 
methods used for separating the uranium isotopes by using uranium hexafluoride gas. The 
method has also been used with some success in the separation of organic mixtures, where 
the components have very nearly the same boiling points, so that distillation is not an option. 

The thermal diffusion ratio can also be obtained from the Dufour (diffusion-thermo) ef- 
fect, but the analysis of the experiment is fraught with problems and experimental errors dif- 
ficult to avoid.9 

Next we examine diffusion in the presence of a pressure gradient. If a sufficiently large pres- 
sure gradient can be established, then a measurable separation can be effected. One example 

Pressure Diffus ion and of this is the ultracentrifuge, which has been used to separate enzymes and proteins. In Fig. 
the Ultra C e n t q g e  24.2-2 we show a small cylindrical cell in a very high-speed centrifuge. The length of the cell, 

and B 

Fig. 24.2-2. Steady-state pressure diffusion in a 
centrifuge. The mixture in the diffusion cell tends 
to separate by virtue of the pressure gradient pro- 

in diffusion cell duced in the centrifuge. 

H. Brown, Phys. Rev., 58,661-662 (1940). 
K. Clusius and G. Dickel, Z. Phys. Chem., B44,397450,451473 (1939). 
K. E. Grew and T. L. Ibbs, Thermal Difision in Gases, Cambridge University Press (1952); K. E. Grew, 

in Transport Phenomena in Fluids ( H .  J. M .  Hanley, ed.), Marcel Dekker, New York (1969), Chapter 10. 
R. B. Bird, Advances in Chemical Engineering, 1,155-239 (1956), 9.D.2; errata, 2,325 (1958). 
S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, 3rd edition, 

Cambridge University Press (19701, pp. 268-271. 
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L, is short with respect to the radius of rotation R,, and the solution density may be consid- 
ered a function of composition only. Determine the distribution of the two components at 
steady state in terms of their partial molar volumes and the pressure gradient. The latter is 
obtained from the equation of motion as 

For simplicity, we assume that the partial molar volumes and the activity coefficients are con- 
stant over the range of conditions existing in the cell. 

At steady state j, = 0, and the relevant terms in Eq. 24.2-10 give for species A 

Inserting the appropriate expression for the pressure gradient and then multiplying by 
(V5/xA)dz, we get for species A 

Then we write a similar equation for species B, which is 

Subtracting Eq. 24.2-18 from Eq. 24.2-17 we get 

We now integrate this equation from z = 0 to some arbitrary value of z, taking account of the 
fact that the mole fractions of A and B at z = 0 are XAO and xBU, respectively. This gives 

If g, is treated as constant over the range of integration, then we get 

Then we take the exponential of both sides to find 

This describes the steady-state concentration distribution for a binary system in a constant 
centrifugal force field. Note that, since this result contains no transport coefficients at all, the 
same result can be obtained by an equilibrium thermodynamics analysis." However, if one 
wishes to analyze the time-dependent behavior of a centrifugation, then the diffusivity for the 
mixing A-B will appear in the result, and the problem cannot be solved by equilibrium 
thermodynamics. 

l o  E. A. Guggenheim, Thermodynamics, North-Holland, Amsterdam (1950), pp. 356-360. 
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524.3 CONCENTRATION DIFFUSION AND DRIVING FORCES 

In Chapter 17 we wrote Fick's first law by stating that the mass (or molar) flux is propor- 
tional to the gradient of the mass (or mole) fraction, as summarized in Table 17.8-2. 

On the other hand, in Eq. 24.2-10 it appears that the thermodynamics of irreversible 
processes dictates using the activity gradient as the driving force for concentration diffu- 
sion. In this section we show that either the activity gradient or the mass (or mole) frac- 
tion gradient driving force may be used, but that each choice requires a different 
diffusivity. These two diffusivities are related, and we illustrate this for a binary mixture. 

When we drop the pressure-, thermal-, and forced-diffusion terms from Eq. 24.2-10, 
we get 

This may be rewritten by making use of the fact that the activity coefficient is a function 
of xA to obtain 

d l n  UA 
J; = -cgAB(-) d In XA T,P vxA 

The activity may be written as the product of the activity coefficient and the mole frac- 
tion (a, = yAxA) SO that 

If the mixture is "ideal," then the activity coefficient is equal to unity, Eq. 24.3-3 becomes 
the same as Eq. (B) of Table 17.8-2, and BA, = 9,,. 

If the mixture is "nonideal," one can express the binary diffusivity 9AB as 

then Eq. 24.3-2 and 3 become 

which is one of the forms of Fick's law (see Eq. (B) of Table 17.8-2). In order to measure 
B,,, one has to have measurements of the activity as a function of concentration, and for 
this reason BAB has not been popular. 

a: Toluene (A) - Benzene (B) 
cn b: Toluene (A) - Carbon tetrachloride ( B )  
Y . + 
G c: Decane (A)  - Hexadecane ( B )  
1 rn 

0.0 1 I I I I I I I I I 

0.0 0.2 0.4 0.6 0.8 1 .O 
Mole fraction xA 

Fig. 24.3-1. Diffusivity in ideal liquid mixtures at 
25°C [P. W. M. Rutten, Diffusion in Liquids, Delft Uni- 
versity Press (1992), p. 311. 

Mole fraction of acetone 

Fig. 24.3-2. Diffusivity in a nonideal liquid mixture 
(acetone-chloroform (at 25°C) [P. W. M. Rutten, Dif- 
firsion in Liquids, Delft University Press (1992), p. 321. 
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Fig. 24.3-3. Effect of activity on the product of viscosity and 

1 .0 diffusivity for liquid mixtures of chloroform and diethyl 
0 1.0 ether [R. E. Powell, W. E. Roseveare, and H. Eyring, Ind. 

Mole fraction ether Eng. Chem., 33,430435 (194111. 

For ideal mixtures ?hAB and GAB are identical, and are nearly linear functions of the 
mole fraction as shown in Fig. 24.3-1. For nonideal mixtures 9 A B  and RB are different 
nonlinear functions of the mole fraction; an example is shown in Fig. 24.3-2. However, 
the product pGAB has been found for some nonideal mixtures to be very nearly linear in 
the mole fraction, whereas /&JAB is not (see Fig. 24.3-3). There is no compelling reason to 
prefer one diffusivity over the other. Most of the diffusivities reported in the literature 
are and not BAB. 

924.4 APPLICATIONS OF THE GENERALIZED 
MAXWELL-STEFAN EQUATIONS 

The generalized Maxwell-Stefan equations were given in Eq. 24.2-4 in terms of the diffu- 
sional driving forces d,, and the expression for d, was given in Eq. 24.1-8. When these 
are combined we get the Maxwell-Stefan equations in terms of the activity gradient, the 
pressure gradient, and the external forces acting on the various species, given (Eqs. 24.2- 
8 or 9): 

X,Xfi 
- d, = - (v, - vp) + thermal diffusion terms 

n=1 g o o  

The thermal diffusion terms have not been displayed here, since they will not be needed 
in this section. The symbols m,, = c N l / ,  and w, designate, respectively, the volume frac- 
tion and mass fraction of species a. As explained in SS24.1 and 2, several auxiliary rela- 
tions have to be kept in mind: 

The first of these relations follows from the definition of the d,, the second is a conse- 
quence of the Onsager reciprocal relations, and the third is needed because of the intro- 
duction of an especially designated species y. The choice as to which species is 
designated as y is arbitrary; often setting y equal to a is convenient. The choice depends 
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on the nature of the system under study, and this point will be illustrated in the exam- 
ples that follow. 

In all previous chapters, the only external force that has been considered has been 
the gravitational force. In this section we set the external force per unit mass g,  equal to a 
sum of forces 

Here g is the gravitational acceleration, z, is the elementary charge on species a (for ex- 
ample, -1 for the chloride ion C1-), F = 96485 abs.-coulombs/g-equivalent is the Fara- 
day constant, 4 is the electrostatic potential, and the subscript m on the Kronecker delta 
S,, refers to any mechanically restrained matrix, such as a permselective membrane. 

In sum, for solving multicomponent diffusion problems in isothermal systems, we 
now have N mass-flux equations (of which only N - 1 are independent), the species 
equations of continuity, and the equation of motion. This set of equations has proven to 
be useful for solving wide classes of mass transfer problems, and we discuss some of 
these in the following examples. 

Of course, in order to solve multicomponent diffusion problems one needs the 
Maxwell-Stefan diffusivities Bmp that occur in Eq. 24.4-1. Very few measurements have 
been made of these quantities, which require the simultaneous measurement of the ac- 
tivity as a function of concentration. Among the few examples of such measurements are 
those made by ~utten. '  

EXAMPLE 24.4-1 

Centrifugation of 
Proteins 

Protein molecules are large enough that they can be concentrated by centrifugation against 
the dispersive tendencies of Brownian motion, and this process has proven useful for molecu- 
lar weight determination as well as for small-scale preparative separations. Show how the be- 
havior of protein molecules in a centrifugal field can be predicted, and the kind of 
information that can be obtained from their behavior in a centrifuge tube (see Fig. 24.4-1). As 
we shall see in Example 24.4-3, we may treat the protein and its attendant counter-ions as a 
single large electrically neutral molecule. Choose the protein as species y and begin with the 
mass-flux equation for it. The small ionic species needed for protein stability play no signifi- 
cant role in this development and can be ignored. 

SOLUTION We consider here a pseudobinary system of a single globular protein P in a solvent W, which 
is primarily water, and initially we restrict the discussion to a dilute solution rotating in a 
tube perpendicular to the axis of rotation (Fig. 24.,4-la) at a constant angular velocity R. For 
such a system x, = 1 and the solute flow field with respect to stationary axes will be that of 
rigid-body rotation-namely, v, = 6,Ru. 

f Initial protein band 

2 4- 

2 
y.. 
0 

.II 
2 

Fig. 24.4-1. Ultracentrifugation of proteins, with two possi- 
I 

ble orientations of the centrifuge tube. 

Ph. W. M. Rutten, Diffusion in Liquids, Delft University Press, Delft, The Netherlands (1992). 
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Then the radial diffusion of the protein is described by the r-component of the simplified 
Maxwell-Stefan equation 

We see immediately that the protein will move in the positive radial direction if its mass frac- 
tion is greater than its volume fraction-that is, if it is denser than the solvent. If Eq. 24.4-6 is 
multiplied through by cB,,, we get 

in which the usual pseudobinary Fickian diffusivity 9,+,, is introduced. The diffusivity in Eq. 
24.4-7 can be estimated from Eq. 17.4-3 as 

in which Rp is the radius of a sphere having the volume of the protein molecule, ,uw is the sol- 
vent (water) viscosity, and fp is a hydrodynamic shape factor (that is, a correction factor to ac- 
count for the nonsphericity of the protein molecule). 

From the equation of motion for the solution, we get the pressure gradient in terms of the 
angular velocity of the ultracentrifuge, thus 

The term pf12r will not vary significantly over the length of the centrifugation tube, which is 
small compared with the radius of the ultracentrifuge rotor. 

Now we want to get an appreciation of the molecular weight dependence of the pressure- 
gradient term in Eq. 24.4-7. To do that we introduce the following approximations, valid in the 
dilute solution limit, common in protein processing: 

Here kp = V , / M ~  is the partial specific volume of the protein. The p?rtial specific volume of 
the solvent may be taken as 1 ml/g without significant error, and V ,  for globular proteins 
is usually in the neighborhood of 0.75 ml/g. We see then that the decisive factor in permit- 
ting effective centrifugation is the ratio of molecular weights rather than the specific vol- 
umes, as the latter are not greatly different for the two species. 

When Eqs. 24.4-7,8,10, and 11 are combined, the protein flux takes the form 

which somewhat resembles Fick's first law. Here, the "migration velocity" for the protein is 

Note that the radial molar flux of water greatly exceeds that of protein, and that the convec- 
tive protein flux cpv,,,,,, is very small. 
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Next we substitute the molar flux of Eq. 24.4-11 into the species equation of continuity 

or, for constant 9,, 

which is the equation we want to solve for several specific situations. 

(a) Transient Behavior. We first consider migration of a thin protein band under conditions 
where fractional changes in r are small and no significant amount of protein reaches the far 
end of the tube. Then we can introduce a new independent variable u = r - v,,,t that enables 
us to transform cp(r, t )  into cp(u, t). The diffusion equation becomes 

along with the initial condition 

where C is a constant that tells how much protein is contained in the band, and the boundary 
conditions 

Equation 24.4-17 is a long-tube approximation widely used in this application. 
Equations 24.4-15 to 17 describe a Gaussian distribution of the protein about its center 

of mass, resulting from diffusion and moving with the velocity vmig,. The migration velocity 
can be measured, and this measurement yields a product of protein diffusivity and molecu- 
lar weight. The broadness of the band in turn provides an independent measure of the dif- 
fusivity, and thus, combined with knowledge of the migration velocity and specific 
volumes, the molecular weight.2 If the molecular weight is known, for example, from mass 
spectrometry, the shape factor f, can be determined. This, in turn, is a useful measure of 
protein shape. 

(b) Steady Polarization. We next consider long-time behavior when the protein has been 
concentrated at the end of the tube and has attained a steady state. Under these circum- 
stances, there is no radial motion and Eqs. 24.4-6,9, and 10 give 

The concentration gradient may be measured, and all other quantities except for Mp may be 
determined independently of the centrifugation process. Protein activity coefficients may, for 
example, be obtained from osmotic pressure data. Therefore the molecular weight of the pro- 
tein may be unambiguously determined. Only mass spectrometry can provide better accu- 
racy, and it is not suitable for all proteins. 

(c) Preparative Operation. The speed of centrifugal separation can be greatly increased 
by tilting the tube as in Fig. 24.4-1b. Here the protein is forced toward the outer boundary 
of the tube by centrifugal action, and the resulting density gradient causes an axial bulk 

R. J. Silbey and R. A. Alberty, Physical Chemisty, 3rd edition, Wiley, New York (2001), p. 801. 
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transport by free convection, a process similar to that used for larger particles in disk 
 centrifuge^.^ 

Show that the results of the last example are equivalent to treating the proteins as small hy- 
drodynamic particles. 

Proteins as 
Hydrodynamic SOLUTION 
Particles 

If, in the previous example, we had not used the simplifications in Eqs. 24.4-9 and 10, we 
would have obtained for the migration velocity in steady-state operation 

If now we restrict ourselves to dilute solutions so that the activity coefficient is very close to 
unity, we can set Bp,, to 9,, and use Eq. 24.4-8 for the diffusivity and Eq. 24.4-9 for the pres- 
sure gradient. Then the migration velocity becomes 

Next we recognize that L12r = gey (an effective body force per unit mass resulting from the 
centrifugal field) and that K /  R = N (Avogadro's number), and we get 

where we have used the approximation w,  = pp/(pp + pw) = pp/pw for a dilute protein_solu- 
tion. Next we set kp = ($TR$?, the volume per mole of protein, and pp/cP = ($.rr~;)(p(~))N, the 
mass per mole of protein; here p'P' is the pure protein density. When these quantities are in- 
serted into Eq. 24.4-21 we get 

Comparison with Eq. 2.6-17 shows that the migration velocity for a nonspherical protein in a 
centrifugal field is the same as the terminal velocity for a sphere in a corresponding gravita- 
tionaI field (divided by the factor f p  to account for deviation from sphericity). 

One may also start with an equation of motion for a particle P initially at rest in a suspen- 
sion sufficiently dilute that particle-particle interactions are negligible. Then the particle ve- 
locity relative to a large body of quiescent fluid F is 

Here n, is the number concentration of particles, V ,  and R, are the particle volume and ra- 
dius, and the subscript m refers to the conditions "far" from the particle (that is, outside the 
hydrodynamic boundary layer). Equation 24.4-23 is the equation of motion with an added 
term for Brownian motion, which is important, for example, in aerosol c~llection.~ The sym- 
bol F,, stands for the electromagnetic force per particle. 

See, for example, Perry's Chemical Engineers' Handbook, McGraw-Hill, New York, 7th edition (1997), 
p. 18-113. 

See L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford (1987), pp. 90-91, 
Problem 7. 
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EXAMPLE 24.4-3 

Diffusion of Salts in an 
Aqueous Solution 

SOLUTION 

The diffusivity 9,, in this example corresponds to 9,, of Example 24.4-1, and it may be 
seen that there is a very close analogy between the molecular and particulate descriptions. 
There are, in fact, only three significant differences: 

1. The thermodynamic activity coefficient is considered to be unity for the particle. 

2. The instantaneous acceleration of the molecule is neglected. 

3. The effects of past history (that is, the Basset force given by the integral in Eq. 24.4-23) 
are neglected for the molecule. 

In practice, activity coefficients tend to approach unity in dilute solutions, and the Basset 
forces tend to be small even for large particles. However, the instantaneous effects of accelera- 
tion can be appreciable for particles greater than about one micron in diameter. 

Consider now for simplicity a 1-1 electrolyte M'X-, such as sodium chloride, diffusing in 
a system such as that shown in Fig. 24.4-2. Here well-mixed reservoirs at two different salt 
concentrations are joined by a constriction in which diffusional transfer between the two 
reservoirs takes place. The potentiometer shown in the figure measures the potential dif- 
ference A+ between the electrodes, without drawing any current from the system. Show 
how the generalized Maxwell-Stefan equations can be used to describe the diffusional 
behavior. 

The salt ( S )  is considered to be fully dissociated, so that the system is being regarded as 
ternary, with Mi, Xp, and water as the three species. We neglect the pressure diffusion term: 
the reference pressure cRT in Eq. 24.4-1 is approximately 1350 atmospheres under normal am- 
bient conditions, and the pressure differences occurring in systems such as that pictured are 
of negligible importance. 

The assumption of electroneutrality and no current flow provide the following 
constraints: 

XM- = xx = xS = 1 xw (24.4-24) 

NM+ = Nx = Ns (24.4-25) 

Here the mole fractions of the cation M ' and the anion X are equal to that of the salt S. 

I 
I 
I 
I 
I 
I 
I 
I 

- A  

Fig. 24.4-2. Salt diffusion and diffu- 
Diffusion path siin potentials. The symbol G denotes 

(arbitrary geometry and flow conditions) a galvanometer. 
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We may then select species y in Eq. 24.4-1 to be species a, and use Eqs. 24.4-5 and 24 to 
obtain for the cation and the anion 

Next we use the expression for g, in Eq. 24.4-5, as well as Eqs. 24.4-24 and 25, to get: 

Note that the ion-ion diffusivity does not appear, because there is no velocity difference be- 
tween the two ions when there is no current. 

The electrostatic potential 4 may be eliminated between these two equations by adding 
them together. The resulting flux expression 

may be put into the form of Fick's law 

by introducing the definition of the concentration-based diffusivity 

and, since as = aM+ax = and y2 = G, 

which is the mean ionic activity coefficient. 
The ion-water diffusivities may in turn be estimated from limiting equivalent conduc- 

tances in the form 

A,, = lim z,B, wF2 
x,-o RT 

As a practical matter, diffusivities vary much less with concentration than do conductances, 
and salt diffusivities can be estimated with fair accuracy up to about IN  concentrations from 
limiting conductances. A basic reason for this is that ion-ion diffusional interactions, which 
always occur when a current flows, become appreciable at even modest salt concentrations 
(see Problem 24C.3). 

Eq. 24.4-32 shows that the slower ion tends to dominate in determining the salt diffusiv- 
ity, and this fact is the justification for treating the protein as a large neutral molecule in Ex- 
ample 24.4-1. Soluble proteins are nearly always charged, but they and their attendant 
counter-ions behave like a neutral salt, and its diffusivity is dominated by the protein moiety, 
which in turn acts very much like a hydrodynamic particle. 

In a concentration gradient, the faster of the two ions tends to get ahead of the slower. 
However, this results in the formation of a potential gradient tending to speed the slower ion 
and slow the faster one. It can be shown (see Problem 24B.2) that this so-called junction poten- 
tial is described by 

However, these potentials cannot be measured directly, as the electrodes needed to complete 
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However, these potentials cannot be measured directly, as the electrodes needed to complete 
the electric circuit affect the measurement (see Problem 24C.3). One can obtain an approxi- 
mate value through the use of potassium chloride salt  bridge^.^ 

This elementary example is only a very bare introduction to a complex and impor- 
tant subject. The interested reader is referred to the large literature on electr~chemistry.~ 

EXAMPLE 24.4-4 

Departures from Local 
ElectroneutraZity: 
~lectro-Osmosis6 

It is already clear from the preceding discussion of diffusion potential that local departures 
from electroneutrality do exist in diffusing electrolytes, and they are not always negligible. To 
examine this situation, consider a long tube of circular cross section containing an electrolyte, 
at least one component of which is adsorbed on the tube wall. This adsorption results in a 
fixed surface charge and a region of net charge, the diffuse double layer, in the solution adjacent 
to the tube wall. This net charge will produce an electric field within the tube that varies with 
radial, but not axial, position. If a potential difference is applied across the ends of the tube, 
the result will be a fluid flow, known as electro-osmosis. Conversely, if a hydrodynamic pres- 
sure is used to produce a flow, it will result in a potential difference, known as a streaming po- 
tential, developing across the ends of the tube. These phenomena are representative of a class 
known as electrokinetic phenomena. Develop an expression for the electro-osmotic flow de- 
veloped in the absence of an axial pressure gradient. 

SOLUTION Our first problem is now to develop an expression for the electrostatic potential distribution, 
after which we can calculate the electro-osmotic flow. 

The starting point for the electrostatic potential calculation is the Poisson equation 

Here p, is the electrical charge density 

and E is the dielectric permittivity of the solution. For the problem at hand, Eq. 24.4-36 re- 
duces to 

Now, following Newman6 we assume that the concentration of charge follows a Boltzmann 
distribution 

and use a truncated Taylor expansion, known as the Debye-Hiickel approximation, so that 
we can obtain an explicit solution. Here the subscript w can be considered to indicate the cen- 
terline of the tube, because, as we shall see, the charge density drops off very rapidly with the 
distance from the tube wall. For the same reason we may neglect the wall curvature and as- 
sume that the net charge at the centerline is zero so that 

d2'$ - 4 F2 -1/2 

where h = 
dy2 h2 

R. A. Robinson and R. H. Stokes, Electrolyte Solutions, revised edition, Butterworth, London (19651, 
p. 571. This venerable reference contains a great detail of useful data. 

See, for example, J. S. Newman, Electrochemical Systems, 2nd edition, Prentice-Hall, Englewood 
Cliffs, N.J. (1991). Example 24.4-4 is taken from p. 215. 
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Here y = R - r is the distance measured into the fluid from the wall, and h is the Debye length, 
which tends to be very small. Thus for a 1-1 electrolyte 

where the units of Debye length h and the salt concentration cs are Angstroms and molarity, 
respectively. Thus for a 0.1 N solution, the Debye length is only about 10 A. As a result, de- 
partures from neutrality can usually be neglected in macroscopic systems. Similarly, concen- 
tration imbalances are very small for junction potentials, which are typically no more than 
tens of millivolts (see also Problem 24C.4). 

We now need boundary conditions to integrate Eq. 24.4-38, and the first is just the as- 
sumption of electroneutrality at large distances from the wall: 

Y B.C. 1: AS - + a, 4 - 0  (24.4-43) 
h 

The second is obtained from Gauss's law (see ~ewman' ,  p. 75), assuming there is no potential 
gradient within the solid surface itself, 

B.C. 2: At y = 0, 

where q, is the surface charge per unit area. Integration of Eq. 24.4-40 then gives 

Newman6 gives a more rigorous development that allows for surface curvature, but for any 
tube of radius greater than tens of nanometers, this is really not necessary. 

We are now ready to put these results into the equation of motion, and we shall here as- 
sume steady laminar flow, so that 

in which the axial electric field strength is 

Neglecting the pressure gradient and using Eq. 24.4-36 to eliminate p,, we find 

Now, if curvature is again neglected, this equation may be integrated to give 

The quantity in the first set of parentheses may be considered to be an experimentally de- 
termined property of the system, and exp(-y/h) is negligible over the bulk of the tube 
cross section for essentially all tubes. Thus the velocity is uniform except very near the 
wall. 

Such electro-osmotic flows are being widely used in microscopic flow reactors and sepa- 
rators-for example, in diagnostic devices-and they offer the advantage of negligible con- 
vective dispersion. Note that the velocity is effectively independent of the tube radius. Thus 
electro-osmosis especially useful in tubes of small radii, where large pressure gradients 
would otherwise be required to produce the same flow velocity. 
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EXAMPLE 24.4-5 

Additional Mass 
Transfer Driving Forces 

We have now covered all of the mass transfer mechanisms normally considered in a nonequi- 
librium thermodynamic framework, but there are other possibilities that have proven signifi- 
cant. Here we consider three: the force on a charged particle moving across a magnetic field, 
and the forces of electrical or magnetic induction. These contain nonlinear terms-that is, 
products of species velocities and force fields-and therefore they are, strictly speaking, out- 
side the scope of irreversible thermodynamics. However, it has been found permissible to 
add them to the body forces appearing in Eq. 24.4-1. Develop a specific form for the resulting 
equation, and show how it can be used to describe mass transfer processes affected by one or 
more of these additional forces. 

SOLUTION We begin by defining an extended driving force for mass transfer, d,,,, to include these addi- 
tional forces: 

Here B is the magnetic induction, E = VI$ the electric field, Ti' the electric susceptibility, and 
l7,"""he magnefic susceptibility. 

The origin of the terms containing [v, X B] and [E VEI in Eq. 24.4-50 is in the Lorentz 
relation 

where qo is the electric charge. This is shown explicitly in Eq. 24.4-51 for a charged particle 
moving through a magnetic field (see Problem 24B.1), but only indirectly for the electric in- 
duction [E . VE], which is based on the interaction of a nonuniform field with an electric dipole. 

To show the origin of the [E . VEI term in Eq. 24.4-50, consider, for example, the one- 
dimensional situation pictured in Fig. 24.4-3. An electric field will tend to align dipoles that 
are normally randomized by Brownian motion, and, if the field is nonuniform, there will be a 
net force on an aligned dipole of magnitude 

where qo is the magnitude of the charge at either end of the dipole and 1 is the distance be- 
tween the two centers of charge. 

In some cases-for example, the zwitterion form of amino acids-one can determine 
both q0 and I from molecular theory. However, for particles and most molecules, one finds 
only induced dipoles: a partial charge separation resulting from the presence of the field. Under 
the conditions of interest here, only a small fraction of intrinsic dipoles is aligned with the 
field, and both the fractional alignment of these and the strength of the induced dipoles are 

Unaligned dipoles 
(in absence of an electric field) 

W 
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z = 0 Fig. 24.4-3. Origin of the dielectro- 
Position, z phoretic force given in Eq. 24.4-52. 
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normally assumed to be proportional to the field strength. All these factors are collected into 
what is usually an experimentally determined quantity, the electric susceptibility. The origin of 
the magnetophoresis term is analogous. We now turn to brief discussions of applications of 
these new separation mechanisms. 

The behavior of ions moving across a magnetic field is the basis of classic mass spectrom- 
etry, although time-of-flight mass spectrometers are also in widespread use. Both types of 
spectrometers are highly developed and find extensive applications for analyzing mixtures 
from simple inorganic gases to complex nonvolatile biological molecules such as proteins. In 
fact, where applicable, they provide the most accurate means available for determining pro- 
tein molecular weight, often within one dalton for a molecular weight typically of the order of 
tens of thousands. 

Both dielectro- and magnetophoresis have long been used on a large process scale for re- 
moving small particles suspended in fluids. Nonuniform fields are achieved in the case of di- 
electrophoresis by using a packing of small dielectric particles, such as glass beads, between 
electrodes (see, for example, Problem 24B.1). Because particles always move toward the 
stronger field, one can use alternating current, usually at some tens of kilovolts, and thus 
avoid electrode reactions. Current flows are extremely small and can normally be neglected. 
In magnetophoresis, a nonuniform field is achieved by placing ferromagnetic meshes be- 
tween poles of an electromagnet, which can of course work only with paramagnetic or ferro- 
magnetic materials. A classic example is the removal of color bodies consisting of magnetic 
iron oxides to whiten clay. 

New uses for dielectrophoresis have been developing very rapidly in the fields of biol- 
~ g y , ~  advanced materials: including nanotechnology, and environmental monitoring? They 
include classification, quantitative analysis, and manipulation, including the formation of or- 
dered arrays. 

Many of these applications require major extensions of Eq. 24.4-50 to include quadrupo- 
lar and even octopolar forces.1° Moreover, there are strong interactions between electrical 
forces and hydrodynamics, and both device and particle shape can have profound effects." 

524.5 MASS TRANSFER ACROSS SELECTIVELY 
PERMEABLE MEMBRANES 

Membranes may be viewed physically as thin sheets, usually separating two bulk phases 
and controlling mass transfer between them. In addition, the membrane is typically kept 
stationary against external pressure gradients and internal viscous drag by some me- 
chanical constraint, typically a wire mesh or equivalent structure. Membranes consist of 

C. Polk, IEEE Transactions on Plasma Science, 28,6-14 (2000); J. Suehiro et al., 1. Physics D: Applied 
Physics, 32,2814-2320 (1999); J. P. H. Bert, R. Pethig, and M. S. Talary, Trans. Inst. Meas. Control, 20,82-91 
(1998); A. P. Brown, W. B. Betts, A. B. Harrison, and J. G. O'Neill, Biosensors and Bioelectronics, 14,341-351 
(1999); 0. D. Velev and E. W. Kaler, Langmuir, 15,3693-3698 (1999); T. Yamamoto, et al., Conference 
Record, IAS Annual Meeting (IEEE Industry Applications Society), 3,1933-1940 (1998); M. S. Talary, et al., 
Med. and Bio. Eng. and Computing, 33,235-237 (1995); H.  Morgan and N. G. Green, J .  Electrostafics, 42, 
279-293 (1997). 

L. Cui and H. Morgan, J .  Micromech. Microeng., 10,72-79 (2000); M .  Hase et al., Proc. Intl. Soc. 
Optical Eng., 3673,133-140 (1999); C. A. Randall, IEEE Intl. Symp. on Applications of Ferroelectrics, 
Piscataway, N.J. (1996). 

P, Baron, ASTM Special Technical Publication, 147-155 (1999); R. J. Han, 0. R. Moss, and B. A. Wong, 
Aerosol Sci. Tech., 241-258 (1994). 

'' C. Reichle et al., J. Phys. D: Appl. Phys., 32,2128-2135 (1999); A. Ramos et al., J .  Electrostatics, 47, 
71-81 (1999); M Washizu and T. B. Jones, J .  Electrostatics, 33,187-198 (1994); 8. Khusid and A. Acrivos, 
Phys. Rev. E, 54,5428-5435 (1996). 

" S. Kim and S. J. Karrila, Microhydrodynamics, Butterworth-Heinemann, Boston (1 991); 
D. W. Howard, E. N. Lightfoot, and J. 0. Hirschfelder, AIChE Journal, 22,794-798 (1976). 
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an insoluble, selectively permeable matrix rn and one or more mobile permeating species 
a, Pf . . . . Mathematically they are defined by three constraints: 

1. Negligible curvature 

where 6 is the membrane thickness, and R,,,, is the membrane surface radius of 
curvature. It follows that mass transport is unidirectional and perpendicular to 
the membrane surface. 

2. Immobility of the matrix 

where v, is the velocity of the matrix, which serves as the coordinate reference. 

3. Pseudosteady behavior 

where a is any contained species, including the matrix m. This really means that 
the diffusional response times within the membrane are short compared to those 
in the adjacent solutions. 

We now wish to show how these constraints can be used to specialize the Maxwell- 
Stefan equations and to produce compact but reliable descriptions of transport in 
membranes. 

We begin by recognizing that the matrix must be considered to be one of the diffus- 
ing species, and we choose to use the Maxwell-Stefan equations only for the mobile 
species. We may then use Eqs. 24.4-1 and 5 and write for a mixture of N mobile species: 

Note that cr has been chosen as the reference species in the equation for each a and that the 
force holding the membrane stationary-that is, the last term in Eq. 24.4-5-has resulted in 
the elimination of the mass-fraction term in the expression for pressure diffusion.' 

We next note that, from a thermodynamic point of view, the number of components 
is the number of independent mobile species in the solutions bathing the membrane, be- 
cause it is the external solution that determines the state of the membrane at equilibrium. 
We also recognize that, for most situations, the effective molecular weight of the matrix 
cannot be determined. We thus define the internal system as including only the mobile 
species and define mole fractions of these species to sum to unity. However, since the in- 
teraction of each species with the membrane is quite significant, we also define BLM by 

Equation 24.5-5 completes the specialization of the Maxwell-Stefan equations for mem- 
brane transport, but we still have to select a generally applicable set of boundary conditions. 

These conditions are obtained by requiring the total "potential" of each species to be 
continuous across the boundary 

E. M. Scattergood and E. N. Lightfoot, Trans. Faraday Soc., 64,1135-1146 (1968). 
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Here the subscripts rn and e refer to conditions within the membrane and in the external 
solution, respectively. The activity a, is to be calculated at the composition of the mem- 
brane phase but at the pressure of the external solution, and 

In practice, the solutes are normally considered incompressible and v, to be constant 
across the interface. 

Often conditions inside the membrane are very difficult, or even impossible, to de- 
termine, and Eq. 24.5-6 is primarily useful under these circumstances to obtain a qualita- 
tive understanding of membrane behavior. Partly for this reason complete descriptions 
of membrane transport are rare (see, however, Scattergood and Lightfoot'). Highly sim- 
plified, but often directly useful, introductions to membrane transport are available in a 
variety of One venerable approximation, found especially useful by biolo- 
gists, is that of Kedem and Katchalsky." 

However, rapid progress is being made in obtaining fundamental data, and much of 
this is reported in the Journal of Membrane Science. One important area is that of micro- 
porous  membrane^.^ One can also expect advances in modeling behavior. It has long been 
known7 that the generalized Lorentz reciprocal theorem for creeping flows8 provides a 
sound basis for extending hydrodynamic diffusion theory of 517.4 to multicomponent 
diffusion in microporous membranes. Recently developed computational techniques9 
should make the necessary computations tractable enough to provide real predictive 
power. These techniques can also be used to develop self-assembling str~ctures,'~ which 
offer new possibilities for highly selective membranes. 

This field offers an extremely wide variety of membrane types and of mass transfer 
processes taking place in them. One can distinguish between biological" and synthetic12 
membranes, but there are very wide ranges of composition and behavior within each of 
these categories. Among the synthetic group there are "homogeneous" membranes, in 
which the matrix acts as a true solvent for permeating species, and "microporous" mem- 
branes, in which the permeating species are confined to matrix-free regions, as well as 
mixtures of the two types. These factors are important from a materials standpoint, but 
the formalisms needed to describe their transport behavior are much the same for all. 

E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 2nd edition, Cambridge University Press 
(1997), p. 580. 

W. M. Deen, Analysis of Transport Phenomena, Oxford University Press (1998), p. 597. 
J. D. Seader and E. J. Henley, Separation Process Principles, Wiley, New York (1998). 
0. Kedem and A. Katchalsky, Biochem. Biophys. Acta, 27,229 (1958). 
K. Kaneko, J. Membrane Sci., 96,5949 (1994); K. Sakai, J. Membrane Sci., 96,91-130 (1994); S. Nakao, 

J.  Membrane Sci., 96,181-165 (1994). 
E. N. Lightfoot, J. B. Bassingthwaighte, and E. F. Grabowski, Ann. Biomed. Eng., 4,78-90 (1976). 
J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Prentice-Hall(1965), Martinus 

Nijhoff (1983), p. 62, p. 85. 
S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth- 

Heinemann, Boston (1991). 
lo  I. Mustakis, S. C. Clear, P. F. Nealey, and S. Kim, ASME Fluids Engineering Division Summer 

Meeting, FEDSM, June 22-26 (1997). 
"B. Alberts et al., The Molecular Biology of the Cell, Garland, New York (19991, Chapters 10 and 11. 
l2 W. S. W. Ho and K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York (19921, 

p. 954; R. D. Noble and S. A. Stern, Membrane Separations Technology, Membrane Science and Technology 
Series, 2, Elsevier (Amsterdam), p. 718; R. van Reis and A. L. Zydney, "Protein Ultrafiltration" in 
Encyclopedia of Bioprocess Technology (M. C. Flickinger and S. W. Drew, eds.), Wiley, New York (1999), 
pp. 2197-2214; L. J. Zeman and A. L. Zydney, Microfiltration and Ultrafiltration, Marcel Dekker, New York 
(1996). 
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There are also a wide variety of process conditions in widespread use. Here we consider 
only a few examples to illustrate commonly encountered situations. 

EXAMPLE 24.5-1 

Concentration 
Diffusion Between 
Preexisting Bulk Phases 

Consider "solute" A diffusing through a membrane placed between binary solutions of solute 
A in solvent B under the influence of concentration gradients alone. This is a commonly encoun- 
tered situation, including dialysis, blood oxygenation, and many gas-separation systems.I3 
There are many variants, including facilitated d i f i s i o n  (see Problem 24C.8). Hemodialysis is a 
special case, where pressure differences are used to drive water across the membrane, but 
concentration diffusion of solutes is of primary interest from the present standpoint. Assume 
for the moment that the flux of solvent, NB, is already known. Develop an analog to Fick's 
first law for this system. 

SOLUTION We are primarily concerned here with solute A, and the Maxwell-Stefan equation for it takes 
the form 

This may be rearranged to give 

This is reminiscent of Fick's law, with the first term on the right corresponding to the Fickian 
diffusive flux and the second to the convective term. However, the effective diffusivity now 
contains a membrane contribution, and the convective term is now weighted by a ratio of dif- 
fusivities. This situation corresponds to the situation pictured in Fig. 24.5-1. The arrow point- 
ing to the right represents the diffusion relative to the solvent, modified by the interaction 
with the matrix, while the arrow pointing to the left represents the "drag" of the membrane, 
which tends to reduce the transport relative to the convection occurring in the absence of the 
membrane matrix-namely, xA(NA + NB). Note that, in general, there are mass transfer 
boundary layers on both sides of the membrane. 

There are several limiting situations of interest. If the membrane interacts only very 
weakly with the solute, B h  >> BAB. Then 

Diffusion relative to 
solvent, and interaction 
with membrane 

(dialysis processes) Fig. 24.5-1. Intramembrane 
mass transport. 

'%. J. Koros and G. K. Fleming, J. Membrane Sci., 83,l-80 (1993). 
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which is exactly Fick's law. However, it must be remembered that both molar concentration 
and diffusivity are those in the membrane phase. We next look at a limiting situation, where 

x*(NA + NB) << N* (24.5-1 1) 

and the distribution between membrane and solution is linear, so that 

= K ~ c ~ m  (25.5-12) 

where the subscripts e and m refer to the external solution and membrane phases, respec- 
tively, and KD is the distribution coefficient for the two phases. We may then write 

NA = P(c/.eO - cAe& (24.5-13) 

where 

is known as the membrane permeability, and 

D ~ , e f f  = (a;, + J1 + 

The subscripts AeO and refer to the solute concentrations at the "upstreamr' and "down- 
stream" sides of the membrane. 

EXAMPLE 24.5-2 

Ultrafiltration and 

Now consider the filtration processes, in which it is desired to remove a solvent selectively 
relative to a solute by pressure-driven flow across a solute-rejecting membrane. Applications 
include ultrafiltration and reverse osmosis, the former dealing with macromolecular and the 

Reverse Osmosis latter with small solutes.14 Microfiltration and nanofiltration are formally similar, but the par- 
ticulate nature of the entities being removed presents additional complications we do not 
wish to consider here.I2 Develop a framework for describing solvent flow rate and filtrate 
composition as functions of driving pressure. 

SOLUTION Inevitably some solute moves through the membrane along with the solvent, as indicated in 
Fig. 24.5-1, and it will now be necessary to consider the Maxwell-Stefan equations for both 
species. However, membrane filtration is a complex process requiring a great deal of informa- 
tion to obtain a complete a priori description, and we therefore begin with an overview of 
characteristic behavior using Fig. 24.5-2 as a point of departure. Here both the flow through 
the membrane and the composition of the filtrate are shown schematically as functions of the 

Transmembrane pressure drop 
Fig. 24.5-2. Ultrafiltration: flow 
and solute rejection. 

- -- 

l 4  R. J. Petersen, I. Membrane Sci., 83,81-150 (1993). 
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transmembrane pressure drop. First we note that the flow increases with pressure drop, 
slowly at first, but approaching a linear relation asymptotically, and the asymptote crosses 
the line of zero velocity at a finite pressure drop, The ratio of the filtrate solute concen- 
tration to the feed concentration drops with increasing pressure drop, from unity toward an 
asymptote,15 which is normally much lower than unity. Our main concern in this brief intro- 
duction is to explain this characteristic behavior in terms of key thermodynamic and trans- 
port behavior. 

This situation differs fundamentally from that just described, in that pressure diffusion 
now comes into play, and in that the downstream solution is produced by the transmem- 
brane mass transfer. Hence the downstream ratio of solute to solvent is the same as the ratio 
of the corresponding mass transfer rates. There is, therefore, no boundary layer on the down- 
stream side of the membrane, and it is an almost universal practice to use a composite struc- 
ture. Such composite membranes consist of a very thin selective layer on the upstream face, 
and a comparatively thick, highly porous, nonselective backing that provides mechanical 
strength. This backing can be ignored in the present example. 

We begin by focusing on the intramembrane behavior for which the Maxwell-Stefan 
equations, modified from Eq. 24.5-4, assume the forms 

Here the subscripts S and W refer to the partially rejected solute and solvent (usually water) 
respectively. The terms x , ~ ,  have been replaced by c,v,/c, to make the presence of the vol- 
ume fractions 

4, = c x  (24.5-18) 

explicit. In addition, the first term on the right has been rewritten as a reminder that the de- 
rivative represents the gradient of the partial molar free energy 

with composition, temperature, and pressure being held constant. 
We begin by examining flow behavior, and to do this we add Eqs. 24.5-16 and 17 to get a 

relation between species transport rates and intramembrane pressure gradient 

The subscript m on pressure is a reminder that we have so far calculated only the pressure 
drop inside the membrane. Here advantage has been taken of the Gibbs-Duhem equation 

and the fact that the volume fractions sum to unity. 
To obtain the directly measurable difference between upstream and downstream solu- 

tion pressures, we must go back to Eq. 24.5-6, which takes the form 

'%ctually there is a continuing, very slow drop of filtrate solute concentration even at very high 
pressure drops, presumably resulting from the compression of the membrane. However, we shall not 
attempt to deal with this small effect here. 
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Looking at the upstream side of the membrane, for example, Eq. 24.5-22 states that a finite 
pressure drop across the membrane interface is required to drive the solute against an in- 
crease in the thermodynamic activity. Then the measurable transmembrane pressure drop is 

where 6 is the membrane thickness, and 

where the subscripts 0 and 6 refer to the upstream and downstream sides of the membrane, 
respectively. The intramembrane osmotic pressures are seldom known, but they are substan- 
tially smaller than the corresponding solution values (see Problems 24C.7 and 8). At the pres- 
ent state of understanding, Eq. 24.5-24 explains why there is a finite intercept to the 
asymptotic flow behavior, and an elimination of the membrane contributions provides an 
upper limit to it. It also provides some insight into intramembrane behavior from experimen- 
tal observations, but not an a priori prediction of the intercept. 

Next we eliminate the pressure gradient from Eq. 24.5-16 with the aid of Eq. 24.5-23 

This expression can be integrated to obtain the solute concentration profile (see, for example, 
Problems 24C.7 and 8). In general the concentration profile shows an increasingly negative 
slope in the flow direction, and this feature becomes more pronounced as the flow rate 
through the membrane increases-that is, as the transmembrane pressure drop becomes 
larger. 

At very low flow rates, Ns and Nw are relatively small and diffusion is relatively fast. 
There is only a small drop in solute concentration across the membrane, and the result is the 
poor rejection seen for low pressure drops in Fig. 24.5-2. This behavior is suggested by the 
zero-flow concentration profile in Fig. 24.5-1. 

At very high flow rates, on the other hand, concentration gradients are large and diffu- 
sion is weak, except very close to the downstream boundary of the membrane, where a very 
large negative concentration gradient develops. Near the upstream boundary, the two mass- 
flux terms are large compared to their difference, and one may neglect concentration gradi- 
ents in calculating the mass-flux ratio: 

The bases of solute exclusion now become clear: 

1. Thermodynamic exclusion, defined by the ratio x s / x ,  

2. Frictional differentiation, defined by differences in the interaction terms with the 
- - 

membrane (Vs/Vw)(3kM/Bh,). 

Both effects are used in practice and are illustrated in the problems. 

Consider now membranes containing immobilized charges consisting of polyelectrolyte gels. 
Such gels contain repeated covalently bound ionic groups, as pictured in Fig. 24.5-3. The 

Charged Membranes membrane interior may then be viewed as a solution containing spatially bound fixed charges, 
and l b m ~ ~  ~xclusion'~ mobile counter-ions, invading electrolyte, and water. For simplicity assume that the fixed 

l6 H. Strathmann, "Electrodialysis," Section V in Membrane Handbook (W. W .  S. Ho and K. K. Sirkar, 
eds.), Van Nostrand Reinhold, New York (1992). 
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SOLUTION 

Fig. 24.5-3. A sulfonic acid based ion- 
exchange membrane. 

Membrane Molecular structure 

charges are anions, written as X-, and the counter-ions are cations, written as M'. The exter- 
nal solution is aqueous M+X-, and it provides the invading electrolyte M'X-. Show how the 
presence of fixed charges produces an exclusion of invading electrolyte. 

This system is dominated by the behavior at the membrane boundary, and we therefore return 
to Eq. 24.5-6, written for the water and for the salts S or M Y .  The expression for water is 

where the subscripts e and m refer to the external solution and the membrane, respectively. 
Since the intramembrane electrolyte concentration is always higher than the external, thus re- 
sulting in a lower internal chemical activity for water, the membrane interior is at a higher 
pressure than the external solution (see, for example, Problem 248.4). 

The corresponding equation for the salt S yields 

or 

It follows that 

- X ~ ' e X ~ - e  Y5e 
-- - = exp(% A n )  

X ~ - m X ~  In Y~wi 

and therefore that the concentration of salt in the membrane phase is less than that in the so- 
lution. This suppression of invading electrolyte by the presence of fixed charges is known as 
Donnan exclusion (see Problem 248.3). 

The preponderance of counter-ions, here M+, inside the membrane, tends to cause them 
to diffuse out to the external solution, whereas the co-ions, here X-, tend to diffuse into the 
membrane. The result is the development of an electrical potential difference between the 
membrane and external solution. This is normaIly estimated, by negIecting osmotic effects 
and assuming activity coefficients of unity, as 

Equations 24.5-27 to 30 also apply to the relations between solutions on opposite sides of a 
membrane containing a partiaIly excluded solute on one side, which now corresponds to the 
membrane phase of the above development. Equation 24.5-31 is often used for lack of knowl- 
edge of the neglected effects. 
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Thus Eq. 24.5-31 is particularly widely used by biologists to explain the origin of the 
ubiquitous potentials observed across biological membranes.'' However, the means by which 
biological membranes can produce and control ion selectivity are extremely sophisticated and 
are only beginning to be understood.17 

524.6 MASS TRANSPORT IN POROUS MEDIA 

Porous media are important in many mass transfer applications, some of which, such as 
catalysis1 have already been touched on in this text (§18.7), and they exhibit a very wide 
variety of morph~logies.~,~ Adsorptive processes, such as chromatography, usually take 
place in granular beds and the absorbent particles themselves are often porous solids. Sec- 
ondary recovery of crude petroleum typically involves mass transfer in porous rock, and 
freeze drying, or lyophilization, of foods and pharmaceuticals4 depends on the transport of 
water vapor through a porous layer of dried solids. Related transport processes occur 
throughout the large field of particle technology,5 and, as already indicated in S24.5, some 
membranes may be considered as microporous structures. Microporous structures abound 
in living organisms and contribute importantly to both water and solute distribution3 

Discussion of porous solids also brings us full circle, back to the discussions of mo- 
mentum transfer with which this text began. Many of the models used to describe mass 
transfer in porous media are hydrodynamic in origin, and sometimes the concepts of 
mass and momentum transfer become blurred. 

Predicting the transport of liquids and gases in porous media is a difficult and chal- 
lenging problem, and no completely satisfactory theory is available. Mass is transported 
in a porous medium by a variety of mechanisms: (i) by ordinary diffusion, described by 
the MaxwellStefan equations; (ii) by Knudsen diffusion; (iii) by viscous flow according 
to the Hagen-Poiseuille equation; (iv) by surface diffusion-that is, the creeping of ad- 
sorbed molecules along the surfaces of the pores; (v) by thermal transpiration, which is 
the thermal analog of viscous slip; and (vi) by thermal diffusion. In this discussion, we 
neglect the last three of these mechanisms. 

This problem has been attacked by many investigators: and summarized by othem7 
We give here the principal results of their work. Available models are based either on 

l7 B. Hill, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, Mass. (1992); 
F. M. Ashcroft, Ion Channels and Disease: Channelopathies, Academic Press, New York (1999); D. J. Aidley, 
The Physiology of Excitable Cells, Cambridge University Press (1998). 

(a) R. Aris, The Mathematical Tkeoy of Diffusion and Reaction in Permeable Catalysts, Vols. 1 and 2 Oxford 
University Press (1975); (b) 0 .  Levenspiel, Chemical Reaction Engineering, 3rd edition, Wiley, New York (1999). 

M. Sahimi, Flow and Transport in Porous Media and Fractured Rock, Verlagsgesellschaft, Weinheim, 
Germany (1995); V. StanPk, Fixed Bed Operations, Ellis Horwood, Chichester, England (1994). 

F. E. Curry, R. H. Adamson, Bing-Mei Fu, and S. Weinbaum, Bioengineering Conference (Sun River, 
Oregon), ASME, New York (1997). 

(a) L. Rey and J. C. May, "Freeze-Drying/Lyophilization of Pharmaceutical and Biological 
Products" in Drugs and the Pharmaceutical Sciences ( J .  Swarbrick, ed.), Marcel Dekker, New York (1999); 
(b) P. Sheehan and A. I. Liabis, Biotech. and Bioeng., 60,712-728 (1998). 

M. Rhodes, Introduction to Particle Technology, Wiley, New York (1998). 
J. Hoogschagen, J. Chem. Phys., 21,2096 (1953), Ind. Eng. Chem., 47,906-913 (1955); D. S. Scott 

and F. A. L. Dullien, AIChE Journal, 8,113-117 (1962); L. B. Rothfeld, AIChE Journal, 9,19-24 (1963); 
P. L. Silveston, AIChE Journal, 10,132-133 (1964); R. D. Gunn and C. J. King, AIChE Journal, 15,507-514 
(1969); C. Feng and W. E. Stewart, Ind. Eng. Chem. Fund., 12,143-147 (1973); C. F. Feng, V. V. Kostrov, 
and W. E. Stewart, Ind. Eng. Chem. Fund., 13,5-9 (1974). 

E. A. Mason and R. B. Evans, II1,J. Chem. Ed., 46,358-364 (1969); R. B. Evans 111, L. D. Love, and 
E. A. Mason, J. Chem. Ed., 46,423427 (1969); R. Jackson, Transport in Porous Catalysts, Elsevier, Amsterdam 
(1977); R. E. Cunningham and R. J. J. Williams, Diffusion in Gases and Porous Media, Plenum Press, New 
York (1980); Chapter 6 of this book gives a summary of the history of the subject of diffusion. 
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cylindrical channels or aggregates of spheroidal particles, and we shall review a few rep- 
resentative examples here. We shall also restrict the discussion to two limiting situations 
within the pores of the solid matrix: 

(i) Free-molecule flow of gases, in which the molecular diameters are short and mean 
free paths are long relative to the characteristic dimensions of the pores. Under 
these conditions, there is no significant interaction between the intrapore 
species. 

(ii) Continuum flow of gases or liquids, in which both the diameters and the spacing 
of the intrapore molecules are short compared to the pore dimensions. Here the 
intrapore fluid can be described by the generalized hydrodynamic theory,%nd 
the generalized Maxwell-Stefan equations for multicomponent diffusion can 
be used. 

There are also phenomena for gas transport, known as the slip-flow phenomena, in which 
the mean free paths are comparable to the pore dimensions: but we shall not discuss 
these here. 

Free-Molecule Transport 

Transport of rarefied gases is an example of Knudsen flow, already presented in Prob- 
lem 2B.9. For a long capillary tube of radius a the Knudsen formula takes the form 

Here pA is the partial pressure of species A in any mixture. Note that Eq. 24.6-1 states that 
the transport of any individual species under these limiting conditions is unaffected by 
the presence of others. Thus the total molar flow rate W A  in a tube is proportional to the 
cube of the tube radius and to the inverse square root of the molecular weight. This de- 
pendence on molecular weight is known as Graham's law. 

Equation 24.6-1 can be rewritten as 

which defines the "Knudsen diffusivity" DAK. However, this must be considered as a bi- 
nary diffusivity for species A relative to the porous medium that is not consistent with 
Fick's law, because the molar flux contains no convective term. As a result DAK is not a 
state property, containing as it does, the tube radius a. To allow for the tortuous nature 
of the channels in a porous medium and the limited cross-sectional area available for 
flow, the flux expression must be further modified by writing 

where 

D s  = (&/7)DAK 

and (NA)  is the molar flux based on the total cross section of the porous medium. In this 
expression 8 is the fractional void space in the porous material, and r is a tortuosity fac- 

E. N. Lightfoot, J. B. Bassingthwaighte, and E. F. Grabowski, Ann. Biomed. Eng., 4,78-90 (1976). 
R. Jackson, Transport in Porous Catalysts, Elsevier, Amsterdam (1977); R. E. Cunningham and 

R. J. J. Williams, Diffxsion in Gases and Porous Media, Plenum Press, New York (1980). 
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tor. Although models existla,'"for estimating the magnitude of T, it must normally be de- 
termined experimentally." 

As an alternative to Eq. 24.6-4 for the effective Knudsen diffusivity, one may treat the 
aggregate as a collection of large immobile spheres (or "giant gas molecules"), and use 
the Chapman-Enskog kinetic theory.'' Problem 24B.6 shows that this approach yields 
predictions very similar to those of Eq. 24.6-4. There is remarkable model insensitivity. 

EXAMPLE 24.6-1 

Knudsen Diffusion 

Two large well-stirred reservoirs, each of volume V, are joined by a short duct of cross- 
sectional area S and length L, filled with a porous solid as indicated in Figure 24.6-1. Initially 
reservoir 1 is filled with hydrogen at uniform pressure p, and reservoir 2 with nitrogen, also 
at p,. The entire system is maintained at a constant temperature. At time t = 0 a small valve in 
the duct is opened, and the two reservoirs are allowed to equilibrate with each other. Develop 
an expression for the total pressure in each reservoir as a function of time, assuming that the 
flow of each gas through the connecting duct follows Eq. 24.6-1, and that the ideal gas law 
holds throughout the system. 

SOLUTION We begin by assuming quasi-steady-state behavior in the duct so that, for either gas, the rate 
of transfer from reservoir 1 to reservoir 2 is given by 

where W,, is the molar rate of flow of species A (either nitrogen or hydrogen) and a is the ef- 
fective radius of the pores in the plug joining the two reservoirs. Now a macroscopic mass 
balance for reservoir 2 gives 

Now a mass balance over the whole system yields 

The initial conditions are that at time t = 0, 

These initial conditions complete the specification of the system behavior, and we see that the 
distributions of the two gases are independent of each other. 

For nitrogen we can define the dimensionless variables t,b = pN/po and 7 = (RTKN/V)t. 
Then we may write Eq. 24.6-7 for nitrogen in compartment 2 

with the initial condition $hN2(0) = 1. The solution to this problem is then 

lo W. E. Stewart and M. F. L. Johnson, 7. Catalysis, 4,248-252 (1965). 
" J. B. Butt, Reaction Kinetics and Reactor Design, 2nd edition, Marcel Dekker, New York (19991, 

p. 500, Table 7.4. 
l2 R. B. Evans 111, G. M. Watson, and E. A. Mason, 1. Chem. Phys., 35,2076-2083 (1961). 
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Connecting 
tube filled with 
a porous solid w Two interconnected 

reservoirs each 
with volume V 

0 1 2 3 4 
Dimensionless time, T 

Fig. 24.6-1. Knudsen flow. 

For hydrogen we note that KH = a~~ = 3.74K,. Hence the differential equation for hy- 
drogen is 

with the initial condition $,,(O) = 0. The solution to the differentia1 equation is then 

The results are plotted in Fig. 24.6-1. 
The ratio N A / N B  = -- of molar fluxes obtained here was first observed by Gra- 

ham13 in 1833 and rediscovered by ~ o o ~ s c h a ~ e n '  in 1953. Though derived here for Knudsen 
flow, this relation is valid also for isobaric diffusion well outside the Knudsen region. It has 
been derived from kinetic theory by several investigators and verified experimentally in 
tubes and porous media6,7,'3,14 up to very large ratios of passage width to mean free path. Two 
sets of confirmatory data are shown in Table 24.6-1. In both sets of e~~eriments, '~. '~ an appa- 
ratus similar to that in Fig. 24.6-1 was used, and various tests gases were used against air. The 
flux ratios N,,,/N,,, were initial values, when each reservoir contained only air or the test gas. 

Continuum Transport 

To date, fluid mechanical modeling of intrapore transport has been limited to binary so- 
lutions in which molecules of the minor constituent (solute) are large compared to those 
of the solvent. Models for this situation are based on hydrodynamic diffusion theory ex- 
tended to porous  structure^.^ Descriptions are obtained by solving the creeping flow 
equations of motion for spheres (representing the solute) through a continuum (repre- 
senting the solvent) in closed channels.15 Important effects include partial exclusion of 
solute at the channel entrance and selective interaction with the channel wall. Result to 
date are limited to single solutes, but the rapid development of computational tech- 
n i q u e ~ ' ~  should permit extension to more complex systems. Hydrodynamic diffusion 

'q. Graham, Phil. Mag., 2,175,269,351 (1833). Thomas Graham (1805-1869), son of a prosperous 
manufacturer, attended the University of Clasgow from 1819 to 1826; in 1837, he was named professor of 
chemistry, University College, London, became a Fellow of the Royal Society in 1834, and in the same 
year was named Master of the Mint. 

l4 E. A. Mason and B. Kronstadt, IMP-ARO(D)-12, University of Maryland, Institute for Molecular 
Physics, March 20,1967. 

l5 Z.-Y Yan, S. Weinbaum, and R. Pfeffer, J .  Fluid Mech., 162,415438 (1986). 
'' S. Kim and S. J. Karrila, Microhydvodynamics: Principles and Selected Applications, Butterworth- 

Heinemann, Boston (1991). 
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Table 24.6-1 Experimental Verification of Graham's Law 
IT. Graham, Phil. Mag., 2,175,269,351 (1833); E. A. Mason 
and B. Kronstadt, IMP-ARO(D)-12, University of Maryland, 
Institute for Molecular Physics, March 20,19671. 

Gas Grahama Mason and ~ronstadtl' \%) 

calculations can be used for microporous membranes, but only if there are no significant 
intermolecular forces between the solutes and the pore walls. 

Modeling viscous flow in these systems has already been discussed in 56.4, and it is 
common practice to describe such a flow, for the low Reynolds numbers of most interest 
here, by the Blake-Kozeny expression (Eq. 6.4-9) [see however Rhodes5 (Chapter 5), 
Sahimi2 (Chapter 6), Stanitk2 (Chapter 3) ] :  

Here v, is the superficial mass-average velocity. Note from the discussion of 519.2 that 
the velocity used here is the mass-average velocity of the fluid through the porous 
material. 

To obtain macroscopic descriptions we may use the generalized Maxwell-Stefan 
equations (Eq. 24.5-4), and we shall restrict ourselves here to concentration- and 
pressure-driven flow. Moreover, when the mobile species are small relative to pore di- 
mensions, the boundary conditions simplify to continuity of species concentration and 
pressure at the interface between the external and "intrapore" fluid. 

Simplify the Maxwell-Stefan equations for the diffusion of a binary dilute solution, of a large 
solute species A in a solvent B, through a macroporous medium M, a matrix with pores large 

Transport *om a compared to the diameters of both mobile species, but small enough that lateral concentration 
Binary External gradients within each pore may be neglected. 
Solution 

SOLUTION 

We begin by determining the pressure-flow relationship and note that we have two ways of 
doing this: the Blake-Kozeny equation (Eq. 24.6-14), and the diffusion-based result (Eq. 24.5- 
20) of the previous section. 

For high velocities through the porous material and pores large relative to molecular di- 
mensions, it is the mass-average velocity that must be proportional to the pressure gradient, 
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and we may assume that the Blake-Kozeny equation governs the flow. We begin by rewriting 
Eq. 24.6-14) as 

and Eq. 24.5-20 as 

Equating the coefficients of v, and v ,  in these two equations then yields descriptions of Di, 
and BLM, respectively. If the pores are small relative to the molecular dimensions and the 
mass-average velocity is not large relative to the diffusional velocities v, - v, one is in a still 
poorly studied flow region, and one must resort either to experiment or to an appropriate 
molecular model.17 

To determine the rate of solute transport, we turn to Eq. 24.5-25 noting that the diffusivities 
of that section already include the factor E/T. However, if the pore dimensions are very large with 
respect to the effective diameters of the solute and solvent molecules, the ratio BAB/BLM will 
be very small. We can thus obtain 

in which 

where the superscript ext refers to conditions in the external solution of the same composition 
as the pore fluid. Equation 24.6-17 may in turn be rewritten as 

which is Fick's first law modified for void fraction and tortuosity. It is widely used. 
Exactly as in unconfined fluids, one cannot determine net flow, or pressure drop, from 

diffusional considerations alone. One needs a flux ratio or equivalent. A specific example is 
supplied by freeze-drying, where water vapor must diffuse through a porous region of dried 
solid and where inert gases may be assumed stagnant. This region is also interesting in that 
conditions can vary from simple continuum diffusion, as here, through the slip-flow region, 
and on to the Knudsen region.4b 

It must be remembered that Eq. 24.6-19 and the equations leading up to it represent only 
the direct effect of molecular diffusion. The convective dispersion resulting from interparticle 
mixing and local departures from rectilinear flow must be added when using the volume- 
averaged convective equation (see 520.5, Butt12 g5.2.5, and ~ e v e n s ~ i e l ' ~  513.2). 

QUESTIONS FOR DISCUSSION 

How does equilibrium thermodynamics have to be supplemented in order to study non- 
equilibrium systems, such as those that involve velocity, temperature, and concentration 
gradients? 
What new transport coefficients arise in multicomponent mixtures and what do they 
describe? 
To what extent does this chapter explain the origin of Eq. 19.3-3? Is that equation completely 
correct? 
Is Eq. 24.1-6 really the starting point for the derivation of the complete expressions for the 
fluxes? Discuss its origin. 

l7 Z.-Y. Yan, S. Weinbaum, and R. Pfeffer, J .  Fluid Mech., 162,415438 (1986). 
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5. How are the thermal diffusion coefficient, the thermal diffusion ratio, and the Soret coeffi- 
cient defined? Can the signs of these quantities be predicted a priori? 

6. How can one start with Eq. 24.2-8 and obtain Eq. 17.9-I? What restrictions have to be placed 
on Eq. 17.9-I? 

7. What is the proper driving force for diffusion: the gradient of the concentration, the gradient 
of the activity, or some other quantity? 

8. Discuss the Clusius-Dickel column for isotope separation. 
9. To describe the steady-state operation of an ultracentrifuge it is not necessary to know any 

transport properties. Does this seem odd? 
10. What various physical phenomena need to be understood in order to describe diffusion in 

porous media? 

PROBLEMS 24A.1. Thermal diffusion. 
(a) Estimate the steady-state separation of H, and D2 occurring in the simple thermal diffu- 
sion apparatus shown in Fig. 24.2-1 under the following conditions: T, is 200K, T, is 600K, the 
mole fraction of deuterium is initially 0.10, and the effective average kT is 0.0166. 
(b) At what temperature should this average kT have been evaluated? 

Answers: (a) The mole fraction of H2 is higher by 0.0183 in the hot bulb 
(b) 330K 

24A.2. Ultracentrifugation of proteins. Estimate the steady-state concentration profile when a typi- 
cal albumin solution is subjected to a centrifugal field 50,000 times the force of gravity under 
the following conditions: 

Cell length = 1.0 cm 

Molecular weight of albumin = 45,000 

Apparent density of albumin in solution = M ~ / V ~  = 1.34 g/cm3 

Mole fraction of albumin (at z = O), XAO = 5 X 

Apparent density of water in the solution = 1.00 g/cm3 

Temperature = 75°F 
Answer: xA = 5 X exp(-22.7z), with z in cm 

24A.3. Ionic diffusivities. The limiting (that is, at zero concentration) equivalent ionic conduc- 
tances, in dimensions of cm2/ohm e g-equiv for the following ions at 25°C are:' Na', 50.10; K', 
73.5; C1-, 76.35. Calculate the corresponding ionic diffusivities from the definion 

Note that F = 96,500 coulombs/g-equiv, RT/F = 25.692 mv at 25OC, and 1 coulomb = 1 am- 
pere. s. 

24B.1. The dimensions of the Lorentz force. Show how the Lorentz force on a charge moving 
through a magnetic field corresponds to the first term added to the linear d, of Eq. 25.4-51 
and gives a consistent set of units for this quantity. Suggestion: Note that cRTd, represents the 
motive force for diffusive motion of species a per unit volume and that the usual dimensions 
of the magnetic induction are 1 Weber = 1 Newton-second/Coulomb-meter. 

24B.2. Junction potentials. Consider two well-mixed reservoirs of aqueous salt at 25OC, as in Fig. 
24.4-2, separated by a stagnant region. Salt concentrations are 1.0 N on the left (1) and 0.1 N 
on the right (2). Estimate junction potentials for NaCl and for KC1 using the ion diffusivities 

R. A. Robinson and R. H. Stokes, Electrolyte Solutions, revised edition, Butterworths, London 
(1965), Table 6.1. 
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of Problem 24A.3. Assume constant ion activity coefficients. Which compartment will be the 
more positive? Why? 

Donnan exclusion. The sulfonic acid membrane used by scattergood' had the following 
equilibrium internal composition when immersed in 0.1 N NaC1: 

Organic sulfonic acid polymer c, = 1.03 g-equiv/liter 
Water c, = 13.2 g-equiv/liter 
Chloride ion c,-- = 0.001 g-equiv/liter 
Sodium ion c,,+ = 1.031 g-equiv/liter 

Calculate the distribution coefficient of sodium chloride 

Note that the concentration of water in the external solution is about 55.5 g-mol/liter. 
Answer: 0.064 

Osmotic pressure. Typical sea water, containing 3.45% by weight of dissolved salts, has a 
vapor pressure 1.84% below that of pure water. Estimate the minimum possible transmem- 
brane pressure required to produce pure water, if the membrane is ideally selective. 
Answer: about 25 atm 

Permeability of a perfectly selective filtration membrane. Develop an expression for the hy- 
draulic permeability of the perfectly selective membrane described in Example 22.8-5 in terms 
of the diffusional parameters introduced in 324.5. 
Answer: KH = BLJRTS, where 6 is the membrane thickness 

Model insensitivity. In modeling a porous medium as a parallel network of channels one 
must allow both for the toruous nature ("tortuosity" 7) of real systems and also the restriction 
of the transport to the fraction s of the cross section that is available for flow. Equation 24.6-3 
then must be modified to 

An alternate approach is to consider the transport process to be a diffusion of species A 
through an immobilized set of giant molecules3 (these particles comprising the porous 
medium). This model yields the expression 

Compare these two equations, noting that the value of is often about 0.4. 

Expressions for the mass flux. 
(a) Show how to transform the left side of Eq. 24.2-8 into the left side of Eq. 24.2-9. First 
rewrite the former as follows: 

Rewrite the second term as a sum over all p, and then add a term to compensate for the modi- 
fication of the sum. Note that this change has introduced into the sum a term containing Baa, 

E. M. Scattergood and E. N. Lightfoot, Trans. Faraday Soc., 64,1135-1146 (1968). 
R. B. Evans, 111, G. M. Watson, and E. A. Mason, J. Chem. Phys., 35,2076-2083 (1961). 
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which was not defined because it was not needed. Now, we are at liberty to define B,, in any 
way we choose, and the choice we make is 

XP - - X -  or -- XP 

Baa p=lDap 
X - = o  

P=1 Rp 
O f ,  all p 

This choice enables us to obtain the left side of Eq. 24.2-9, and also the auxiliary relation given 
after Eq. 24.2-9 is, in fact, just Eq. 24C.1-3 above. 

(b) Next repeat the above derivation by replacing vP by [vP + (DE/pp)V In TI, and verify that 
both the diffusion terms and the thermal diffusion terms of Eq. 24.2-8 may be transformed 
into the corresponding terms in Eq. 24.2-9. 

24C.2. Differential centrifugation. The lysing (bursting) of E. coli cells has produced a dilute sus- 
pension of inclusion bodies, hard insoluble aggregates of a desired protein, unlysed cells, and 
unwanted dissolved proteins. For purposes of this problem all may be considered as spheres 
with the properties indicated here. 

Cells Inclusion bodies Proteins 

Mass or equivalent 1.89 x 10 l2 g 2.32 X 1 0  l5 g 50 kilodaltons 

Density (g/ml) 1 .07 1.3 1.3 

Can these materials be effectively separated by centrifugation? Explain. 

24C.3. Transport characteristics of sodium chloride. In the accompanying table1 equivalent con- 
ductance, diffusivity, and thermodynamic activity coefficients are given for sodium chloride 
at 25°C. The first two are given as functions of the molarity (M), and the third for molality (m). 
It may be assumed for the purposes of this problem that M/m = 1 - 0.019m. Limiting ionic 
equivalent conductances (that is, at infinite dilution) are 50.10 and 76.35, respectively. The salt 
equivalent conductance in turn is defined as 

where the specific conductance KSp = L/AR, where X is the resistance of a volume of solution 
of length L and cross-sectional area A. Use these data to discuss the sensitivity of the solution 
behavior to the three diffusivities BNa1,, B,, , ,  and BK,lcl needed to describe this response 
to solution concentration. 

-- 

Electrochemical characteristics of aqueous NaCl solution at 25OC 

Equivalent 
Molar conductance Diffusivity Molal Activity 
concentration (cm2/ohm-equiv) cm2/s x lo5 concentration coefficient 
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Electrochemical characteristics of aqueous NaCl solution at 25OC (continued) 
- 

Equivalent 
Molar conductance Diffusivity Molal Activity 
concentration (cm2/ohm-equiv) cm2 /s X 1 O5 concentration coefficient 

24C.4. Departures from electroneutrality. Following Newman, estimate the departures from elec- 
troneutrality in the stagnant region between the reservoirs of Problem 24B.2 as follows. First 
calculate the electric field gradient d24/dz2, where z is the distance measured from reservoir 1 
toward reservoir 2, assuming that the salt concentration in g-moles/liter is given by 

where L is the length of the stagnant region. Then put the result into Poisson's equation 

Here E is the dielectric constant, and F/E may be taken to be 1.392 X 1016 volt-cm/g-equiv 
(see Newman4, pp. 74 and 256), which corresponds to a relative dielectric constant of 78.303. 
For this problem, the summation reduces to (c, - c-). 

24C.5. Dielectrophoretic driving forces. When an electric potential is imposed across an uncharged 
nonconducting medium, one may write 

where E is the dielectric constant. 
Show how this equation can be used to calculate the distribution of electric field E in the 

region between two coaxial cylindrical metal electrodes of outer and inner radii R, and R,, re- 
spectively. You may neglect variations in the dielectric constant. Toward which electrode will 
particles of positive susceptibility migrate, and how will their migration velocity vary with 
position? 

- - 

J. S. Newman, Electrochemical Systems, 2nd edition, Prentice-Hall, New York (19911, p. 256. 
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Effects of small inclusions in a dielectric medium. The production of field nonlinearities by 
embedded particles can be illustrated by considering the limiting case of a single particle of 
radius R in an otherwise uniform field. The field distribution in both the external medium 
and the particle are defined by Laplace's equation, V2+ = 0, and by the boundary condition 
on the sphere surface (here the indices s and c stand for sphere and continuum). 

Develop expressions for 4, and +,, if 4, -. ArcosO for large r. 

Frictionally induced selective filtration. Describe the glucose rejection behavior of a cello- 
phane516 that shows no thermodynamic rejection. You may assume glucose mole fraction in 
the feed to the membrane to be 0.01 and the following properties: 

Here the subscripts g, w, and rn refer to glucose, water, and the membrane matrix, respectively. 
Partial answer: The high-flow-limiting mole fraction of sugar in the filtrate is 0.00242. 

Thermodynamically induced selective filtration. Describe the behavior of the hypothetical 
membrane for which KD = 1.0, solute activity coefficients are unity, and B,',/B~,, = v,,/V,. 
Partial answer: The high-flow limiting product solute concentration is 0.1 times that in the 
feed. 

Facilitated transport. Consider here the transport of a solute S across a homogeneous mem- 
brane from one external solution to another as a complex CS with a carrier C unable to leave 
the membrane phase. The solute S may be considered to be insoluble in the membrane and 
convection to be negligible (see Fig. 24C.8). Assume further that: 

1. Equilibrium exists at both membrane surfaces according to 

ccs = K ~ c ~ c s  (24C.9-1) 
where the concentration of S is that in the external solution, and those of C and CS are in 
the membrane.7 

2. Both C and CS follow the simple rate expression Ni = D,,Aci. 

Develop a general expression for the transport rate of S in terms of the total amount of carrier 
plus carrier complex present in the membrane, the solution concentrations of S, the quantity 
K,, and the diffusivities. What is the maximum rate of transport of S (that is, as its concentra- 
tion at the left of the diagram becomes very high and that at the right is zero)? 

I 
Membrane 

I 

Fig. 24C.8. Elementary facilitated transport. Concentra- 
tion profiles for the solute (S), the carrier (C), and the 

Distance - complex (CS). 

B. Z. Ginzburg and A. Katchalsky, J. Gen. Physiol., 47,403418 (1963). 
T .  G. Kaufmann and E. F. Leonard, AlChE Journal, 14,110-117 (1968). 
See, however, J. D. Goddard, J. S. Schultz, and R. J. Bassett, Chem. Eng. Sci., 25,665-683 (1970), and 

W. D. Stein, The Movement of Molecules across Cell Membranes, Academic Press, New York (1984). 
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24D.1. Entropy flux and entropy production. 
(a) Verify that Eqs. 24.1-3 and 4 follow from Eqs. 24.1-1 and 2. 
(b) Show that one can go backward from Eqs. 21.4-5 through 8 to Eqs. 24.1-3 and 4. To do this 
it may be necessary to use one form of the Gibbs-Duhem equation, 



Postface 

Of all the messages we have tried to convey in this long text, the most important is to 
recognize the key role of the equations of change, developed in Chapters 3,11, and 19. Writ- 
ten at the microscopic continuum level, they are the key link between the very complex 
motions of individual molecules and the observable behavior of most systems of engi- 
neering interest. They can be used to determine velocity, pressure, temperature, and 
concentration profile, as well as the fluxes of momentum, energy, and mass, even in 
complicated time-dependent systems. They are applicable to turbulent systems, and 
even when complete a priori solutions prove infeasible, simplify the efficient use of data 
through dimensional analysis. Integrated forms of the equations of change provide the 
macroscopic balances. 

No introductory text can, however, meet the needs of every reader. We have at- 
tempted, therefore, to provide a solid basis in the fundamentals needed to tackle presently 
unforeseen applications of transport phenomena in an intelligent way. We have also 
given extensive references to sources where additional information can be found. Some 
of these references contain specialized data or introduce powerful problem-solving tech- 
niques. Others show how transport analysis can be incorporated into equipment and 
process design. 

We have therefore concentrated on relatively simple examples that illustrate the 
characteristics of the equations of change and the kinds of questions they are capable of 
answering. This has required largely neglecting the very powerful numerical techniques 
available for solving difficult problems. Fortunately, there are now many monographs on 
numerical techniques and packaged programs of greater or lesser generality. Graphics 
programs are also available, which greatly simplify the presentation of data and simula- 
tions. 

It should also be recognized that great advances are being made in the molecular 
theory of transport phenomena, ranging from improved techniques for predicting the 
transport properties to the development of new materials. Molecular dynamics and Brown- 
ian dynamics simulation techniques are proving to be very powerful for understanding 
such varied systems as ultra-low density gases, thin films, small pores, interfaces, col- 
loids, and polymeric liquids. 

Simple models of turbulent transport have been included, but these are only a modest 
introduction to a large and important field. Highly sophisticated techniques have been 
developed for specialized areas, such as predicting the forces and torques on aircraft, the 
combustion processes in automobiles, and the performance of fluid mixers. It is hoped 
that the interested reader will not stop with our very limited introductory discussion. 

Conversely, we have greatly expanded our coverage of boundary-layer phenomena, 
because its importance and power are now being recognized in many applications. Once 
primarily the province of aerodynamicists, boundary-layer techniques are now widely 
used in many fields of heat and mass transfer, as well as in fluid mechanics. Applications 
abound in such varied fields as catalysis, separation processes, and biology. 

Of great and increasing importance is non-Newtonian behavior, encountered in the 
preparation and use of films, lubricants, adhesives, suspensions, and emulsions. Biologi- 
cal examples are exceedingly important, ranging from the operation of the joints to drag- 
reducing slimes on marine animals, and down to the very basic problem of digesting 
foodstuffs. 

No music and no oral communication would be possible without compressible pow, an 
area we have neglected because of space limitations. Compressible flow is also of critical 
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importance in the design of airplanes, re-entry vehicles in our space program, and in pre- 
dicting meteorological phenomena. The awesome destructive power of tornadoes is a 
challenging example of the latter. 

Some problems involving transport phenomena in chemically reacting systems have 
been presented. For simplicity, we have taken the chemical kinetics expressions to be of 
rather idealized forms. For in combustion, flame propagation, and explosion 
phenomena more realistic descriptions of the kinetics will be needed. The same is true in 
biological systems, and the understanding of the functioning of the human body will re- 
quire much more detailed descriptions of the interactions among chemical kinetics, 
catalysis, diffusion, and turbulence. 

In basic terms, each of us is internally powered by the close equivalent of fuel cells, 
with current carried primarily by cations, in particular protons, rather than electrons. 
There are also complex electrical transport phenomena taking place in the now ubiquitous 
microelectronic devices such as computers and cellular phones. We have provided a 
very modest introduction to electrotransport, but again the reader is urged to go on to 
more specialized sources. 

No engineering project can be conceived, let alone completed, purely through use of 
the descriptive disciplines, such as transport phenomena and thermodynamics. Engi- 
neering, in the last analysis, depends heavily on heuristics to supplement incomplete 
knowledge. Transport phenomena can, however, prove immensely helpful by providing 
useful approximations, starting with order-of-magnitude estimates, and going on to suc- 
cessively more accurate approximations, such as those provided by boundary-layer the- 
ory. It is therefore important, perhaps in a second reading of this text, to seek shape- and 
model-insensitive descriptions by examining the numerical behavior of our model systems. 
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Vector and Tensor ~otation' 
Vector operations from a geometrical viewpoint 

Vector operations in terms of components 

Tensor operations in terms of components 

Vector and tensor differential operations 

Vector and tensor integral theorems 

Vector and tensor algebra in curvilinear coordinates 

Differential operations in curvilinear coordinates 

Integral operations in curvilinear coordinates 

Further comments on vector-tensor notation 

The physical quantities encountered in transport phenomena fall into three categories: 
scalars, such as temperature, pressure, volume, and time; vectors, such as velocity, mo- 
mentum, and force; and (second-order) tensors, such as the stress, momentum flux, and 
velocity gradient tensors. We distinguish among these quantities by the following 
notation: 

s = scalar (lightface Italic) 

v = vector (boldface Roman) 

T = second-order tensor (boldface Greek) 

In addition, boldface Greek symbols with one subscript (such as i3J are vectors. 
For vectors and tensors, several different kinds of multiplication are possible. Some 

of these require the use of special multiplication signs to be defined later: the single dot 
(m), the double dot (:), and the cross (X).  We enclose these special multiplications, or sums 
thereof, in different kinds of parentheses to indicate the type of result produced: 

( ) = scalar 
[ 1 = vector 

( } = second-order tensor 

No special significance is attached to the kind of parentheses if the only operations en- 
closed are addition and subtraction, or a multiplication in which ., :, and x do not ap- 
pear. Hence (v w) and (.r:Vv) are scalars, [V x v] and [I v] are vectors, and {v . VT}  and 

' This appendix is very similar to Appendix A of R. B. Bird, R. C. Armstrong, and 0. Hassager, 
Dynamics of Polymeric Liquids, Vol. I ,  Fluid Mechanics, 2nd edition, Wiley-Interscience, New York (1987). 
There, in 98, a discussion of nonorthogonal coordinates is given. Also in Table A.7-4, there is a summary 
of the del operations for bipolar coordinates. 
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{a T + 7 . a} are second-order tensors. On the other hand, v - w may be written as 
(V - w), [V - w], or {V - w}, since no dot or cross operations appear. Similarly vw, (vw), 
[vwl, and {vw) are all equivalent. 

Actually, scalars can be regarded as zero-order tensors and vectors as first-order ten- 
sors. The multiplication signs may be interpreted thus: 

Multiplication Sign Order of Result 

None 
X 

in which C represents the sum of the orders of the quantities being multiplied. For exam- 
ple, ST is of the order 0 + 2 = 2, vw is of the order 1 + 1 = 2,6,6, is of the order 1 + 1 = 
2,[vxwlisoftheorder1 + 1 - 1 = l ,(a:.r)isoftheorder2+2 - 4 = O , a n d ( o . ~ } i s o f  
the order 2 + 2 - 2 = 2. 

The basic operations that can be performed on scalar quantities need not be elabo- 
rated on here. However, the laws for the algebra of scalars may be used to illustrate 
three terms that arise in the subsequent discussion of vector operations: 

a. For the multiplication of two scalars, r and s, the order of multiplication is imma- 
terial so that the commutative law is valid: rs = sr. 

b. For the successive multiplication of three scalars, q, r, and s, the order in which 
the multiplications are performed is immaterial, so that the associative law is 
valid: (qr)s = q(rs). 

c. For the multiplication of a scalar s by the sum of scalars p, q, and r, it is immater- 
ial whether the addition or multiplication is performed first, so that the distribu- 
tive law is valid: s(p + q + r) = sp + sq + sr. 

These laws are not generally valid for the analogous vector and tensor operations de- 
scribed in the following paragraphs. 

A VECTOR OPERATIONS FROM 
A GEOMETRICAL VIEWPOINT 

In elementary physics courses, one is introduced to vectors from a geometrical stand- 
point. In this section we extend this approach to include the operations of vector multi- 
plication. In 9A.2 we give a parallel analytic treatment. 

Definition of a Vector and Its Magnitude 

A vector v is defined as a quantity of a given magnitude and direction. The magnitude of 
the vector is designated by Ivl or simply by the corresponding lightface symbol v. Two 
vectors v and w are equal when their magnitudes are equal and when they point in the 
same direction; they do not have to be collinear or have the same point of origin. If v and 
w have the same magnitude but point in opposite directions, then v = -w. 

Addition and Subtraction of Vectors 

The addition of two vectors can be accomplished by the familiar parallelogram construc- 
tion, as indicated by Fig. A.l-la. Vector addition obeys the following laws: 
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Commutative: 
Associative: 

Fig. A.1-1. (a) Addition of vectors; 
(b) subtraction of vectors. 

v 

Vector subtraction is performed by reversing the sign of one vector and adding; thus 
v - w = v + (-w). The geometrical construction for this is shown in Fig. A.1-lb. 

Multiplication of a Vector by a Scalar 

When a vector is multiplied by a scalar, the magnitude of the vector is altered but its di- 
rection is not. The following laws are applicable 

Commutative: sv = vs (A.1-3) 
Associative: r(sv) = (rs)v (A. 1-4) 
Distributive (q  + r + S)V = qv + rv + sv (A.1-5) 

Scalar Product (or Dot Product) of Two Vectors 

The scalar product of two vectors v and w is a scalar quantity defined by 

(v w) = vw cos +,, (A.1-6) 

in which +, is the angle between the vectors v and w. The scalar product is then the 
magnitude of w multiplied by the projection of v on w, or vice versa (Fig. A.1-2a). Note 
that the scalar product of a vector with itself is just the square of the magnitude of the 
vector 

The rules governing scalar products are as follows: 

Commutative: 
Not Associative: 
Distributive: 

The length of this vector equals 

w ,4, 

Area (v . w) 

(A.1-7) 

(A. 1-8) 
(A. 1-9) 

(A.1-10) 

Fig. A.1-2. Products of two vectors: (a) the scalar product; (b) the vec- 
tor product. 
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Vector Product (or Cross Product) of Two Vectors 

The vector product of two vectors v and w is a vector defined by 

[V X WI = IVW sin +,,In,, (A.1-11) 

in which n,, is a vector of unit length (a "unit vector") perpendicular to both v and w 
and pointing in the direction that a right-handed screw will move if turned from v to- 
ward w through the angle +,,. The vector product is illustrated in Fig. A.l-2b. The mag- 
nitude of the vector product is just the area of the parallelogram defined by the vectors v 
and w. It follows from the definition of the vector product that 

Note the following summary of laws governing the vector product operation: 

Not Commutative: [v X w] = -[w X v] 

Not Associative: [U X [V X w]] # [[u X V] X W] 

Distributive: [{u + v} X wl = [u X w] + [v X w] 

Multiple Products of Vectors 

Somewhat more complicated are multiple products formed by combinations of the mul- 
tiplication processes just described: 

The geometrical interpretations of the first three of these are straightforward. The magni- 
tude of (u . [v X w]) can easily be shown to represent the volume of a parallelepiped 
with edges defined by the vectors u, v, and w. 

EXERCISES I. What are the "orders" of the following quantities: (v - w), (v - u)w, (ab:cd), [v . pwu], [[a X f ]  
x [b x gll? 

2. Draw a sketch to illustrate the inequality in Eq. A.l-9. Are there any special cases for which it 
becomes an equality? 

3. A mathematical plane surface of area S has an orientation given by a unit normal vector n, 
pointing downstream of the surface. A fluid of density p flows through this surface with a ve- 
locity v. Show that the mass rate of flow through the surface is w = p(n - v)S. 

4. The angular velocity W of a rotating solid body is a vector whose magnitude is the rate of an- 
gular displacement (radians per second) and whose direction is that in which a right-handed 
screw would advance if turned in the same direction. The position vector r of a point is the 
vector from the origin of coordinates to the point. Show that the velocity of any point in a ro- 
tating solid body is v = [W X rl, relative to an origin located on the axis of rotation. 

5. A constant force F acts on a body moving with a velocity v, which is not necessarily collinear 
with F. Show that the rate at which F does work on the body is W = (F . v). 

5A.2 VECTOR OPERATIONS IN TERMS OF COMPONENTS 

In this section a parallel analytical treatment is given to each of the topics presented geo- 
metrically in sA.1. In the discussion here we restrict ourselves to rectangular coordinates 
and label the axes as 1, 2, 3 corresponding to the usual notation of x, y, z; only right- 
handed coordinates are used. 
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Many formulas can be expressed compactly in terms of the Kronecker delta Sii and the 
permutation symbol sljk These quantities are defined thus: 

6, = +I, i f i  = j 
i f i Z j  

cijk = +I, if ijk = 123,231, or 312 (A.2-3) 
= -1 , if ijk = 321,132, or 213 (A.2-4) 

sijk = 0, if any two indices are alike (A.2-5) 

Note also that qjk. = (1/2)(i - j)(j - k)(k - i). 
Several relations involving these quantities are useful in proving some vector and 

tensor identities 
? ? 

Note that a three-by-three determinant may be written in terms of the qjk 

The quantity s,jk thus selects the necessary terms that appear in the determinant and af- 
fixes the proper sign to each term. 

The Unit Vectors 

Let 6,, 62, 63 be the "unit vectors" (i.e., vectors of unit magnitude) in the direction of the 
1,2,3 axes1 (Fig. A.2-1). We can use the definitions of the scalar and vector products to 
tabulate all possible products of each type 

Fig. A.2-1. The unit 
2 vectors 6,; each vector 

is of unit magnitude 
and points in the ith 

1 1 1 direction. 

' In most elementary texts the unit vectors are called i ,  j, k. We prefer to use 6,, 6,, 6, because the 
components of these vectors are given by the Kronecker delta. That is, the component of 6, in the 1- 
direction is S,, or unity; the component of 6, in the 2-direction is SI2 or zero. 
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All of these relations may be summarized by the following two relations: 

(A.2-14) 

in which aii is the Kronecker delta, and eijk is the permutation symbol defined in the in- 
troduction to this section. These two relations enable us to develop analytic expressions 
for all the common dot and cross operations. In the remainder of this section and in the 
next section, in developing expressions for vector and tensor operations all we do is to 
break all vectors up into components and then apply Eqs. A.2-14 and 15. 

Expansion of a Vector in Terms of its Components 

Any vector v can be completely specified by giving the values of its projections v,, v,, v,, 
on the coordinate axes 1,2,3 (Fig. A.2-2). The vector can be constructed by adding vecto- 
rially the components multiplied by their corresponding unit vectors: 

Note that a vector associates a scalar with each coordinate dire~tion.~ The vi are called the 
"components of the vector v" and they are scalars, whereas the 6,vi are vectors, which 
when added together vectorially give v. 

The magnitude of a vector is given by 

[ v [ = v = d v ~ + v ~ + v $ =  f i  (A.2-17) 

Two vectors v and w are equal if their components are equal: v, = w,, v2 = w,, and v3 = 

w3. Also v = -w, if vl = -wl, and so on. 

Addition and Subtraction of Vectors 

The sum or difference of vectors v and w may be written in terms of components as 

Geometrically, this corresponds to adding up the projections of v and w on each individ- 
ual axis and then constructing a vector with these new components. Three or more vec- 
tors may be added in exactly the same fashion. 

Fig. A.2-2. The components vi of the vector v are the pro- 
1 jections of the vector on the coordinate axes 1,2, and 3. 

For a discussion of the relation of this definition of a vector to the definition in terms of the rules 
for transformation of coordinates, see W. Prager, Mechanics of Continua, Ginn, Boston (1961). 
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Multiplication of a Vector by a Scalar 

Multiplication of a vector by a scalar corresponds to multiplying each component of the 
vector by the scalar: 

Scalar Product (or Dot Product) of Two Vectors 

The scalar product of two vectors v and w is obtained by writing each vector in terms of 
components according to Eq. A.2-16 and then performing the scalar-product operations 
on the unit vectors, using Eq. A.2-14 

Hence the scalar product of two vectors is obtained by summing the products of the cor- 
responding components of the two vectors. Note that (v . v) (sometimes written as v2 or 
as v2) is a scalar representing the square of the magnitude of v. 

Vector Product (or Cross Product) of Two Vectors 

The vector product of two vectors v and w may be worked out by using Eqs. A.2-16 and 15: 

Here we have made use of Eq. A.2-8. Note that the ith-component of [v X w] is given by 

xi 2, ~ ~ ~ k v ~ w ~ ;  this result is often used in proving vector identities. 

Multiple Vector Products 

Expressions for the multiple products mentioned in sA.1 can be obtained by using the 
preceding analytical expressions for the scalar and vector products. For example, the 
product (u . [v X wl) may be written 

Then, from Eq. A.2-8, we obtain 

(U [V X wI) = 

The magnitude of (u . [v X wl) is the volume of a parellelepiped defined by the vectors 
u, v, w drawn from a common origin. Furthermore, the vanishing of the determinant is a 
necessary and sufficient condition that the vectors u, v, and w be coplanar. 

u1 u2 u3 

~1 v2 v3 
w1 w2 w3 

(A.2-23) 
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The Position Vector 

The usual symbol for the position vector-that is, the vector specifying the location of a 
point in s p a c e i s  r. The components of r are then x,, x,, and x3, so that 

This is an irregularity in the notation, since the components have a s mbol different 
from that for the vector. The magnitude of r is usually called r = 4 + xz +x$ and this r 
is the radial coordinate in spherical coordinates (see Fig. A.6-1). 

+ 
The analytical expressions for dot and cross products may be used to prove vector identities; 
for example, verify the relation 

Proof of a Vector 
Identity [U x [v x w]] = V(U - W) - W(U - v) (A.2-25) 

SOLUTION The i-component of the expression on the left side can be expanded as 

We may now use Eq. A.2-7 to complete the proof 

which is just the i-component of the right side of Eq. A.2-25. In a similar way one may verify 
such identities as 

(U [v X w]) = (v [w X u]) (A.2-28) 

([u X v] , [W X z]) = (U w)(v . z) - (u z)(v - w) (A.2-29) 

[[u X V] X [W X z]] = ([u X vl Z)W - ([u X v] w)z (A.2-30) 

EXERCISES 1. Write out the following summations: 

A vector v has components v, = 1, vy = 2, v, = -5. A vector w has components w, = 3, w, = -1, 
w, = 1. Evaluate: 

(a) (V W) 

(b) [v x wl 
(c) The length of v 

(d) (61 . V) 

(4 [61 x wl 

(f 4 " W  
(g) [r X v], where r is the position vector. 
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4. Show that Eq. A.2-6 is valid for the particular case i = 1, h = 2. 
Show that Eq. A.2-7 is valid for the particular case i = j = m = 1, n = 2. 

5. Verify that zy==, xi_, qjkcyk = 0 if ajk = akv 

6. Explain carefully the statement after Eq. A.2-21 that the ith component of [v X wl is 

Ej Ek &llkv1wk. 

7. Verify that ([v X w] [v X w]) + (v - w)' = v2w2 (the "identity of Lagrange"). 

sA.3 TENSOR OPERATIONS IN TERMS OF COMPONENTS 

In the last section we saw that expressions could be developed for all common dot and 
cross operations for vectors by knowing how to write a vector v as a sum zi ijivi, and by 
knowing how to manipulate the unit vectors tji. In this section we follow a parallel pro- 
cedure. We write a tensor T as a sum zi xj tiiZijrij, and give formulas for the manipulation 
of the unit dyads in this way, expressions are developed for the commonly occur- 
ring dot and cross operations for tensors. 

The Unit Dyads 

These results are easy to remember: one simply takes the dot (or cross) product of the 
nearest unit vectors on either side of the dot (or cross); in Eq. A.3-1 two such operations 
are performed. 

The unit vectors 6i were defined in the preceding discussion and then the scalar p~oducts 
(tii tij) and vector products [ai X Sj] were given. There is a third kind of product that can 
be formed with the unit vectors-namely, the dyadic products 6i6j (written without multi- 
plication symbols). According to the rules of notation given in the introduction to Ap- 
pendix A, the products are tensors of the second order. Since tii and tij are of unit 
magnitude, we will refer to the products tji6, as unit dyads. Whereas each unit vector in 
Fig. A.2-1 represents a single coordinate direction, the unit dyads in Fig. A.3-1 represent 
ordered pairs of coordinate directions. 

(In physical problems we often work with quantities that require the simultaneous 
specification of two directions. For example, the flux of x-momentum across a unit area 
of surface perpendicular to the y direction is a quantity of this type. Since this quantity is 
sometimes not the same as the flux of y-momentum perpendicular to the x direction, it is 
evident that specifying the two directions is not sufficient; we must also agree on the 
order in which the directions are given.) 

The dot and cross products of unit vectors were introduced by means of the geomet- 
rical definitions of these operations. The analogous operations for the unit dyads are in- 
troduced formally by relating them to the operations for unit vectors 

(6i61:6k61) = (6, ' 6k)(6i ' 61) = 6jksil (A.3-1) 
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Fig. A.3-1. The unit dyads 

jP2 )L2 )- &ti,. The solid arrows repre- 
sent the first unit vector in 
the dyadic product, and the 
hollow vectors the second. 
Note that 6,6, is not the 

6161 6162 6163 same as €i26,. 

1 1 1 

3 3 3 

Expansion of a Tensor in Terms of Its Components 

In Eq. A.2-16 we expanded a vector in terms of its components, each component being 
multiplied by the appropriate unit vector. Here we extend this idea and define' a (sec- 
ond-order) tensor as a quantity that associates a scalar with each ordered pair of coordinate di- 
rections in the following sense: 

The scalars ri j are referred to as the "components of the tensor 7." 
There are several special kinds of second-order tensors worth noting: 

1. If ri i = rj,, the tensor is said to be symmetric. 

2. If rii = - T ~ ~ ,  the tensor is said to be antisymmetric. 

3. If the components of a tensor are taken to be the components of T, but with the in- 
dices transposed, the resulting tensor is called the transpose of T and given the 
symbol I+: 

' Tensors are often defined in terms of the transformation rules; the connections between such a 
definition and that given above is discussed by W. Prager, Mechanics of Continua, Ginn, Boston (1961). 
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4. If the components of the tensor are formed by ordered pairs of the components of 
two vectors v and w, the resulting tensor is called the dyadic product of v and w 
and given the symbol vw: 

Note that vw # wv, but that ( vw)~  = wv. 

5. If the components of the tensor are given by the Kronecker delta S,., the resulting 
tensor is called the unit tensor and given the symbol 6: 

The magnitude of a tensor is defined by 

1 7 1 = 7 = v $ ( T : T t )  

I 

Addition of Tensors and Dyadic Products 

Two tensors are added thus: 

a + T = 2 2 6i9u, + 2 x = 2 2 6,S,(u, + rij) (A.3-12) 
1 i i i j 

That is, the sum of two tensors is that tensor whose components are the sums of the cor- 
responding components of the two tensors. The same is true for dyadic products. 

Multiplication of a Tensor by a Scalar 

Multiplication of a tensor by a scalar corresponds to multiplying each component of the 
tensor by the scalar: 

ST = s 

The same is true for dyadic products. 

The Scalar Product (or Double Dot Product) of Two Tensors 

Two tensors may be multiplied according to the double dot operation 

in which Eq. A.3-1 has been used. Similarly, we may show that 
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The Tensor Product (the Single Dot Product) of Two Tensors 

Two tensors may also be multiplied according to the single dot operation 

= z 2 C Sjk&%I17kl = 2 z rib 2 uijrjl 
t j k l  i I ( j  ) (A.3-17) 

That is, the il-component of {u T} is Xi uijrj1. Similar operations may be performed with 

dyadic products. It is common practice to write {u  . a} as u2, {u u21 as u3, and so on. 

The Vector Product (or Dot Product) of a Tensor with a Vector 

When a tensor is dotted into a vector, we get a vector 

That is, the ith component of [I . v] is 2, rVvi' Similarly, the ith component of [v TI is 

zj vj9.  Clearly, [T . v] Z [v . TI unless T is symmetric. 

Recall that when a vector v is multiplied by a scalar s, the resultant vector sv points 
in the same direction as v but has a different length. However, when T is dotted into v, 
the resultant vector [T V] differs from v in both length and direction; that is, the tensor I 
"deflects" or "twists" the vector v to form a new vector pointing in a different direction. 

The Tensor Product (or Cross Product) of a Tensor with a Vector 

When a tensor is crossed with a vector, we get a tensor: 

Hence, the il-component of {T x v) is Xi 2, Similarly the lk-component of {v x T) 

is Zt xj qjpirjk 

Other Operations 

From the preceding results, it is not difficult to prove the following identities: 

[S . v] = [v -61 = v 

[uv ' w ]  = u(v ' w) 

[W ' uv] = ( w  ' u)v 

(uv:wz) = (uw:vz) = (u . z)(v . w )  
(7:uv) = ([T ' ul ' v) 

(uv:7) = (u ' [v ' TI) 
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EXERCISES 1. The components of a symmetric tensor T are 

The components of a vector v are 

3. If a is symmetrical and P is antisymmetrical, show that (a$) = 0. 

4. Explain carefully the statement after Eq. A.3-17 that the il-component of {cr T) is 2, (JjjT,p 

5. Consider a rigid structure composed of point particles joined by massless rods. The particles 
are numbered 1,2,3,. . . , N, and the particle masses are m, (v = 1,2, . . . , N). The locations of 
the particles with respect to the center of mass are R,. The entire structure rotates on an axis 
passing through the center of mass with an angular velocity W. Show that the angular mo- 
mentum with respect to the center of mass is 

Then show that the latter expression may be rewritten as 

where 

is the moment-of-inertia tensor. 

6. The kinetic energy of rotation of the rigid structure in Exercise 5 is 

where R, = [W x R,] is the velocity of the vth particle. Show that 

5A.4 VECTOR AND TENSOR DIFFERENTIAL OPERATIONS 

The vector differential operator V, known as "nabla" or 'Idel," is defined in rectangular 
coordinates as 

in which the 6, are the unit vectors and the xi are the variables associated with the 1,2,3 
axes (i.e., the x,, x,, x, are the Cartesian coordinates normally referred to as x, y, z). The 
symbol V is a vector-operator-it has components like a vector but it cannot stand alone; 



820 Appendix A Vector and Tensor Notation 

it must operate on a scalar, vector, or tensor function. In this section we summarize the 
various operations of V on scalars, vectors, and tensors. As in 5sA.2 and A.3, we decom- 
pose vectors and tensors into their components and then use Eqs. A.2-14 and 15, and 
Eqs. A.3-1 to 6. Keep in mind that in this section equations written out in component 
form are valid only for rectangular coordinates, for which the unit vectors are con- 
stants; curvilinear coordinates are discussed in 9SA.6 and 7. 

The Gradient of a Scalar Field 

If s is a scalar function of the variables x,, x,, x,, then the operation of V on s is 

The vector thus constructed from the derivatives of s is designated by Vs (or grad s) and 
is called the gradient of the scalar field s. The following properties of the gradient opera- 
tion should be noted. 

Not Commutative: 
Not Associative: 
Distributive: 

The Divergence of a Vector Field 

If the vector v is a function of the space variables x,, x,, x,, then a scalar product may be 
formed with the operator V; in obtaining the final form, we use Eq. A.2-14: 

This collection of derivatives of the components of the vector v is called the divergence of v 
(sometimes abbreviated div v). Some properties of the divergence operator should be noted 

Not Commutative: (V . v) # (v . V) 

Not Associative: (V . sv) # (Vs V) 

Distributive: (V . {v + w}) = (V v)  + (V W) 

The Curl of a Vector Field 

A cross product may also be formed between the V operator and the vector v, which is a 
function of the three space variables. This cross product may be simplified by using Eq. 
A.2-15 and written in a variety of forms 
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The vector thus constructed is called the curl of v. Other notations for [V x v] are curl v 
and rot v, the latter being common in the German literature. The curl operation, like the 
divergence, is distributive but not commutative or associative. Note that the ith compo- 
nent of [V X vl is ZjZk .sijk(d/dxj)vk. 

The Gradient of a Vector Field 

In addition to the scalar product (V . v) and the vector product [V X v] one may also 
form the dyadic product Vv: 

This is called the gradient of the vector v and is sometimes written grad v. It is a second- 
order tensor whose ij-component1 is (d/dxi)vj. Its transpose is 

whose ij-component is (d/dxj)v,. Note that Vv # vV and (Vv)+ Z vV. 

The Divergence of a Tensor Field 

If the tensor 7 is a function of the space variables x,, x,, x,, then a vector product may be 
formed with operator V; in obtaining the final form we use Eq. A.3-3: 

This is called the divergence of the tensor T, and is sometimes written div 7 .  The kth com- 

ponent of [V . T] is Xi (d/dxi)rik). If T is the product svw, then 

The Laplacian of a Scalar Field 

If we take the divergence of a gradient of the scalar function s, we obtain 

The collection of differential operators operating on s in the last line is given the symbol 
V2; hence in rectangular coordinates 

This is called the Laplacian operator. (Some authors use the symbol A for the Laplacian 
operator, particularly in the older German literature; hence (V . Vs), (V V)s, V2s, and As 

Caution: Some authors define the ij-component of Vv to be (d/dx,)v,. 
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are all equivalent quantities.) The Laplacian operator has only the distributive property, 
as do the gradient, divergence, and curl. 

The Laplacian of a Vector Field 

If we take the divergence of the gradient of the vector function v, we obtain 

That is, the kth component of [V . Vvl is, in Cartesian coordinates, just V2vk. Alternative 
notations for [V . Vvl are (V . V)v and V2v. 

Other Differential Relations 

Numerous identities can be proved using the definitions just given: 

Vrs = rVs + sVr 
(V - SV) = (VS ' V) + s(V ' V) 

(V [v X w]) = (w . [V X v]) - (v ' [V X w]) 
[V x sv] = [Vs X vl + s[V X vl 
[V Vv] = V(V . v) - [V X [V X v]] 
[v ' Vv] = iV(v ' v) - [v X [V X v]] 

[V . vw] = [v ' Vw] + w(V ' v) 
(s6:Vv) = s(V . v) 
[V . s61 = Vs 
[V 'ST] = [VS '71 f s[V '71 

V(v . W) = [(Vv) ' w] + [(Vw) ' vl 

Prove that for symmetric T: 

Proof of a Tensor 
Identity 

SOLUTION 

First we write out the right side in terms of components: 

The left side may be written as 

the second form resulting from the symmetry of T. Subtraction of Eq. A.4-31 from Eq. A.4-30 
will give Eq. A.4-32. 
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Now that we have given all the vector and tensor operations, including the various 
V operations, we want to point out that the dot and double dot operations can be written 
down at once by using the following simple rule: a dot implies a summation on adjacent in- 
dices. We illustrate the rule with several examples. 

To interpret (v w), we note that v and w are vectors, whose components have one 
index. Since both symbols are adjacent to the dot, we make the indices for both of them 
the same and then sum on them: (v . w) = Ziv,wi. For double dot operations such as 
(T:VV), we proceed as follows. We note that T, being a tensor, has two subscripts, 
whereas V and v each have one. We therefore set the second subscript of T equal to the 
subscript on V and sum; then we set the first subscript of T equal to the subscript on v 
and sum. Hence we get (T:VV) = SiZj.rji(d/dxi)vj. Similarly, (v [V - 11) can be written 
down at once as ZiC,vi(d/dxi).r,, by performing the operation in the inner enclosure (the 
brackets) before the outer (the parentheses). 

To get the ith component of a vector quantity, we proceed in exactly the same way. 
To evaluate [T vIi we set the second index of the tensor T equal to the index on v and 
sum to get Zjrijvj. Similarly, the ith component of [V . pvvl is obtained as Ci(d/dxi)(pv,vi). 
Becoming skilled with this method can save a great deal of time in interpreting'the dot 
and double dot operations in Cartesian coordinates. 

EXERCISES 1. Perform all the operations in Eq. A.4-6 by writing out all the summations instead of using the 
notation. 

2. A field v(x, y, z )  is said to be ivvotational if [V X v] = 0. Which of the following fields are irrota- 
tional? 
(a) v, = by v,=O v,=O 
(b) v, = bx v!, = 0 vz = 0 

(c) v, = by v, = bx vZ = 0 
( d ) v x = - b y  z~,,=bx v Z = O  

3. Evaluate (V . v), Vv, and [V . vv] for the four fields in Exercise 2. 

4. A vector v has components 

with ail = aji and x:=, ail = 0; the ap are constants. Evaluate (V v), [V x vl, Vv, (Vv)', and 

[V . vvl. (Hint: In connection with evaluating [V X v], see Exercise 5 in 5A.2.) 

5. Verify that V2(v . V) = (V - (V2v)), and that [V (Vv)+] = V(V v). 

6. Verify that (V [V x v]) = 0 and [V x Vs] = 0. 

7. If r is the position vector (with components x,, x,, x3) and v is any vector, show that 
(a) (V . r) = 3 
(b) [V X rl = 0 
(c) [r X [V . vvll = [V - v[r X v]] (where v is a function of position) 

8. Develop an alternative expression for [V X [V . swll. 

9. If r is the position vector and r is its magnitude, verify that 
1 r (a) V - = -- 
r y" 

(c) V(a. r) = a if a is a constant vector 
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10. Write out in full in Cartesian coordinates 
d 

(a) -pv = -[V-pwl - Vp - [ V - T I  + pg 
d t  

(b) T = -p{Vv + ( V V ) ~  - $(V . v)6] 

5A.5 VECTOR AND TENSOR INTEGRAL THEOREMS 

For performing general proofs in continuum physics, several integral theorems are ex- 
tremely useful. 

The Gauss-Ostrogradskii Divergence Theorem 

If V is a closed region in space enclosed by a surface S, then 

in which n is the outwardly directed unit normal vector. This is known as the divergence 
theorem of Gauss and Ostrogradskii. Two closely allied theorems for scalars and tensors 
are 

The last relation is also valid for dyadic products vw. Note that, in all three equations, V 
in the volume integral is just replaced by n in the surface integral. 

The Stokes Curl Theorem 

If S is a surface bounded by the closed curve C, then 

in which t is a unit tangential vector in the direction of integration along C; n is the 
unit normal vector to S in the direction that a right-hand screw would move if its 
head were twisted in the direction of integration along C. There is a similar relation 
for tensors.' 

The Leibniz Formula for Differentiating a Volume integral2 
Let V be a closed moving region in space enclosed by a surface S; let the velocity of any 
surface element be v,. Then, if s(x, y, z, t )  is a scalar function of position and time, 

' See P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953), 
p. 66. 

M. D. Greenberg, Foundations of Applied Mathematics, Prentice-Hall, Englewood Cliffs, N.J. (1978), 
pp. 163-164. 
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This is an extension of the Leibniz formula for differentiating a single integral (see Eq. C.3- 
2); keep in mind that V = V(t) and S = S t ) .  Equation A.5-5 also applies to vectors and 
tensors. 

If the integral is over a volume, the surface of which is moving with the local fluid 
velocity (so that v, = v), then use of the equation of continuity leads to the additional 
useful result: 

in which p is the fluid density. Equation A.5-6 is sometimes called the Reynolds transport 
theorem. 

EXERCISES 1. Consider the vector field 

Evaluate both sides of Eq. A.5-1 over the region bounded by the planes xl = 0, x1 = 1; x2 = 0, 
x2 = 2; x3 = 0, X3 = 4. 

2. Use the same vector field to evaluate both sides of Eq. A.5-4 for the face x, = 1 in Exercise 1. 

3. Consider the time-dependent scalar function: 

Evaluate both sides of Eq. A.5-5 over the volume bounded by the planes: x = 0, x = t; y = 0, 
y = 2t; z = 0, z = 4t. The quantities x, y, z, t are dimensionless. 

4. Use Eq. A.5-4 (with v replaced by T )  to show that, when 7 k i  = zj ~ i j k  xj, 

where r is the position vector locating a point on C with respect to the origin. 

5. Evaluate both sides of Eq. A.5-2 for the function s(x, y, z) = x2 + y2 + z2. The volume V is the 
triangular prism lying between the two triangles whose vertices are (2,0, O), (2,1, O), (2,0,3), 
and(-2,0,0),(-2,1,0),(-2,0,3). 

5A.6 VECTOR AND TENSOR ALGEBRA 
IN CURVILINEAR COORDINATES 

Thus far we have considered only Cartesian coordinates x, y, and z. Although formal de- 
rivations are usually made in Cartesian coordinates, for working problems it is often 
more natural to use curvilinear coordinates. The two most commonly occurring mrvilin- 
ear coordinate systems are the cylindrical and the spherical. In the following we discuss 
only these two systems, but the method can also be applied to all orthogonal coordinate 
systems-that is, those in which the three families of coordinate surfaces are mutually 
perpendicular. 

We are primarily interested in knowing how to write various differential operations, 
such as Vs, [V x v], and (T:VV) in curvilinear coordinates. It turns out that we can do this 
in a straightforward way if we know, for the coordinate system being used, two things: 
(a) the expression for V in curvilinear coordinates; and (b) the spatial derivatives of the 
unit vectors in curvilinear coordinates. Hence, we want to focus our attention on these 
two points. 
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- 

Fig. A.6-1. (a) Cylindrical coordinates' with 0 s 7 < w, 0 s 0 < 2~r, -a < Z < a. 
(b) Spherical coordinates with 0 5 r < m, 0 5 0 5 T, 0 5 4 < 27~. Note that T and $ in 
cylindrical coordinates are not the same as r and 0 in spherical coordinates. Note carefully 
how the position vector r and its length r are written in the three coordinate systems: 

Rectangular: r = 6,x + 6,y + 6,z; r = v\/Jc2 + y2 + z2 

Cylindrical: r = 6,F + 6,Z; r = V ' F T ~  
Spherical: r = 6 7 ;  r = r 

Cylindrical Coordinates 

In cylindrical coordinates, instead of designating the coordinates of a point by x, y, z, we 
locate the point by giving the values of r, 0, z. These coordinates1 are shown in Fig. A.6- 
la. They are related to the Cartesian coordinates by 

x = r cos 0 (A.6-1) r = + d x 2  + y2 (A.6-4) 
y = r sin 0 (A.6-2) 0 = arctan (y/x) (A.6-5) 
z = z  (A.6-3) z = z (A.6-6) 

To convert derivatives of scalars with respect to x, y, z into derivatives with respect to r, 
0, z, the "chain rule" of partial differentiation2 is used. The derivative operators are read- 
ily found to be related thus: 

d sin 0 d d (COSO)-+  ( 0 ) d Z  
dr  

d d { & = (sin 0) + ('7) + io), 

' Caution: We have chosen to use the familiar r, 0, z-notation for cylindrical coordinates rather than 
to switch to some less familiar symbols, even though there are two situations in which confusion can 
arise: (a) occasionally one has to use cylindrical and spherical coordinates in the same problem, and the 
symbols r and I3 have different meanings in the two systems; Cb) occasionally one deals with the position 
vector r in problems involving cylindrical coordinates, but then the magnitude of r is not the same as the 
coordinate r, but rather m. In such situations, as in Fig. Ah-1, we can use overbars for the 
cylindrical coordinates and write T ,  8 , ~ .  For most discussions bars will not be needed. 

For example, for a scalar function ~ ( x ,  y, z )  = +(r, 0, z): 

Note that we are careful to use different symbols ,y and I,//, since x is a different function of x, y, z than I,!I is 
of r, 13, and z! 
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Y Fig. A.6-2. Unit vectors in rectangular and 
cylindrical coordinates. The z-axis and the unit 

6~ vector 6, have been omitted for simplicity. 
6, 

/ 

/ 
/ 

/ 
/ 

H P(x ,  y, Z) or P(Y, 0, Z) 
/ 
/ 

/ 
/ 

/ 

/ -/\" 
X 

With these relations, derivatives of any scalar functions (including, of course, compo- 
nents of vectors and tensors) with respect to x, y, and z can be expressed in terms of de- 
rivatives with respect to r, 0, and z. 

Having discussed the interrelationship of the coordinates and derivatives in the two 
coordinate systems, we now turn to the relation between the unit vectors. We begin by 
noting that the unit vectors ti,, 6,, 6, (or 6,, 6,, 6, as we have been calling them) are inde- 
pendent of position-that is, independent of x, y, z. In cylindrical coordinates the unit 
vectors 6, and 6, will depend on position, as we can see in Fig. A.6-2. The unit vector 6, is 
a vector of unit length in the direction of increasing r; the unit vector 6, is a vector of unit 
length in the direction of increasing 8. Clearly as the point P is moved around on the xy- 
plane, the directions of 6, and 6, change. Elementary trigonometrical arguments lead to 
the following relations: 

6, = ( cos 0)S, + ( sin O)Sy + (OM, 
6, = (- sin 0)6, + (cos 0)6, + (016, 
6, = (016, + (016, + (116, 

These may be solved for 6,, S,, and 6, to give 

The utility of these two sets of relations will be made clear in the next section. 
Vectors and tensors can be decomposed into components with respect to cylindrical 

coordinates as was done for Cartesian coordinates in Eqs. A.2-16 and A.3-7 (i.e., v = 6,v, 
+ 6,v, + 6 , ~ ~ ) .  Also, the multiplication rules for the unit vectors and unit dyads are the 
same as in Eqs. A.2-14 and 15 and A.3-1 to 6. Consequently the various dot and cross 
product operations (but ~ o t  the differential operations!) are performed as described in 
55A.2 and 3. For example, 

+ etc. 
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Spherical Coordinates 

We now tabulate for reference the same kind of information for spherical coordinates r, 
0,4. These coordinates are shown in Figure A.6-lb. They are related to the Cartesian co- 
ordinates by 

x  = r sin 8 cos 4 (A.6-19) r = + U x 2  + y2 + z2 (A.6-22) 
y = r sin 0 sin 4 (A.6-20) 0 = a r c t a n ( m / z )  (A.6-23) 
z = r cos 8 (A.6-21) + = arctan(y/x) (A.6-24) 

For the spherical coordinates we have the following relations for the derivative 
operators: 

COS 8 cos 4 
= (sin 0 cos 4) 

d r  
(A.6-25) 

sin 0 d d  (c0s8)++ ( i ) z  + (01% 
d r  

The relations between the unit vectors are 

6, = (sin 0 cos +)ti, + (sin 0 sin +)ijy + ( cos 8% (A.6- 28) 
6, = (COS 8 cos 4)6, + (cos 0 sin 4)6y + (- sin @6, (A.6-29) 
6, = (- sin 4)6, + ( cos 4)GY + ( O P z  (A.6-30) 

and 

6, = (sin 8 cos 4)6, + (cos 8 cos $)So + (- sin 4)6+ (A.6-31) 
Sy = (sin 8 sin +)fir + ( cos 0 sin 4)S, + ( cos (A.6-32) 
6, = (cos 8)Fr + (- sin 0)60 + ( O N +  (A.6-33) 

And, finally, some sample operations in spherical coordinates are 

That is, the relations (not involving V!) given in ssA.2 and 3 can be written directly in 
terms of spherical components. 

EXERCISES 1. Show that 

lozT j: 6, sin B do = o 

lozT j: s,s, sin 0 d~ d4 =  ti 

where 6, is the unit vector in the r  direction in spherical coordinates. 

2. Verify that in spherical coordinates 6 = 63, + 6,6, + 6+6+. 
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5A.7 DIFFERENTIAL OPERATIONS 
IN CURVILINEAR COORDINATES 

We now turn to the use of the V-operator in curvilinear coordinates. As in the previous sec- 
tion, we work out in detail the results for cylindrical and spherical coordinates. Then we sum- 
marize the procedure for getting the V-operations for any orthogonal curvilinear coordinates. 

Cylindrical Coordinates 

From Eqs. A.6-10,11, and 12 we can obtain expressions for the spatial derivatives of the 
unit vectors 6,, 6,, and 6,: 

(A. 7-2) 

The reader would do well to interpret these derivatives geometrically by considering the 
way 6,, 6,, 6, change as the location of P is changed in Fig. A.6-2. 

We now use the definition of the V-operator in Eq. A.4-1, the expressions in Eqs. A.6- 
13, 14, and 15, and the derivative operators in Eqs. A.6-7,8, and 9 to obtain the formula 
for V in cylindrical coordinates 

d sin 0 d 
= (6, cos 0 - S, sin 0) 

d + (6, sin 0 + 6, cos 0) 

When this is multiplied out, there is considerable simplification, and we get 

for cylindrical coordinates. This may be used for obtaining all differential operations in cylin- 
drical coordinates, provided that Eqs. A.7-1,2, and 3 are used to differentiate any unit vectors 
on which V operates. This point will be made clear in the subsequent illustrative example. 

Spherical Coordinates 

The spatial derivatives of 6, 6,, and 6, are obtained by differentiating Eqs. A.6-28/29, and 30: 

d d  d 
- 6, = 6, sin 0 - 6, = 6+ cos 0 - 6+ = -6, sin 0 - S, cos 8 

d 9  d+ 
(A.7-8) 



830 Appendix A Vector and Tensor Notation 

Use of Eqs. A.6-31,32, and 33 and Eqs. A.6-25,26, and 27 in Eq. A.4-1 gives the following 
expression for the V-operator: 

in spherical coordinates. This expression may be used for obtaining differential opera- 
tions in spherical coordinates, provided that Eqs. A.7-6,7, and 8 are used for differentiat- 
ing the unit vectors. 

General Orthogonal Coordinates 

Thus far we have discussed the two most-used curvilinear coordinate systems. We now 
present without proof the relations for any orthogonal curvilinear coordinates. Let the 
relation between Cartesian coordinates xi and the curvilinear coordinates q, be given by 

These can be solved for the q, to get the inverse relations q, = q,(xi). ~ h e n l  the unit vec- 
tors in rectangular coordinates and the 6,  in curvilinear coordinates are related thus: 

in which the "scale factors" h, are given by 

The spatial derivatives of the unit vectors 6,  can then be found to be 

d6, - 6p dhp 3 Gr dh, 
&p E -- 

ha a% y=1 hr dqr 
I I 

and the V-operator is 
I I 

The reader should verify that Eqs. A.7-14 and 15 can be used to get Eqs. A.7-1 to 3, A.7-5 
and A.7-6 to 9. 

From Eqs. A.7-15 and 14 we can now get the following expressions for the simplest 
of the V-operations: 

P. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York (1953), p. 26 and 
p. 115. 
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EXAMPLE A.7-1 

Differential Operations 
in Cylindrical 
Coordinates 

In the last expression, the unit vectors are those belonging to the curvilinear coordinate 
system. Additional operations may be found in Morse and Feshbach.' 

The scale factors introduced above also arise in the expressions for the volume and 
surface elements d V  = h,h,h,dqldq2dq, and dSap = hohpdqadqp(a # P); here dSap is a surface 
element on a surface of constant y, where y Z a and y # p. The reader should verify that 
the volume elements and various surface elements in cylindrical and spherical coordi- 
nates can be found in this way. 

In Tables A.7-1,2, and 3 we summarize the differential operations most commonly en- 
countered in Cartesian, cylindrical, and spherical coordinates.* The curvilinear coordinate 
expressions given can be obtained by the method illustrated in the following two examples. 

Derive expressions for (V v) and Vv in cylindrical coordinates. 

SOLUTION 

(a) We begin by writing V in cylindrical coordinates and decomposing v into its components 

Expanding, we get 

We now use the relations given in Eqs. A.7-1,2, and 3 to evaluate the derivatives of the unit 
vectors. This gives 

Since (6, 6,) = 1, (6,. 6,) = 0, and so on, the latter simplifies to 

which is the same as Eq. A of Table A.7-2. The procedure is a 
forward. 

(A. 7-22) 

bit tedious, but is is straight- 

' For other coordinate systems see the extensive compilation of P. Moon and D. E. Spencer, Field 
Theory Handbook, Springer, Berlin (1961). In addition, an orthogonal coordinate system is available in 
which one of the three sets of coordinate surfaces is made up of coaxial cones (but with noncoincident 
apexes); all of the V-operations have been tabulated by the originators of this coordinate system, 
J. F. Dijksman and E. P. W. Savenije, Rheol. Acta, 24,105-118 (1985). 
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Table A.7-1 Summary of Differential Operations Involving the V-Operator in Cartesian 
Coordinates (x, y, z) 

dux dv, dv, 
( V . v ) = - + - + -  

dx dy dz 

d2s d2s d2s (V2s) = - + - + - 
dx2 dy2 dz2 

+ 7 vx (3) ax + 'YY ("y) + y2 (3) 

ds 
[Vs], = - 

dx 

as [Vs], = - 
dY 

ds 
[Vs], = - 

dz 

dv, JVy 
[V x v], = - - - 

dy dz 

dux dvz 
[V x v]" = - - - - dZ dx 

dvy dv, 
[V x v], = - - - 

dx dy 

d7,, J7,, a~ , ,  
[V.T],=-+--+- 

dx dy dz 

d7xy d7yy d7Zy 
[V .T]  =-+--+- 

Y dx dy dz 

d7,, d7y2 d7,, 
[V.7],=-+-+- 

dx dy dz 

a2vX d2v, d2vX 
[V2v], = - + - + - 

dx2 dy2 dz2 

d2vy d2vy d2vy 
[V2v] = - + - + - 

b x 2  dy2 dz2 

d2vZ d2v, d2v, 
[V2v], = --- + - + - 

dx2 dy2 dz2 

[v  Vw], = v,($) + vy(%) + %(%) 
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d d d where the operator (v . V) = v, - + v - + v, - 
dx Y dy dz 
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Table A.7-2 Summary of Differential Operations Involving the V-Operator in Cylindrical 
Coordinates (r, 6, z )  

1 d 1 (9% dvz ( V - v )  = --(rv,) + -- + - r dr r d o  dz 

1 dv, (T:VV) = rrr($) + rr,(rdB - 4)  + r r 2 ( 2 )  

+ Tor(z) + roe(+ 3 + :) + roZ(g) 

ds [Vs], = - dr 

1 ds [Vs], = - - 
r d o  

ds [Vs], = - dz 

1 dvz dv, [V Xv],=---- 
r d o  dz 
dv, dv, 

[ V x v l  - - d y  * -  dz 

1 d 1 Jv, [V x v], = --(rue) - -- r dr r a0 

1 d 1 d d Too [V ' 71, = - - (rr,,) + - - Tor + - rzr - - r dr r d o  dz r 

1 d 1 d d 7 e r  - 7 r e  [V ' 'TIe = - - + - - Tee + - Tze + p 

? dr r d e  dz r 

1 d 1 d d [V . 71, = - - (rr,) + - - roz + - r,, r dr r a0 dz 

[vbl, = ~ i ~ ( ~ z )  + L & + %  
r dr r2 do2 dz2 
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V @  
(v ' V7)," = (v ' V)r,, + y T,, (11) 

(v VT),, = (v v)T,, (JJ) 
d v, d d where the operator (v . V) = v, - + - - + v, - 
dr  r a6 az 
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Table A.7-3 Summary o f  Differential Operations Involving the V-Operator in Spherical Coordinates (r, 8 , 4 )  

ds [Vsl, = - dr 

1 ds 
[Vsl, = - - d8 

1 ds [VsI+ = v - 
r sin 8 d 4  

1 d [V xv l ,=- -  
1 dvO 

(v ,  sin 8 )  - - 

r sin 0 dd  r sin 8 d 4  
1 dvr 1 d [V x v ] ,  = - - - - ( r v &  

r sin 8 d+ r dr 

1 il 1 dv, [V x vl, = -- (rv,) - -- r dr r d8 

1 d 1 d 1 d 7 0 8  + 74, [V - I ] ,  = - - (?rJ + v - (rBr sin 8 )  + ------ - 
r2 dr r sin 8 dB r sin 8 d+ r+r - Y 

1 d 1 d 1 d (rer - rr0) - 744 cot 0 
[V -11, = - - (r3rr,) + -- - (roo sin 8 )  + - - 

r3 dr r sin 0 d6 r sin 8 a4 "' + r 

I d  3 1 d 1 d (T,, - rr4) + rdo cot 8 
[V . 714 = 3 - (r rr+) + v - (r,+ sin 8 )  + ------ - 

r dr r sin 8 d8 r sin 8 d+ r4' + 
r 

1 
r2vr) + - - 1 d2v, 2 (7 2 dv+ 

,V2vlr = - (- - ( ) ( s i n 8 % ) + + s i n 2 ( j d + 2  ? s i n e d *  
(v ,  sin 8) - - -- 

dr r2 dr r2 sin 8 d o  ? sin 8 d 4  

(v, sin 8 )  + 1 #vB I 2 dvr 2 cot e ) $ s i n ' ~ d + ~  r 2 d 8  r 2 s i n 8 d 6  

(v ,  sin 8 )  + 1 d2v, +--+---- 2 dvr 2 cot 8 due ) ? s i n 2 8 d 4 '  r 2 s i n 8 d 6  r 2 s i n 0 d $  

1 dw 1 dw, W ,  
[V ' = + v,(T % - :) + v4(=% - ?) 
[V . ,w,, = ,.(?) + ,,(; 2 + ?) + 2 - 8 )  

1 dw* w w, 
+I+, cot 8 [V VWI+ = v r ( 2 )  + v,(+ 2) + v4(- r 
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1 duo 7'4 
- cot 8 { V ~ i + o  = - r 

1 dv+ vr v, {VV},,,,~ = - - + y + y ~ 0 t 8  
r sin 8 d+ 

d Ve d + d where the operator ( v  V) = vr - + -- + - - dr r d8 r sin 0 d+ 
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(b) Next we examine the dyadic product Vv: 

Hence, the rr-component is dvr/dr, the re-component is dv,/dr, and so on, as given in Table 
A.7-2. 

Find the r-component of [V . T ]  in spherical coordinates. 

Differential Operations SOLUTION 
in Spherical 
Coordinates Using Eq. A.7-9 we have 

[o . TI, = [ {6 ,  $ + 6, { g & ~ ~ ,  + wo~ro + 8,6+7,+ 

+ 606r7e, + 6&371j8 + 6&+70+ f 6+6r7+r + 6$07,0 + 6+647++) I (A.7-24) 

We now use Eqs. A.7-6, 7, 8 and Eq. A.3-3. Since we want only the r-component, we select 
only those terms that contribute to the coefficient of 6,: 

I d 
[6,  f $ 6,6rr,r] = 16, . 6,8,] - r - dB nr + other term (A.7-26) 

+ other term [a+ L r sin 0 d+ .6&74,] = 16, - 6+6.l a (A.7-27) 

[6 ,  i $ . 6T6r7] = $ ( 6  {$ 6 , h ]  + [61 6. {$6r}]  

1 6r6rrrr] = [ S ,  . {& 6,}6,] [a+ -- - . r sin 9 d+ r sin 0 

- 7 r r  -- 7 r r  
[6, 64 sin 8 6,l = 6, 

r sin 0 

[a ,  
$ . 6&&7,,] = 6 , .  ~;g) + other term 

Tor COS 9 
r sin 9 

1 d 

[6+ 
d0 6+6,7++] = 6 , ( ~ )  + other terms 
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Combining the above results we get 

Note that this expression is correct whether or not T is symmetric. 

EXERCISES 1. If r is the instantaneous position vector for a particle, show that the velocity and acceleration 
of the particle are given by (use Eq. A.7-2): 

in cylindrical coordinates. The dots indicate time derivatives of the coordinates. 

2. Obtain (V . v), [V X v], and Vv in spherical coordinates, and [V . TI in cylindrical coordinates. 

3. Use Table A.7-2 to write down directly the following quantities in cylindrical coordinates: 
(a) (V . pv), where p is a scalar (b) [V . pwl,, where p is a scalar 
(c) [V p6l0, where p is a scalar (dl (V . [T v]) 
(e) [v. Vvl, (f) VV + ( V d t  

4. Venfy that the entries for V2v in Table A.7-2 can be obtained by any one of the following methods: 
(a) First verify that, in cylindrical coordinates the operator (V V) is 

and then apply the operator to v. 

(b) Use the expression for [V TI in Table A.7-2, but substitute the components for Vv in place 
of the components of T, SO as to obtain [V . Vvl. 
(c) Use Eq. A.4-22: 

and use the gradient, divergence, and curl operations in Table A.7-2 to evaluate the opera- 
tions on the right side. 

sA.8 INTEGRAL OPERATIONS 
IN CURVILINEAR COORDINATES 

In performing the integrations of sA.5 in curvilinear coordinates, it is important to un- 
derstand the construction of the volume elements, as is shown for cylindrical coordi- 
nates in Fig. A.8-1 and for spherical coordinates in Fig. A.8-2. 

In doing volume integrals, the simplest situations are those in which the bounding 
surfaces are surfaces of the coordinate system. For cylindrical coordinates, a typical vol- 
ume integral of a function f(r, 0, z) would be of the form 

and for spherical coordinates a typical volume integral of a function g(r, 0, +) would be 

lo: 1,; g(r, 0, +)? dr sin 0 d0 d+ 
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Fig. A.8-1. Differential 
volume element r dr dB dz 
in cylindrical coordinates, 

Cylindfical surface and differential line ele- 
of radius r ments dr, r do, and dz. The 

differential surface ele- 
Differential ments are: (r d0)(dz) per- 

volume element pendicular to the r direction 
(dr)(rdO)(dz) (intermediate shading); 

(dz)(dr) perpendicular to the 
8 direction (darkest shad- 
ing); and (dr)(r de) perpen- 
dicular to the z direction 
(lightest shading). 

Since the limits in these integrals (r,, r,, S,, S2, etc.) are constants, the order of the integra- 
tion is immaterial. 

In doing surface integrals, the simplest situations are those in which the integration is 
performed on one of the surfaces of the coordinate system. For cylindrical coordinates 
ihere are three possibilities: 

On the surface r = r,: 

On the surface 0 = 80: 

On the surface z = 2,: 

/I Spherical surface 
X with radius r 

Fig. A.8-2. Differential vol- 
ume element r2 sin 8 dr d0 d+ 
in spherical coordinates, 
and the differential line ele- 
ments dr, r do, and r sin 8 d+. 
The differential surface ele- 
ments are: (r d8)(r sin 8 d+) 
perpendicular to the r direc- 
tion (lightest shading); (r sin 8 
d+)(dr) perpendicular to the 
0 direction (darkest shad- 
ing); and (dr)(r do) perpen- 
dicular to the 4 direction 
(intermediate shading). 
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Similarly, for spherical coordinates: 

On the surface C$ = &: Ir: g(r, 8, C$&r2 dr sin B do 

The reader should try making sketches to show exactly what areas are described by each 
of the above six surface integrals. 

If the area of integration in a surface integral is not one of the surfaces of the coordi- 
nate system, then a book on differential and integral calculus should be consulted. 

sA.9 FURTHER COMMENTS ON VECTOR-TENSOR NOTATION 

The boldface notation used in this book is called Gibbs notation.' Also widely used is an- 
other notation referred to as Cartesian tensor n~ t a t i on .~  As shown in Table A.9-1, a few 
examples suffice to compare the two systems. The two outer columns are just two differ- 
ent ways of abbreviating the operations described explicitly in the middle column in 
Cartesian coordinates. The rules for converting from one system to another are as 
follows. 

To convert from expanded notation to Cartesian tensor notation: 

1. Omit all summation signs (the "Einstein summation convention") 

2. Omit all unit vectors and unit dyads. 

3. Replace d / d x ,  by di. 

Table A.9-1 

Expanded notation in terms of 
Gibbs notation unit vectors and unit dyads Cartesian tensor notation 

' J. W. Gibbs, Vector Analysis, Dover Reprint, New York (1960). 
' W. Prager, Mechanics of Continua, Ginn, Boston (1961). 
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To convert from Cartesian tensor notation to expanded notation: 

1. Supply summation signs for all repeated indices. 

2. Supply unit vectors and unit dyads for all nonrepeated indices; in each term of a 
tensor equation the unit vectors must appear in the same order in the unit dyads. 

3. Replace d i  by d/dxi. 

The Gibbs notation is compact, easy to read, and devoid of any reference to a particular 
coordinate system; however, one has to know the meaning of the dot and cross opera- 
tions and the use of boldface symbols. The Cartesian tensor notation indicates the nature 
of the operations explicitly in Cartesian coordinates, but errors in reading or writing sub- 
scripts can be most aggravating. People who know both systems equally well prefer the 
Gibbs notation for general discussions and for presenting results, but revert to Cartesian 
tensor notation for doing proofs of identities. 

Occasionally matrix notation is used to display the components of vectors and ten- 
sors with respect to designated coordinate systems. For example, when v, = jy, vy = 0, v, 
= 0, V v  can be written in two ways: 

The second "=" is not really an "equals" sign, but has to be interpreted as "may be dis- 
played as." Note that this notation is somewhat dangerous since one has to infer the unit 
dyads that are to be multiplied by the matrix element-in this case, 6,6,, tixsy, and so 
on. If we had used cylindrical coordinates, V v  would be represented by the matrix 

y sin 8 cos 6 - y sin2 6 
(A.9-2) 

0 

where the matrix elements are understood to be multiplied by 6,6, 6,6e, and so on, and 
then added together. 

Despite the hazard of misinterpretation and the loose use of "=," the matrix nota- 
tion enjoys widespread use, the main reason being that the "dot" operations correspond 
to standard matrix multiplication rules. For example, 

Of course such matrix multiplications are meaningful only when the components are re- 
ferred to the same unit vectors. 
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The Fluxes and the Equations 
of Change 

Newton's law of viscosity 

Fourier's law of heat conduction 

Fick's (first) law of binary diffusion 

The equation of continuity 

The equation of motion in terms of T 

The equation of motion for a Newtonian fluid with constant p and p 

The dissipation function a, for Newtonian fluids 

The equation of energy in terms of q 

The equation of energy for pure Newtonian fluids with constant p and k 

The equation of continuity for species a in terms of j, 

The equation of continuity for species A in terms of w, for constant p9,, 

1 NEWTON'S LAW OF VISCOSITY 
[T = -p (Vv + (VvIt) + (&u - K)(V. v)81 

Cartesian coordinates (x, y, z): 

in which 

(B.1-1)" 

(B. 1 -2)" 

(B. 1-3)" 

(B. 1 -4) 

(B.l-5) 

(B.l-6) 

(B.l-7) 

" When the fluid is assumed to have constant density, the term containing (V . v) may be omitted. For 
monatomic gases at low density, the dilatational viscosity K is zero. 

843 
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1 NEWTON'S LAW OF VISCOSITY (continued) 

Cylindrical coordinates (r, 0 , ~ ) :  

in which 

" When the fluid is assumed to have constant density, the term containing (V . v) may be omitted. For 
monatomic gases at low density, the dilatational viscosity K is zero. 

Spherical coordinates (r, 0 , 4 ) :  

in which 

+ ($p - K)(V V) (B.l-15)" 

(B.l-16)" 

vr  + v, cot 0 
r + (ip - K)(V V) (B.l-17)" 

(B.1-18) 

(B.1-19) 

[ 1 
+ . (")I T + ~  = rr4 = -p v- (B.l-20) 

r sm 6 d+ dr r 

1 d 1 8% (u, sin 8 )  + ---- - (V mv) = --(r2vr) +-- (B.1-21) 
r 2  dr r sin 8 d0 r sin 8 d 4  

" When the fluid is assumed to have constant density, the term containing (V - v) may be omitted. For 
monatomic gases at low density, the dilatational viscosity K is zero. 
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sB.2 FOURIER'S LAW OF HEAT CONDUCTIONa 

[q = -kVTI 

Cartesian coordinates (x, y, 2): 

Cylindrical coordinates (r, 8 , ~ ) :  

Spherical coordinates (r, 8'4): 

1 dT q+ = -k-- 
r sin 8 d4 

a For mixtures, the term z,(E,/M,)~, must be added to q (see Eq. 19.3-3). 
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5B.3 FICK'S (FIRST) LAW OF BINARY DIFFUSIONa 

[ j A  = -P%ABVWAI 

Cartesian coordinates (x ,  y, z): 

Cylindrical coordinates tr, 8 , ~ ) :  

Spherical coordinates tr, 8,4) :  

" To get the molar fluxes with respect to the molar average velocity, replace j,, p, and w, by J:, c, and x,. 

5B.4 THE EQUATION OF CONTINUITYa 

[ d p / d t  + (V . pv) = 01 

Cartesian coordinates (x, y, z): 

Cylindrical coordinates (r, 8 , ~ ) :  

Spherical coordinates (r, 8, 4): 

1 d (pv, sin 8) + - - (pv+) = 0 3 + -- (p?ur) + -- 
dt y2 dr r sin 8 d8 r sin 8 dr$ 

" When the fluid is assumed to have constant mass density p, the equation simplifies to (V . v) = 0. 
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9B.5 THE EQUATION OF MOTION IN TERMS OF T 

Cartesian coordinates (x, y, z): a 

" These equations have been written without making the assumption that 7 is symmetric. This means, for 
example, that when the usual assumption is made that the stress tensor is symmetric, 7 ,  and ry, may be 
interchanged. 

Cylindrical coordinates (r, 8, z ) : ~  

dv0 V ~ V ,  "+rv@) [: :r av,+v-+9-+v + =--- - + - I - d + - d ~~0 + 
' d r  r d 0  " d z  r 

- - 
r de  a2 

These equations have been written without making the assumption that 7 is symmetric. This means, for example, that when the usual 
assumption is made that the stress tensor is symmetric, rrO - = 0. 

Spherical coordinates (r, 8,4):' 

av, av, v ,  dv, v ,  dvr + v$ dp 
+ ' + -- + -- - --) = -- at dr r d8 r sin 8 d 4  r dr 

1 Toe + 74, (rOr sin 0 )  + L- a - (r2rrJ + - - 
r sin 8 88 r sm 8 d 4  r4r r 

1 d (rer - ~ ~ 0 )  - ~ 4 4  cot 8 
(% sin e) + --- - (r3rr,) + - - 

r sin 8 d e  r sin e d e  r$" + 
r ) + P& 

+ 

v,vr + v,v, cot 8 1 dP 
r r sin 8 dg5 

1 d (r,, - rr+) + 740 Cot 6 
(q, sin 8 )  + --- - 

r sin 8 d8 r sin 8 '" + r ] + P84 

These equations have been written without malung the assumption that 7 is symmetric. This means, for example, that when the usual 
assumption is made that the stress tensor is symmetric, T , ~  - r8, = 0. 
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5B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID 
WITH CONSTANT p AND p 

[pDv/ Dt = - V p  + pV2v + pg] 

Cartesian coordinates (x, y, 2): 

d t 
+ pgx (B.6-1) 

dv, dv, dv, 
p(-+vx-+ v - + V ,  - = - + p + + + pgz (B.6-3) dt dx dy @) dz [ 

Cylindrical coordinates (r, 6, z): 

1 
r2 dr2 r2 sin B d o  

dv, dv, v, dv v+ dv, v p ,  - v: cot 6 
p - f u r - + - A + - -  + ( dt dr r d o  r sin B ad r 

1 d2v, 2 dv (v, sin 6 )  + ) r 2 s i n 2 6 d ~ '  r2do  r 2 s i n 6 d 9  

dv+ v dv, v, dv, + v+v, + v,v+ cot 6 1 d P  
p - + v , - + A p + - -  (dd: dr r d6 r sin 6 d+ r r sin 0 d+ 

(v, sin 6) + 1 d2v+ dv7 + %] + pg+ (8.64) +-- ) r 2 s i n 2 8 d ~ '  r 2 s i n 6 M  r 2 s i n 6 d 9  

a The quantity in the brackets in Eq. B.6-7 is not what one would expect from Eq. (M) for [V . Vv] in Table A.7-3, because we have added 
to Eq. (M) the expression for (2/r)(V - v),  which is zero for fluids with constant p. This gives a much simpler equation. 
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sB.7 THE DISSIPATION FUNCTION @v FOR NEWTONIAN 
FLUIDS (SEE EQ. 3.3-3) 

- -- 

Cartesian coordinates ( x ,  y, 2): 

2 

(B. 7-1 ) 

- - 

Cylindrical coordinates (r ,  6 , ~ ) :  

(B. 7-2) 

Spherical coordinates (r ,  6, 4 ) :  

[(:T ( ) ( I ~ V ~ + V . + V ~ E O ~ ~  @ , = 2  - + --+-  + 
r sin 6 d 4  r 

1 d - 2 [ld(l'vd + -- 
3 y2dr r sin 8 d6 

5B.8 THE EQUATION OF ENERGY IN TERMS OF q 

I ~ ? ~ D T / D ~  = - ( V .  q) - (d In p/d in n P D p / D t  - (7:Vv)l 
- -- 

Cartesian coordinates ( x ,  y, 2): 

Cylindrical coordinates (r, 6 ,  z): 

d~ v n d ~  d ~ ) = [ l d  1 dqo d l n  p p c  -+v , -+- -+v , -  
* P ( d T  at dr r d6 dz  r ar r d6 dz 

- - (rq,) + - - + (B.8-2>" 

-- - - 

Spherical coordinates (r, 6 , 4 ) :  

" The viscous dissipation term, -(T:VV), is given in Appendix A, Tables A.7-1,2,3. This term may usually be neglected, except for 
systems with very large velocity gradients. The term containing (d In p / d  In 'I), is zero for fluid with constant p. 
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sB.9 THE EQUATION OF ENERGY FOR PURE NEWTONIAN 
FLUIDS WITH CONSTANTa p AND k 

Cartesian coordinates ( x ,  y, z): 

Cylindrical coordinates (r, 0 , ~ ) :  

Spherical coordinates (r,  8 ,4):  

" This form of the energy equation is also valid under the less stringent assumptions k = constant and (d In p / d  In T),,Dp/Dt = 0. The 
assumption p = constant is given in the table heading because it is the assumption more often made. 

The function @,, is given in sB.7. The term p@, is usually negligible, except in systems with large velocity gradients. 

sB.10 THE EQUATION OF CONTINUITY FOR SPECIES a 
IN TERMSa OF ja 

[pDo, /Dt  = -(V . j,) + r,] 

Cartesian coordinafes ( x ,  y, z): 

Cylindrical coordinafes (r, 8, z): 

-- - 

Spherical coordinates (r, 8,+): 

d o ,  dw, us d o ,  Urn 1 d .  
= [L a (r2j,r) + - fur-+--+--- dt dr Y r sm 8 a+ r 2  dr r sin 0 ('"' Y sln 0 aia'i.m]+r, d+ (8.10-3) sin 0) + - 

" To obtain the corresponding equations in terms of J,* make the following replacements: 

Replace P v 
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gB.11 THE EQUATION OF CONTINUITY FOR SPECIES A 
IN TERMS OF oA FOR CONSTANTa pBAB 

- - 

Cartesian coordinates (x, y, 2): 

Cylindrical coordinates (r, 19, z): 

Spherical coordinates (r ,  O,+): 

1 
r2  sin 0 d o  

(B.11-3) 

" To obtain the corresponding equations in terms of x,, make the following replacements: 

Replace P 0, v re 
N 

by c X, V* R, - x, 1 Rp 
p=1 



Appendix c 

Mathematical Topics 
1 Some ordinary differential equations and their solutions 

5C.2 Expansions of functions in Taylor series 

5C.3 Differentiation of integrals (the Leibniz formula) 

3C.4 The gamma function 

92.5 The hyperbolic functions 

5C.6 The error function 

In this appendix we summarize information on mathematical topics (other than vectors 
and tensors) that are useful in the study of transport phenomena.' 

1 SOME ORDINARY DIFFERENTIAL EQUATIONS 
AND THEIR SOLUTIONS 

We assemble here a short list of differential equations that arise frequently in transport 
phenomena. The reader is assumed to be familiar with these equations and how to solve 
them. The quantities a, b, and c are real constants and f and g are functions of x. 

Equation Solution 

y = C1 cosh ax + C2 sinh ax or 

Some useful reference books on applied mathematics are: M. Abramowitz and I. A. Stegun, 
Handbook of Mathematical Functions, Dover, New York, 9th printing (1973); G. M. Murphy, Ordinary 
Differential Equations and Their Solutions, Van Nostrand, Princeton, N.J. (1960); J. J. Tuma, Engineering 
Mathematics Handbook, 3rd edition, McGraw-Hill, New York (1987). 
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Solve the equation n2 + an + b = 0, and 
get the roots n= n+ and n = n-. Then (a) if 
n+ and n- are real and unequal, 
y = Clexp(n+x) + C2exp(n-x) 

(b) if n+ and n- are real and equal to n, 
y = enx(Clx + C2) 
(c) if n+ and n are complex: ni = p t iq, 
y = ePx(C, cos qx + C2 sin qx) 

((2.1-6a) 

(C.l-6b) 

(C.1-7a) 

(C.l-7b) 

(C. 1 - 7 ~ )  

(C.1-8) 

(C.l-9) 

(C.1-10) 

(C.1-11) 

(C.1-12) 

(C.1-13) 

(C.1-14) 

y = C,x"l + C2xn2 + C3xn3, where the n, are the roots of 
the equation n(n - l)(n - 2) + an(n - 1) + bn + c = 0, 
provided that all roots are distinct. 

Notes: 

" In Eqs. C.l-4 and C.l-6 the decisions as to whether to use the exponential forms or the trigonometric (or 
hyperbolic) functions are usually made on the basis of the boundary conditions on the problem or the 
symmetry properties of the solution. 

Equations C.l-5 and C.l-6 are solved by making the substitution y(x) = u ( x ) / x  and then solving the 
resulting equation for u(x).  
In Eqs. C.1-8 to C.1-13, it may be convenient or necessary to change the lower limits of the integrals to 

some value other than zero. 

5C.2 EXPANSIONS OF FUNCTIONS IN TAYLOR SERIES 

In physical problems we often need to describe a function y(x) in the neighborhood of 
some point x = x,. Then we expand the function y(x) in a "Taylor series about the point 
x = xo": 
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The first term gives the value of the function at x = x,. The first two terms give a straight- 
line fit of the curve at x = x,. The first three terms give a parabolic fit of the curve at 
x = x, and so on. The Taylor series is often used when only the first several terms are 
needed to describe the function adequately. 

Here are a few Taylor series expansions of standard functions about the point x = 0: 

x x2 X3 e i x = l t - + - + - +  . . .  
I !  2! - 3! 

(C.2-2) 

x2 x3 x4 l n ( l + x ) = x - - + - - - + . e e  
2 3 4  

(C.2.3) 

x2 x4 x6 e r f x = p  1 - - + - - - + . . .  
2x ( 1!3 2!5 3!7 

(C.2-4) 
VG 

1 1 . 1  2 1 ' 1 ' 3 x 3 - . . .  V " F i = l + - x - x  + 
2 2 . 4  2 . 4 . 6  

(C.2-5) 

Further examples may be found in calculus textbooks and handbooks. Taylor series can 
also be written for functions of two or more variables. 

5C.3 DIFFERENTIATION OF INTEGRALS 
(THE LEIBNIZ FORMULA) 

Suppose we have a function f (x, t )  that depends on a space variable x and the time t .  
Then we can form the integral 

P(t)  

I(t) = I f(x, t )  dx (C.3-1) 
d t )  

which is a function of t [see Fig. C.3-l(a)] .  If we want to differentiate this function with 
respect to t without evaluating the integral, we can use the Leibniz formula 

Figure C.3-l(b) shows the meanings of the operations performed here: the first term on 
the right side gives the change in the integral because the function itself is changing with 

a ( t )  a ( t  + At) P( t )  P(t  + At) 

Fig. C.3-1. (a) The shaded area represents I(t) = J f ( x ,  t)dx at an 
df) 

instant t (Eq. C.3-1). (b )  To get dI/dt, we form the difference 
I(t + At) - I(t), divide by  At, and then let At + 0. The three shaded 
areas correspond to the three terms on the right side of Eq. C.3-2. 
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time; the second term accounts for the gain in area as the upper limit is moved to the 
right; and the third term shows the loss in area as the lower limit is moved to the right. 
This formula finds many uses in science and engineering. The three-dimensional analog 
is given in Eq. A.5-5. 

5C.4 THE GAMMA FUNCTION 

The gamma function appears frequently as the result of integrations: 

Several formulas for gamma functions are important: 

T(n + 1) = nT(n) (used to define T(n) for negative n) 

T(n) = (n - l)!' (when n is an integer greater than 0) 

The gamma function is displayed in Fig. C.4-1. 

+ 
4 n 

Fig. C.4-1. The gamma function. 
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Unit circle 
x2 + Y2 = 1 

6 = 2 x shaded area 

Unit hyperbola 
*2-$= 1 

= L POQ I c1 -- -- 
tan e = PQIOQ 19 = 2 x shaded area tanh 9 = pQ/OQ 
co t e=  l/tanO coth I9 = l/coth I9 
sec 6 = l/cos 6 sech I9 = I /cosh 0 
csc 19 = l/sin I9 csch 8 = l/sinh I9 

Fig. C.5-1. Comparison of circular and hyperbolic functions. 

5C.5 THE HYPERBOLIC FUNCTIONS . 
The hyperbolic sine (sinh x), the hyperbolic cosine (cosh x), and the hyperbolic tangent 
(tanh x) arise frequently in science and engineering problems. They are related to the hy- 
perbola in very much the same way that the circular functions are related to the circle 
(see Fig. C.5-1). The circular functions (sin x and cos x) are periodic, oscillating functions, 
whereas their hyperbolic analogs are not (see Fig. C.5-2). 

The hyperbolic functions are related to the exponential function as follows: 

cosh x = :(e" + e-"); sinh x = $(ex - e-"1 (C.5-1,2) 

The corresponding relations for the circular functions are: 

One can derive a variety of standard relations for the hyperbolic functions, such as 

cosh2 x - sinh2 x = 1 

cosh(x * y) = cosh x cosh y 2 sinh x sinh y 
sinh(x ? y) = sinh x cosh y 2 cosh x sinh y 

Fig. C.5-2. Comparison of the shapes of the hyperbolic 
functions. 
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cosh ix = cos x; sinh ix = i sin x (C.5-8,9) 

J cosh x dx = sinh x; J sinh x dx = cosh x (C.5-12,13) 

It should be kept in mind that cosh x and cos x are both even functions of x, whereas 
sinh x and sin x are odd functions of x. 

5C.6 THE ERROR FUNCTION 

The error function is defined as 

This function, which arises naturally in numerous transport problems, is monotone in- 
creasing, going from erf 0 = 0 to erf = 1, and has the value of 0.99 at about x = 2. The 
Taylor series expansion for the error function about x = 0 is given in Eq. C.2-4. It is also 
worth noting that erf ( - x )  = -erf x, and that 

by applying the Leibniz formula to Eq. C.6-1. 
The closely related function erfc x = 1 - erf x is called the "complementary error 

function.'' 
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The Kinetic Theory of Gases 
5D.1 The Boltzmann equation 

9D.2 The equations of change 

5D.3 The molecular expressions for the fluxes 

5D.4 The solution to the Boltzmann equation 

5D.5 The fluxes in terms of the transport properties 

5D.6 The transport properties in terms of the intermolecular forces 

5D.7 Concluding comments 

In Chapters 1,9, and 17 we gave a brief account of the use of mean free path arguments 
to get approximate expressions for the transport properties. Then we gave the rigorous 
results from the Chapman-Enskog development for dilute monatomic gases. In this ap- 
pendix we give a brief description of the Chapman-Enskog theory, just enough to show 
what the theory involves and to show how it gives a sense of unity to the subject of 
transport phenomena in gases. The reader who wishes to pursue the subject further can 
consult the standard references.' 

D l  THE BOLTZMANN  EQUATION^ 
The starting point for the kinetic theory of low-density, nonreacting mixtures of 
monatomic gases is the Boltzmann equation for the velocity distribution function f& r, t). 
The quantity f&, r, t) dk,dr is the probable number of molecules of species a, which at 
time t are located in the volume element dr at position r, and have velocities within the 
range dib. about i.,. The Boltzmann equation, which describes how fa evolves with time, is 

' J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North-Holland, 
Amsterdam (1972); S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd 
edition, Cambridge University Press (1970); J. 0. Hirschfelder, C. F. Curtiss, and R. 8. Bird, Molecular 
Theory of Gases and Liquids, 2nd corrected printing, Wiley, New York (1964), Chapter 7; E. M. Lifshitz and 
L. P. Pitaevskii, Physical Kinetics, Pergamon, Oxford (1981), Chapter 1. 

L. Boltzmann, Sitzungsberichte Keiserl. Akad. der Wissenschaften, 66 (2), 275-370 (1872); C. 
Cercignani, The Boltzmann Equation and Its Applications, Springer-Verlag, New York (1988). C. F. Curtiss, 
J .  Chem. Phys., 97,1416-1423,7679-7686 (1992), found it necessary to modify the Boltzmann equation to 
account for the possibility of orbiting pairs of molecules; the modification, important only at very low 
temperatures, was found to give much better agreement with the limited low-temperature experimental 
data. 



5D.3 Molecular Expressions for the Fluxes 859 

in which d/dr is identical to the V-operator, and d/d& is a similar operator involving ve- 
locities rather than positions. The quantity g, is the external force per unit mass acting on 
a molecule of species a ,  and J, is a very complicated five-fold integral term accounting 
for the change in f, because of molecular collisions. The J ,  term involves the intermolecu- 
lar potential energy function (e.g., the Lennard-Jones potential) and the details of the col- 
lision trajectories. The Boltzmann equation may be thought of as a continuity equation in 
the six-dimensional position-velocity space, and J, serves as a source term. The veloc- 
ity distribution function is "normalized" to the number density of species a; that is, 
Sf,(&, r, t)dra = n a b  t). 

5D.2 THE EQUATIONS OF CHANGE 

When the Boltzmann equation is multiplied by some molecular property rl/,(r,) and then 
integrated over all molecular velocities, the general equation of change is obtained: 

An integration by parts is performed to get this result, and use is made of the fact that fa 
is zero at infinite velocities. If $, is a quantity that is conserved during a collision (see 
§0.3), then the term containing J ,  can be shown to be zero.' 

Now let be successively the conserved quantities for monatomic molecules: the 
mass ma, the momentum ma&, and the energy $m,(i, . r,). When these are substituted for 
+, into Eq. D.2-1, and when a sum over all species a is performed for the second and 
third of these, we get the equations of change for mass of a, momentum, and energy as 
follows: 

In the last of these equations the internal energy per unit volume is defined to be 

Thus we see that the equations of continuity, motion, and energy are direct conse- 
quences of the conservation laws for mass, momentum, and energy discussed in Chapter 
0. Equations D.2-2 to 4 should be compared with Eqs. 19.1-7,3.2-9, and Eq. (B) and foot- 
note (b) of Table 19.2-4, which were derived by continuum arguments. 

5D.3 THE MOLECULAR EXPRESSIONS FOR THE FLUXES 

At the same time the equations of change are obtained, the molecular expressions for the 
fluxes are generated as integrals over the distribution function: 

at equilibrium 
j,<r, t) = m,S(r, - v)fadr, -0 (D.3-I) 

at equilibrium 
d r ,  t) = m$(& - v)( ib. - v)f,dL - 

a 

at equilibrium 
q(r, t) = $m,J.(ib, - v)'(+, - v)f,dr, - 0 

a 
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In these expressions the fluxes involve integrals over the products of mass, momentum, 
and energy with the "diffusion velocity" (i; - v) of species a. Note the similarity be- 
tween the structure of these molecular fluxes (or "diffusive fluxes") and that of the con- 
vective fluxes of mass p,v, momentum pw,  and kinetic energy ipv2v appearing in the 
equations of change, where v is the local instantaneous mass average velocity of the gas 
mixture. Thus the molecular fluxes represent the diffusive movement of mass, momen- 
tum, and energy above and beyond that described by the convective fluxes. Note also 
that the molecular theory automatically generates the molecular work term - (V [m . v]) 
in the energy equation. 

5D.4 THE SOLUTION TO THE BOLTZMANN EQUATION 

If the gas mixture were at rest, the velocity distribution function would be given by the 
Maxwell-Boltzmann distribution function (known from equilibrium statistical mechan- 
ics). Then we would find, as shown in 5D.3, that j, = 0, that .rr = pi3 = n~T6,  and that 
q = 0. The derivation of p =   KT is given in Problem 1C.3. 

On the other hand, when there are concentration, velocity, and temperature gradi- 
ents, the distribution function is given as the Maxwell-Boltzmann distribution multi- 
plied by a "correction factor": 

where 4, << 1. In this expression n,, v, and T are functions of position r and time t. 
Since the deviations from equilibrium result from the temperature, velocity, and concen- 
tration gradients, $,(r,, r, t) can be represented, near equilibrium, as a linear function of 
the various gradients, 

in which the vector A,, the tensor B,, and the vectors Cap, all functions of r,, r, and t, are 
given as the solutions of integrodifferential equations.' The quantities d, are "general- 
ized diffusional driving forces" that include concentration gradients, the pressure gradi- 
ent, and external force differences, defined as 

in which x,, w,, and p, are the mole fraction, mass fraction, and partial pressure, respec- 
tively. Equation D.4-3, valid only for a mixture of monatomic gases at low density, is 
generalized for other fluids in the discussion of the thermodynamics of irreversible 
processes in 524.1. 

5D.5 THE FLUXES IN TERMS OF THE TRANSPORT PROPERTIES 

When Eqs. D.4-1 to 3 are substituted into Eqs. D.3-1 to 3, we get the expressions for the 
fluxes in terms of d,, Vv, and VT: 
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In these equations the transport properties appear: the viscosity p, the thermal conduc- 
tivity k, the multicomponent thermal diffusion coefficients D:, and the multicomponent 
Fick diffusivities Dap (the Bop are the Maxwell-Stefan diffusivities, closely related to the 
Dm&. Thus the kinetic theory predicts the "cross effects": the transport of mass resulting 
from a temperature gradient (thermal diffusion) and the transport of energy resulting 
from a concentration gradient (the diffusion-thermo effect). 

The pressure term in Eq. D.5-2 comes from the first term in the expansion in Eq. D.4- 
1 (that is, the Maxwell-Boltzmann distribution), and the viscosity term comes from the 
second term (that is, the +, term containing the gradients). The kinetic theory of 
monatomic gases at low density predicts that the dilatational viscosity will be zero. 

5D.6 THE TRANSPORT PROPERTIES IN TERMS 
OF THE INTERMOLECULAR FORCES 

The transport properties in Eqs. D.5-1 to 3 are given by the kinetic theory as complicated 
multiple integrals involving the intermolecular forces that describe binary collisions in 
the gas mixture. Once an expression has been chosen for the intermolecular force law 
(such as the Lennard-Jones (6-12) potential of Eq. 1.4-lo), these integrals can be evalu- 
ated numerically. For a pure gas, the three transport properties-self-diffusivity, viscos- 
ity, and thermal conductivity-are then given by: 

The dimensionless "collision integrals" a, = flk .= 1.1% contain all the information 
about the intermolecular forces and the binary collision dynamics. They are given in 
Table E.2 as functions of KT/&. If we set the collision integrals equal to unity, we then get 
the transport properties for a gas composed of rigid spheres. 

Thus the transport properties, needed in the equations of change, have been obtained 
from kinetic theory in terms of the two parameters u an< E of the in_termolecular potential 
energy function. From these expressions we get Pr = C,p/k = $(c,/C,) = $(;) = and 
Sc = p/p9 = z(fl,/o,) = $, these values being quite 
good for pure monatomic gases. 

sD.7 CONCLUDING COMMENTS 

The above discussion emphasizes the close connections among mass, momentum, and 
energy transport, and it is seen how all three transport phenomena can be explained in 
terms of a molecular theory for low-density, monatomic gases. It is also important to see 
that the continuum equations of continuity, motion, and energy can all be derived from 
one starting point-the Boltzmann equation-and that the molecular expressions for the 
fluxes and transport properties are generated in the process. In addition, the discussion 
of the dependence of the fluxes on the driving forces is very closely related to the irre- 
versible thermodynamics approach in Chapter 24. 

This appendix has dealt only with low-density, monatomic gases. Similar discus- 

C. F. Curtiss, J. Chem. Phys., 24,225-241 (1956); C. Muckenfuss and C. F. Curtiss, J. Chem. Phys., 29, 
1257-1277 (1958); L. A. Viehland and C. F. Curtiss, 1. Chem. Phys., 60,492-520 (1974); D. Russell and C. F. 
Curtiss, 1. Chem. Phys., 60,514-520 (1974). 

J. H. Irving and J. G. Kirkwood, J. Chem. Phys., 18,817-829 (1950); R. J. Bearman and J. G. 
Kirkwood, J. Chem. Phys., 28,136-145 (1958). 

C. F. Curtiss and R. B. Bird, Adv. Polymer Sci., 125, 1-101 (1996); Proc. Nat. Acad. Sci., 93,7440-7445 
(1996); J. Chem. Phys., 106,9899-9921 (1997), 107,5254-5267 (1997), 111,10362-10370 (1999). 
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sions are available for polyatomic gases? monatomic liquids? and polymeric liquids5 In 
kinetic theories for monatomic liquids, the expressions for the momentum and heat 
fluxes contain terms similar to those in Eqs. D.3-2 and 3, but also contributions associ- 
ated with forces between molecules; for polymers, one has the latter contribution, but 
also additional forces within the polymer chain. In all of these theories one can derive 
the equations of change from an equation for a distribution function and then get formal 
expressions for the transport properties. 



Appendix 

Tables for Prediction 
Transport Properties 

E l  Intermolecular force parameters and critical properties 

5E.2 Functions for prediction of transport properties of gases at low densities 



Table E.l  Lennard-Jones (6-12) Potential Parameters and Critical Properties 

Molecular 
Weight 

Substance M 

Light elements: 

H2 2.016 
He 4.003 

Noble gases: 

Ne 20.180 
Ar 39.948 
Kr 83.80 
Xe 131.29 

Simple polyatomic gases: 

Air 2 8 . 9 ~ ~  

N2 28.013 
0 2  31.999 
CO 28.010 

co2 44.010 
NO 30.006 

No 44.012 
so2 64.065 
F2 37.997 
c12 70.905 
Br2 159.808 
12 253.809 

Hydrocarbons: 

CH4 
C H g H  
CH2=CH2 

C2H6 
CH,C=CH 
CH3CH=CH2 
C3H8 
n--C4H10 

Lennard-Jones 
parameters 

IT E / K  Ref. 
(A, (K) 

Critical properties8,h 

Tc PC k 
(K) (atm) (cm3/g-mole) 



Other organic compounds: 

cH4 16.04 
CH3C1 50.49 
CH2C12 84.93 
CHC1, 119.38 
CCl, 153.82 
C2N2 52.034 
COS 60.076 

cs2 76.143 
CC12F2 120.91 

a J. 0 .  Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theoy of Gases and Liquids, corrected printing with notes added, Wiley, New York (1964). 
L. S. Tee, S. Gotoh, and W. E. Stewart, Ind. Eng. Chem. Fundamentals, 5,356-363 (1966). The values for benzene are from viscosity data on that substance. 

The values for other substances are computed from Correlation (iii) of the paper. 
" L. Monchick and E. A. Mason, J .  Chem. Phys., 35,1676-1697 (1961); parameters obtained from viscosity. 

L. W. Flynn and G. Thodos, AIChE Journal, 8,362-365 (1962); parameters obtained from viscosity. 
' R. A. Svehla, NASA Tech. Report R-132 (1962); parameters obtained from viscosity. This report provides extensive tables of Lennard-Jones parameters, heat 
capacities, and calculated transport properties. 

Values of the critical constants for the pure substances are selected from K. A. Kobe and R. E. Lynn, Jr., Chem. Rev., 52,117-236 (1962); Amer. Petroleum Inst. 
Research Proj. 44, Thermodynamics Research Center, Texas A&M University, College Station, Texas (1966); and Thermodynamic Functions of Gases, F. Din 
(editor), Vols. 1-3, Butterworths, London (1956,1961,1962). 
R Values of the critical viscosity are from 0. A. Hougen and K. M. Watson, Chemical Process Principles, Vol. 3, Wiley, New York (1947), p. 873. 
hValues of the critical thermal conductivity are from E. J. Owens and G. Thodos, AlChE Journal, 3,454-461 (1957). 

For air, the molecular weight M and the pseudocritical properties have been computed from the average composition of dry air as given in COESA, U.S. 
Standard Atmosphere 1976, U.S. Government Printing Office, Washington, D.C. (1976). 



Table E.2 Collision Integrals for Use with the Lennard-Jones (6-12) Potential for the 
Prediction of Transport Properties of Gases at Low ~ensities",~,' 

a, = ak 
KT/& (for viscosity %AB 

or and thermal (for 
K T / & ~ ,  conductivity) diffusivity) 

a, = I(Zk 
KT/& (for viscosity %,A, 

or and thermal (for 
K T / E ~ ~  conductivity) diffusivity) 

" The values in this table, applicable for the Lennard-Jones (6-12) potential, are interpolated from the results of 
L. Monchick and E. A. Mason, J. Chem. Phys., 35,1676-1697 (1961). The Monchick-Mason table is believed to be slightly 
better than the earlier table by J. 0. Hirschfelder, R. B. Bird, and E. L. Spotz, J. Chem. Phys., 16,968-981 (1948). 

This table has been extended to lower temperatures by C. F. Curtiss, J. Chem. Phys., 97,7679-7686 (1992). Curtiss 
showed that at low temperatures, the Boltzmann equation needs to be modified to take into account "orbiting pairs" 
of molecules. Only by making this modification is it possible to get a smooth transition from quantum to classical 
behavior. The deviations are appreciable below dimensionless temperatures of 0.30. 

'The collision integrals have been curve-fitted by P. D. Neufeld, A. R. Jansen, and R. A. Aziz, J. Chem. Phys., 57, 
1100-1102 (1972), as follows: 

where F = KT/&. 



Appendix F 

Constants and Conversion Factors 
5F.1 Mathematical constants 

5F.2 Physical constants 

5F.3 Conversion factors 

1 MATHEMATICAL CONSTANTS 

5F.2 PHYSICAL CONSTANTS' 

Gas law constant (R)  

Standard acceleration 
of gravity (go) 

Joule's constant (I,) 
(mechanical equivalent of heat) 

Avogadro's number (N) 
Boltzmann's constant 

(K = R/ I ; I )  

Faraday's constant ( F )  

Planck's constant (h) 

Stefan-Boltzmann 
constant (a) 

Electron charge (e) 

Speed of light in a 
vacuum (c) 

J/g-mole K 
kg.  m2/s2. kg-mol . K 
g . cm2/s2. g-mo1 K 
cal/ g-mol . K 
cm3 atm/g-mol . K 
lb, f$/s2 lb-mol . R 
ft . lbf/lb-mol . R 

molecules /g-mol 

C / g-equivalent 

J . s  
erg . s 

W/m2. K~ 
cal/s . cm2K4 
Btu/hr ft2R4 

E. R. Cohen and B. N. Taylor, Physics Today (August 1996), pp. BG9-BG13; R. A. Nelson, 
Physics Today (August 1996), pp. BG15-BG16. 867 
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5F.3 CONVERSION FACTORS 

In the tables that follow, to convert any physical quantity from one set of units to an- 
other, multiply it by the appropriate table entry. For example, suppose that p is given as 
10 1bf/in.*, and we wish to have p in poundals/ft2. From Table F.3-2 the result is 

The entries in the shaded rows and columns are those that are needed for converting 
from and to SI units. 

In addition to the tables, we give a few of the commonly used conversion factors 
here: 

Given a quantity 
in these units: Multiply by: To get quantity in these units: 

Pounds 
Kilograms 

Inches 
Meters 

Gallons (U.S.) 
Gallons (U.S.) 
Gallons (U.S.) 
Cubic feet 

Kelvins 
Degrees Rankine 

Grams 
Pounds 

Centimeters 
Inches 

Liters 
Cubic inches 
Cubic feet 
Liters 

Degrees Rankine 
Kelvins 

Table F.3-1 Conversion Factors for Quantities Having Dimensions of F or ML/t2 



Table F.3-2 Conversion Factors for Quantities Having Dimensions of F/L2 or M / L ~ ~  (pressure, momentum flux) 

6.8947 X lo4 4.6330 X lo3 144 1 6.8046 X lop2 5.1715 X 10' 2.0360 
atm 1.0133 x lo6 6.8087 X lo4 2.1162 x lo3 14.696 1 760 29.921 

1.3332 X lo3 8.9588 X 10' 2.7845 1.9337 X lo-' 1.3158 X lop3 1 3.9370 X lo-' 
3.3864 X lo4 2.2756 X lo3 7.0727 X 10' 4.9116 X lo-' 3.3421 X lop2 25.400 1 

" This unit is preferably abbreviated "psia" (pounds per square inch absolute) or "psig" (pounds per square inch gage). Gage pressure is absolute pressure minus the prevailing 
barometric pressure. Sometimes the pressure is reported in '%arsrs"; to convert from bars to pascals, multiply by lo5, and to convert from bars to atmospheres, multiply by 0.98692. 

Table F.3-3 Conversion Factors for Quantities Having Dimensions of FL or M L ~ / ~ ~  (energy, work, torque) 

Given a Multiply by 
quantity in table value foot 

foot poundals = lb, ft2/s 3.1081 X 1.0072 X 3.9942 X 1.5698 X lo-' 1.1706 X lo-" 
1.3558 X lo7 32.1740 1 3.2405 X lo-' 1.2851 X lop3 5.0505 X 3.7662 X 

thermochemical caloriesa 4.1840 X lo7 9.9287 X 10' 3.0860 1 3.9657 X 1.5586 X lop6 1.1622 X 

British thermal units 1.0550 X 10'' 2.5036 X lo4 778.16 2.5216 X lo2 1 3.9301 X 2.9307 X 

Horsepower hours 2.6845 x 1013 6.3705 x lo7 1.9800 x lo6 6.4162 x lo5 2.5445 X lo3 1 7.4570 X lo-' 
kilowatt hours 3.6000 X 1013 8.5429 X lo7 2.6552 X lo6 8.6042 X lo5 3.4122 X lo3 1.3410 1 

" This unit, abbreviated "cal," is used in some chemical thermodynamic tables. To convert quantities expressed in International Steam Table calories (abbreviated "I. T. cal") to this 
unit, multiply by 1.000654. 



Table F.3-4 Conversion Factors for Quantities Having dimensionsa of M/Lt or Ft/L2 (viscosity, density times diffusivity) 

" When moles appear in the given and the desired units, the conversion factor is the same as for the corresponding mass units. 

Table F.3-5 Conversion Factors for Quantities Having Dimensions of ML/t3T or F/tT (thermal conductivity) 

Given a Multiply by 

8.0068 X lo5 3.2174 X 10' 1 1.9137 X lo-' 4.6263 
cal/s . cm . K 4.1840 X lo7 1.6813 X lo3 5.2256 X 10' 1 2.4175 X 10' 
Btu/hr ft . F 2.1616 X lo-' 4.1365 X lop3 1 



Table F.3-6 Conversion Factors for Quantities Having Dimensions of L2/t  (momentum 
diffusivity, thermal diffusivity, molecular diffusivity) 

Table F.3-7 Conversion Factors for Quantities Having Dimensions of M / t 3 ~  or F/LtT (heat transfer coefficients) 

Table F.3-8 Conversion Factors for Quantities Having Dimensionsa of M / L ~ ~  or F ~ / L ~  (mass transfer coefficients k, or k,,,) 

" When moles appear in the given and the desired units, the conversion factor is the same as for the corresponding mass units. 



Notation 

Numbers in parentheses refer to equations, sections, or tables in which the symbols are 
defined or first used. Dimensions are given in terms of mass (M), length (L), time (t), 
temperature (T),  and dimensionless (-). Boldface symbols are vectors or tensors (see 
Appendix A). Symbols that appear infrequently are not listed. 

A = area, L2 
a = absorptivity (16.2-I),- 
a = interfacial area per unit volume of packed bed (6.4-4), L-' 

a, = activity of species a (24.1-8),- 
C, = heat capacity at constant pressure (9.1-71, ML'/~'T 
Cv = heat capacity at constant volume (9.3-61, M L ~ / ~ ~ T  

c = speed of light (16.1-I), L/t 
c = total molar concentration (§17.7), moles/L3 

c, = molar concentration of species a,  (§17.7), moles/L3 
D = diameter of cylinder or sphere, L 

D, = particle diameter in packed bed, (6.4-6), L 
QAB = binary diffusivity for system A-B (17.1-2), L2/t 
Qap = binary diffusivity for the pair a-P in a multicomponent system 

(17.9-I), L2/t 
Dnp = Maxwell-Stefan multicomponent diffusivity (24.2-4), L2/ t 
EDmp = Fick multicomponent diffusivity (24.2-3), L'/ t 
D: = multicomponent thermal diffusion coefficient (24.2-3), M/Lt 

d = molecular diameter (1.4-3), L 
d, = diffusional driving force for species a (24.149, L-' 

Etot = U,, + Ktot + a,,, = total energy in a macroscopic system (15.1-2), 
M L ~ / ~ ~  

E, = compression term in mechanical energy balance (7.4-31, ML2/t3 
E ,  = viscous dissipation term in mechanical energy balance (7.4-4), 

ML2/t3 
e = 2.71828. . . 
e = emissivity (16.2-3),- 
e = combined energy flux vector (9.8-5), M/t3 

F,,, F,, = direct, indirect view factor (16.4-91, (16.5-151,- 
F,+ = force exerted by the solid on the fluid (7.2-I), ML/t2 

f = friction factor (or drag coefficient) (6.1-I),- 
G = H - TS = Gibbs free energy (24.1-2), ML2/t2 
G = (pv) = mass velocity (6.4-8), M / L ~ ~  
g = gravitational acceleration (3.2-8), ~ / t ~  

g, = body force per unit mass acting on species a (Table 19.2-I), L/t2 
H = U + pV = enthalpy (9.8-6), M L ' / ~ ~  
h = Planck's constant (14.1-2), ML2/t 
h = elevation (2.3-lo), L 

h, hl, hl,, hl,,, h,, h ,  = heat transfer coefficients (14.1-1 to 6), M / ~ ~ T  
i = (4.1-43),- 

J,, J: = molar fluxes (Table 17.8-1 ), moles/12f 
j,, jz = mass fluxes (Table 17.8-11, M/L2t 
j,, j, = Chilton-Colburn j-factors (14.3-19, Table 22.2-I),- 
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K = kinetic energy (7.4-I), ML'/~' 
K,, K, = two-phase mass transfer coefficients (22.4-4), moles/ t12 

K = R / N  = Boltzmann's constant (1.4-1)' ML2/t2T 
k = thermal conductivity (9.1-1 and 24.2-6)' ML/PT 

k, = single-phase mass transfer coefficients (22.1-7,22.3-4, Table 22.2-I), 
moles / t L2 

k:, k: = mass transfer coefficient for small mass-transfer rates and small 
species concentration (22.1-9,22.4-21, moles/ t12 

k; = mass transfer coefficient for high net mass-transfer rates (22.8-2a), 
moles / t L2 

k ,  = thermal diffusion ratio (24.2-lo),- 
k, = electrical conductivity (9.5-I), ohm-' cm-' 
k: = heterogeneous chemical reaction rate coefficient (18.0-3), 

moles1-"/ L2-3"t 
kr = homogeneous chemical reaction rate coefficient (18.0-2), 

moles1" / L3p3n t 
L = length of film, tube, or slit (2.2-22), L 

L,,, = total angular momentum within a macroscopic system (7.3-I), 
M L ~ I ~  

1 = mixing length (5.4-4), L 
I ,  = characteristic length in dimensional analysis (3.7-3), L 

M = molar mean molecular weight (Table 17.7-I), M/mole 
M, = molecular weight of species a (Table 17.7-I), M/mole 

Ma,,,, = total number of moles of species a in macroscopic system (23.1-3), 
moles 

rn = mass of a molecule (1.4-1)' M 
m, n = parameters in power law viscosity model (8.3-3), M/Lt2-",- 
ma,,,, = total mass of species a in macroscopic system (23.1-I), M 

N = rate of shaft rotation (3.7-28), tpl 
N = number of species in a multicomponent mixture (17.7-I),- 
I? = Avogadro's number, (g-mole)-' 

N, = combined molar flux vector for species a (17.8-2), moles/L2t 
n = unit normal vector (A.5-I),-- 

n, = combined mass flux vector for species a (17.8-1)' M/L'~ 
n = molecular concentration or number density (1.4-2), LV3 

P,,, = total momentum in a macroscopic flow system (7.2-I), ML/t 
9 = p + pgh = modified pressure (for constant p and g) (2.3-10)' 

M / L ~ *  
9, = characteristic pressure used in dimensional analysis (3.7-4), 

 MIL^^ 
p = fluid pressure, M/ Lt2 
Q = rate of heat flow across a surface (9.1-1,15.1-I), ML'/ t3 

QG = radiant energy flow from surface 1 to surface 2 (16.4-5), 
ML'/ t3 

Q12 = net radiant energy interchange between surface 1 and surface 2 
(16.4-8), ML'/ t3 

q = heat flux vector (9.1-4), M/t3 
q0 = interfacial heat flux (10.8-14), M/t3 
R = gas constant (in = RT), ML2/t2T mole 
R = radius of a cylinder or a sphere, L 

R, = molar rate of production of species a by homogeneous chemical 
reaction (18.0-2), moles/t13 

Rh = mean hydraulic radius (6.2-16), L 
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R = real part (of complex quantity) (4.1-43) 
r = position vector (3.4-I), L 
r = = radial coordinate in cylindrical coordinates, L 
r = Vx2 + y2 + z2 = radial coordinate in spherical coordinates, L 

r, = mass rate of production of species a by homogeneous chemical 
reaction (19.1-5), M/tL" 

S,, S, = cross-sectional area at planes 1 and 2 (7.1-11, L2 
S = entropy (11D.1-l,24.1-I), ML2/t2T 
T = absolute temperature, T 

T,,f = torque exerted by a solid boundary on the fluid (7.3-I), M L ~ / ~ '  
T,,, = external torque acting on system (7.3-11, M L ' / ~ ~  

TI - To = characteristic temperature difference used in dimensional analysis 
(1 1.5-51, T 

t = time, t 
U = internal energy (9.7-I), ML'/~' 
U = overall heat-transfer coefficient (10.6-151, M/t3T 
- 
u = arithmetic mean molecular speed (1 &I), L /  t 
u = unit vector in direction of flow (7.2-I),- 
V = volume, L3 
v = mass average velocity (17.7-I), L/t 
V* = molar average velocity (17.7-2), L /  t 
v, = velocity of species a (17.1-3, Table 17.7-I), L/t 
v, = characteristic velocity in dimensional analysis (3.7-4), L/t 
v, = speed of sound (9.4-2,llC.l-4), L/t 
v, = a = friction velocity (5.3-2), L/ t 
W = molar rate of flow across a surface, (23.1-4), moles/t 

W, = molar rate of flow of species a across a surface (23.1-3), moleslt 
W,, = rate of doing work on a system by the surroundings via moving 

parts (7.4-I), M L ~ / ~ ~  
w = mass rate of flow across a surface (2.2-21), M/t 

w, = mass flow rate of species a across a surface (23.1-I), M/t 
x, = mole fraction of species a (Table 17.7-I),- 

x, y, z = Cartesian coordinates 
y = distance from wall (in boundary layer theory and turbulence) 

(54.41, L 
y, = mole fraction of species a (22.4-2),- 
Z = wall collision frequency (1.4-2), ~ - ~ t - '  
z, = ionic charge, (24.4-5), equiv/mole 

alpha a = k / &  = thermal diffusivity (9.1-7). L2/t 
beta p = thermal coefficient of volume expansion (10.9-61, T-' 

p = velocity gradient at a surface (12.4-6), s-' 
gamma y = Cp/CV = heat capacity ratio (11.4-56),- 

9 = Vv + (Vv)+ = rate-of-deformation tensor (8.3-I), tp' 
delta AX = X2 - XI = difference between exit and entry values 

6 = falling-film thickness (2.2-22), boundary layer thickness 
(4.4-14), L 

B = unit tensor (1.2-2, A.3-lo),- 
6, = unit vector in the i direction (A.2-9),- 
6,; = Kronecker delta (A.2-I),- 

epsilon s = fractional void space (6.4-3),- 
F, sAB = maximum attractive energy between two molecules (1.4-10, 

17.3-13), M L ~ / ~ ~  
silk = permutation symbol (A.2-3),- 
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zeta 

efa 

6 = composition coefficient of volume expansion (19.2-2 and Table 
22.2-I),- 

7 = non-Newtonian viscosity (8.2-I), M/Lf 
q', qrr = components of the complex viscosity (8.2-4), M/Lt 

- 
7 = elongational viscosity (8.2-5), M/Lt 

q0 = zero shear rate viscosity (8.3-4), M/Lt 
theta 8 = arctan(y/x) = angle in cylindrical coordinates (A.6-5),- 

8 = a r c t a n ( m / z )  = angle in spherical coordinates (A.6-23),- 

kappa K = dilatational viscosity (1.2-6), M/Lt 
K, KO, KI, KZ = dimensionless constants used in turbulence (5.3-1,5.4-3,5.4-5,5.4-6) 

lambda A, A,, A ,  A, = diffusivity ratios (20.2-29),- 
A = wavelength of electromagnetic radiation (16.1-I), L 
A = mean free path (1.4-31, L 

A, A,, A,, A,, A, = time constants in rheological models (58.4 to §8.6), t 
mu J.L = viscosity (1.1-11, M/Lt 
nu Y = , u / p  = kinematic viscosity (1 .I-3), ~ ~ / t  

Y = frequency of electromagnetic radiation (16.1-I), t-' 
xi 6 = composition coefficient of volume expansion (Table 22.2-I),- 
pi II, II,, II,, II, = dimensionless profiles (4.4-25,12.4-21,20.2-28),- 

IT = 3.14159. . . 
.rr = T + pi5 = molecular momentum flux tensor, molecular stress 

tensor (1.2-2,1.7-I), M/L~' 
rho p = density, M/L3 

p, = mass of species a per unit volume of mixture (Table 17.7-I), M / L ~  
sigma a = Stefan-Boltzmann constant, M /  t3T4 

a = surface tension (3.7-12), M/t2 
a, = collision diameter (1.4-10,17.3-11), L 

tau .r = (viscous) momentum f l u  tensor, (viscous) stress tensor (1.2-2), M/Lt2 
= magnitude of shear stress at fluid-solid interface (5.3-I), M/Lt2 

phi 0 = potential energy (3.3-2), M L ~ / ~ ~  
0, = viscous dissipation function (3.3-3), tp2 
+ = n + p w  = combined momentum flux tensor (1.7-I), M/Lt2 
6 = arctan y/x = angle in spherical coordinates (A.6-24),- 
6 = electrostatic potential (24.4-5), volts 

= intermolecular potential energy (1 &lo), M L ~ / ~ ~  
psi TI, T2 = first, second normal stress coefficient (8.2-2,3), MIL 

T, = viscous dissipation function (3.3-3), t-* 
+ = stream function (Table 4.2-I), dimensions depend on the 

coordinate system 
omega R,, R,, R, = collision integrals (1.4-14,9.3-13, 17.3-11),- 

o, = mass fraction of species a (17.1-2, Table 17.7-I),- 
o,, - w,, = characteristic mass fraction difference used in dimensional 

analysis (1 9.5-7),- 
Overlines - 

X = per mole 
X = per unit mass 
2 = partial molar (19.3-3,24.1-2) - 

X = time smoothed (5.1-4) 
2 = dimensionless (3.7-3) 

Brackets 
(X) = average value over a flow cross section 

( X ) ,  [XI, ( X )  = used in vector-tensor operations when the brackets enclose dot or 
cross operations (Appendix A) 
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[[ = dimensionless groupings 
[=I  = has the dimensions of 

Superscripts 
Xt = transpose of a tensor 

X"' = turbulent (5.2-8) 
X'"' = viscous (5.2-9) 
X' = fluctuating quantity (5.2-1) 

Subscripts 
A, B = species A and B in binary systems 

a, /3, . . . = species in multicomponent systems 
a = arithmetic-mean driving force or associated transfer coefficient 

(14.1-3) 
b = bulk or "cup-mixing" value for an enclosed stream (10.8-33,14.1-2) 
c = evaluated at the critical point (1.3-1) 

In = logarithmic-mean driving force or associated transfer coefficient 
(14.1-4) 

loc = local driving force or associated transfer coefficient (14.1-5) 
rn = mean transfer coefficient for a submerged object (14.1-6) 
r = reduced, relative to critical value (§I .3) 

tot = total amount of entity in a macroscopic system 
0 = evaluated at a surface 

1,2 = evaluated at cross-sections 1 and 2 (7.1-1) 
Named dimensionless groups designated with two letters 

Br = Brinkman number (10.4-9, Table 11.5-2) 
Ec = Eckert number (Table 11.5-2) 
Fr = Froude number (3.7-1 1) 
Gr = Grashof number (10.9-18, Table 11.5-2) 

Gr,, Gr, = Diffusional Grashof number (19.5-13, Table 22.2-1) 
Ha = Hatta number (20.1-41) 
Le = Lewis number (17.1-9) 

Ma = Mach number (11.4-71) 
Nu = Nusselt number (14.3-10 to 15) 
Pk = Pkclet number (Table 11.5-2) 
Pr = Prandtl number (9.1-8, Table 11.5-2) 
Ra = Rayleigh number (Table 11.5-2) 
Re = Reynolds number (3.7-10) 
Sc = Schmidt number (17.1-8) 
Sh = Sherwood number (22.1-5) 

We = Weber number (3.7-12) 
Mathematical operations 

D / D t  = substantial derivative (3.5-2), tF' 
9 / 9 t  = corotational derivative (8.5-2), tF1 

V = del operator (A.4-I), L-' 
In x = the logarithm of x to the base e 

log,, x = the logarithm of x to the base 10 
exp x = ex = the exponential function of x 
erf x = error function of x (4.1-14, SC.6) 
T(x) = the (complete) gamma function (12.2-24, sC.4) 

T(x, U) = the incomplete gamma function (12.2-24) 
0(. . .) = "of the order of" 
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mass transfer around bubble, 636 
Critical, damping, 221,471 

enhancement, 273 
properties, 21,272 
Reynolds number, 46,52,59,92, 

139,390 
Curie's postulate, 765 
Curl operator, 820,824,831,832 
Curvilinear coordinates, 20,825,829, 

839 
Cylinder, flow near oscillating, 236 

heat transfer coefficient, 440 
nonisothermal flow around, 356, 

398 
transverse flow around, 98,108, 

195,440 
unsteady heat conduction, 377 
with rotating disk, 151,234 

D'Alembert's paradox, 130 
Darcy's law, 148 
Debye-Hiickel approximation, 782 
Debye length, 783 
Decay function in turbulence, 664 
Deformation rate tensor, 112,241 
Dehumidification, 602 
Derivative following the motion, 83 
d-forms of macroscopic balances, 

461,744 
Dialysis, 673 
Dielectrophoresis, 785 
Differential equations solutions, 852 
Differentiation of vectors and 

tensors, 819,829,830,832 
Diffusion (see also Forced diffusion, 

Pressure diffusion, Self 
diffusion,Thermal diffusion) 

aqueous salt solution, 780 
barrier, 538 
driving forces for, 766,774,860 
equation, 584,608,851 
Fick's first law of, 515 
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Fick's second law of, 585 
generalized Fick's law, 767 
from bubble, 623 
from instantaneous point source, 

650 
from point source in stream, 579 
from rotating disk, 610 
from suspended droplet, 572 
Graham's law of, 796,797 
multicomponent, 538,567,581, 

716,767,768 
osmotic, 538 
reverse, 538 
Taylor, 643 
unsteady interphase, 654 
with chemical reaction, 551,571, 

574,577,581,585,595,596,617, 
619,625,653,659,663,696 

Diffusion-thermo effect, 590 
Diffusive flux (see Molecular flux) 
Diffusivity, binary, 515,520,871 

concentration dependent, 606 
corresponding states and, 521 
experimental values, 517,518,519 
gas kinetic theory for, 525 
ionic, 799 
liquid kinetic theories for, 528 
matrix, 71 7 
Maxwell-Stefan, 768,861 
measurement, 549,570,572,575, 

648,654,724 
multicomponent generalizations, 

767,768,769,860 
tensor, 516 
thermal, 268,516 

Dilatational viscosity, 18,82,351 
of liquids containing gas bubbles, 

19 
Dimensional analysis 

and heat transfer coefficients, 433 
and mass transfer coefficients, 679 
of equations of change, 97,353, 

599 
of interfacial boundary conditions, 

112,371 
Dimensionless groups, summary of, 

355,356 
Disk-and-cylinder system, 151,234 
Dispersion, Taylor (axial), 643,650 
Dissipation function, 82,849 
Divergence operator, 820,821,824, 

830,832 
Dominant balance, 419,641 
Donnan exclusion, 791,800 
Drag coefficient (see friction factor) 

Drag force, on cylinder, 108 
on flat plate, 137,138,139 
on sphere, 60,125 

Drag reduction (by polymers), 236, 
257 

Drainage of liquids, 73 
Drop(let), evaporation from, 682, 

722 
freezing of, 366 
mass transfer to, 687 

Ducts, noncircular, 105,155,437 
turbulent flow in, 165 

Dulong and Petit formula, 279 
Dumbbell models for polymers, 254 
Dust collector, 68 
Dynamic similarity, 97 

Eckert number, 355 
Eddy diffusivity, 659,668 

thermal conductivity, 410 
viscosity, 162,167 

Effective diffusivity, 565 
thermal conductivity, 81,370 

Effectiveness factor in catalyst, 566, 
577,581 

Efficiency of separation, 730 
Efflux from a tank, 109,199,217,228 
Eigenfunctions and eigenvalues, 119, 

376,383,404,430,431 
Einstein summation convention, 

841 
Einstein suspension viscosity, 32 
Ejector, 210,460 
Elastic response of polymers, 238, 

244 
Electric analog of radiation, 503 
Electric charge, 776 

susceptibility, 784 
Electromagnetic radiation spectrum, 

488,489 
Electro-osmosis, 782 
Electrostatic potential, 776,781,782 
Ellipsoid, heat transfer from, 452 
Elongational (or extensional) flow, 

238 
viscosity, 240,251,252,257 

Elongation rate, 238 
Emission of radiation, 490 
Emissivity, 492,493 
Emulsion viscosity, 31,34 
End effects, 52,229 
Energy (see internal energy, 

kinetic energy, potential 
energy, energy conservation, 
mechanical energy) 

Energy conservation, in continuum, 
335,587,589 

in macroscopic system, 455,461, 
738 

in molecular collisions, 6 
in shell balances, 291 
relation to homogeneity of time, 

587 
Energy equation, 335,849,850 

boundary layer form of, 387,624 
derivation, 333 
in terms of temperature, 337,589, 

608 
for multicomponent systems, 589 
various forms of, 340,341,589 

Energy fluxes, combined, 285,335 
convective, 265,283,291 
molecular, 265,291,768 
radiative, 265 
work, 285 

Energy production, 291,334,589 
Enlargement, flow in, 209,226 
Enrichment (in separation process), 

730 
Enskog theory of dense gases, 289 
Enthalpy, appearance in combined 

energy flux, 285 
equation of change for, 337,340, 

341,589 
evaluation of, 286 
partial molar, 591 

Entrance length, 52,142,145 
Entropy, equation of change for, 341, 

372,765 
flux and production, 372,766 
macroscopic balance for, 484,485 

Equation of state, 289 
Equations of change (see also, 

continuity, motion, energy, 
angular momentum, vorticity, 
entropy, mechanical energy) 

derivation by integral theorems, 
112,373,608 

from Boltzmann equation, 859 
macroscopic balances from, 198, 

454 
summary tables, 84,340,341,588, 

843 
time-smoothed, 156,408,658 

Equimolar counter-diffusion, 572, 
585 

Equipotential line, 127 
Ergun equation, 191 
Error function, 117,375,857 
Eucken correction, 275,599 
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Euler constant, 399 
Euler equation of motion, 85,399 
Evaporation, from a plane surface, 

710,723 
from droplet, 711 
loss from tank, 326 
steady-state, 545,578,581 
three-component, 567 
unsteady-state, 549,613,712 

Extensional flow (see elongational 
flow) 

Extinction coefficient, 507 
Eyring activated state theory, 29,529 

Facilitated transport, 803 
Fading memory in viscoelastic 

fluids, 246 
Falkner-Skan equation, 139 
Falling cylinder viscometer, 70 
Falling film, Marangoni instability, 

702 
nonisothermal, 344,363,397,403 
on cone, 70 
on inclined flat plate, 42,89 
on outside of circular tube, 64 
on vertical wall, 73 
Sherwood number for, 676 
with chemical reaction, 581 
with dissolution from wall, 562 
with gas absorption, 558 

Faraday constant, 76,867 
FENE-P dumbbell model for 

polymer, 254 
Fick's (first) law of diffusion, 514, 

537,846 
multicomponent generalization, 

717,767 
Fick's (second) diffusion law, 585 
Film model of mass transfer, 548, 

704,712,719,723,724 
Film temperature, 432 
Finite slab, unsteady heating of, 376 

with heat production, 398 
Flat plate, approximate analogies, 632 

Blasius (exact) solution, 137 
free convection near, 346 
friction factor for, 194 
heat transfer coefficient, 438 
heat transfer for flow along, 388, 

390,391 
mass transfer with reaction, 625 
turbulent flow along, 155 
von KBrmAn momentum balance, 

136 
with high mass-transfer rate, 627 

Flow-average temperature, 315 
Flow reactor, temperature profile in, 

300,328 
Fluctuations in turbulent flow, 156, 

407,416,657 
Fluxes, molecular, 13,266,372,515, 

535,766,859 
combined, 36,285,537 
convective, 34,283,535 
turbulent, 158,408,658 

Fog formation, 602 
Force, buoyant, 318 

external, 80,776 
intermolecular, 26 
on cylinder, 195 
on flat plate, 138,156 
on sphere, 60,125,186 

Forced convection heat transfer, 310 
heat transfer coefficients, 428,433, 

438,441 
in slit flow, 323,328 
in tube flow, 328 

Forced convection mass transfer, 
analogy with heat transfer, 613 

for flow around arbitrary objects 
678 

for flow around spheres, 677 
for flow near a rotating disk 679 
in falling films, 676 
in tube flow, 659 

Forced diffusion, 519,590,776 
Forced vortex, 145 
Form drag, 60 
Fourier analysis of turbulent energy 

transport, 416 
Fourier's law of heat conduction, 

266,590,845 
Free convection, 310,325,326 

Boussinesq approximation, 338, 
589 

heat transfer and forced 
convection mass transfer, 698 

heat transfer coefficients, 442 
horizontal plate, 358 
vertical plate, 346,443 

Free-molecule flow, 52,794 
Free turbulence (versus wall 

turbulence), 163,415 
Free vortex, 145 
Freezing of a spherical drop, 366 
Friction coefficient, 531 
Friction drag, 60 
Friction factor, definition, 178 

for flow along flat plate, 194 
for flow around cylinder, 195 

for flow around spheres, 185 
for flow in a flat slit, 194 
for gas bubble in a liquid, 196 
for noncircular tubes, 183 
for packed columns, 188 
for rotating disk, 194 
for tube flow, 179 

Frictionless adiabatic flow, 349,362 
Friction loss factor, 206 
Friction velocity, 160,409 
Froude number, 98,355 

Gamma function, 855 
Gas absorption (see Absorption) 
Gases, kinetic theory of, 23,274,525, 

858 
Gauss's law, 783 
Gauss-Ostrogradskii theorem, 824 
Generalized Newtonian models, 240, 

430,431 
Geometric similarity, 97 
Gibbs-Duhem equation, 766,804 
Giesekus model for polymers, 250, 

251,260,262 
Gradient operator, 820,824,832 
Graetz number, 405,430,431 
Graetz-Nusselt problem, 382,403, 

405 
Graham's law of diffusion, 796 
Grashof numbers, 319,355 

additivity of, 698 
diffusional, 600 

Haaland friction factor equation, 
182 

Hadamard-Rybczinski circulation, 
540,561,700,701 

Hagen-Poiseuille equation, 51,53, 
181,243 

Hatta number, 696 
Head meters, 471 
Heat capacity, 268,269,274 
Heat conduction, equation, 338,373 

in annulus, 322 
in chemical reactor, 300 
in cooling fin, 307 
in electric wire, 292 
in fluid with viscous heating, 298 
in nuclear fuel rod assembly, 296, 

322 
in polymer melt, 323 
product solutions, 400 
through composite walls, 303, 

305 
unsteady (in solids), 374 



Subject Index 889 

with forced convection, 310 
with phase change, 367,401 
with temperature-dependent 

thermal conductivity, 326,370 
Heat conductivity (see thermal 

conductivity) 
Heat exchanger, 450,462,476,482, 

485 
Heat flux vector, 266,767,860 

turbulent, 408,411 
Heating coil, surface temperature of, 

360 
Heat sources, 334 

chemical, 300,328,589 
electrical, 292,329 
nuclear, 296 
viscous, 298,330,331,363,373 

Heat transfer, at high net mass- 
transfer rates, 703 

boundary-layer theory for, 387 
combined with mass transfer, 698 
combined radiant and convective, 

504,505,509 
effects of interfacial forces on, 

699 
for flow along flat plate, 388,390 
from ellipsoid, 452 
in forced convection, 310 
in free convection, 316 
in turbulent tube flow, 41 1 
large Prandtl number asymptote, 

391,392 
Heat transfer coefficients (see also 

Nusselt number) 
appearing in boundary condition, 

292 
calculation from data, 426 
definitions, 423 
effect of high mass-transfer rates, 

703,709 
for condensing vapors, 446 
for packed beds, 441 
for submerged objects, 438 
for tubes and slits, 428,430,431, 

433 
free and forced convection, 442 
from boundary-layer model, 708 
from penetration model, 707 
from stagnant film model, 704 
in mass-transfer systems, 672 
numerical values of, 425 
overall, 305 
turbulent flow, 435 
with temperature dependent 

physical properties, 434 

Heaviside partial fractions 
expansion theorem, 381,692 

Hemodialysis, 733 
Heterogeneous reaction (see also 

Diffusion with chemical 
reaction), 544,551 

High net mass-transfer rates, 627 
Homogeneous reaction (see also 

Diffusion with chemical 
reaction), 544,554 

Hooke's law of elasticity, 245 
Hot-wire anemometer, 327,451 
Hydraulic radius, 183,195 
Hydrodynamic derivative, 83 

interaction, 532 
theory for liquid diffusion, 528 

Hyperbolic functions, 856 

Ideal gas, adiabatic frictionless 
phenomena, 349,351 

cooling of, 459 
duct flow of, 478 
equation of energy for, 337 
flow and mixing in nozzle, 479 

Incompressible fluid, equation of 
continuity for, 78 

equation of energy for, 338 
equation of motion for, 84 
equation of state for, 85 

Inertial sublayer (in turbulence), 159, 
409 

Infinitesimal strain tensor, 295 
Instability, in Couette flow, 93 

in fluid heated from below, 358 
in simple mechanical system, 175 
Marangoni, 72,703 

Intercepts, method of, 591 
Integral theorems, 824 

derivation of equations of change 
by, 1 13,373,608 

derivation of macroscopic energy 
balance by, 221 

Interface, concentration profiles 
near, 688 

gas, liquid compositions at, 688 
Interfacial area as function of time, 

621,639 
boundary conditions, 112,371,700 
deformation and mass transfer, 

637,641,642,687 
motion and mass transfer, 637,641 

Interfacial tension, 98,112, 372 
drops and bubbles, 687 
effect on heat and mass transfer, 

699 

Intermolecular potential energy, 6, 
263 276,527 

Internal angular momentum, 6,82 
Internal energy, equation of change 

for, 336,589 
of fluid, 284,334 
of ideal gas, 859 
of molecules, 6 

Inviscid fluids, Bernoulli equation 
for, 86,109,486 

flow of, 126 
Ionic activity coefficient, 781 
Irrotational flow, 126 
Isotope separation, 732,761,770 
Isotropic turbulence, 165 

Jaumann (corotational) derivative, 
249 

Jeffreys model of linear 
viscoelasticity, 245,260 

Jets, impinging on plate, 201,205, 
214 

laminar and turbulent flow in, 156 
turbulent temperature profiles in, 

415 
turbulent velocity profiles in, 168, 

1 74 
experimental results (turbulent), 

171 
Junction potential, 781,799 

Kinematic viscosity, 13,268,516 
Kinetic energy, 334,819 

equation of change for, 340,341, 
589 

in mechanical energy equation, 81, 
340 

in molecular motions, 6 
Kinetic theory (see molecular 

theory) 
Kirchhoff's law, 491 
Knudsen flow, 66,793,795 
Kronecker delta, 17/81 1 

Lambert's laws, 497,507 
Laminar flow, 41 

contrasted with turbulent flow, 
154 

friction factors for, 181 
heat transfer coefficients for, 428 
mass transer coefficients for, 676 
with heat conduction, 381 

Laminar-turbulent transition, 46/52, 
56,139,186,436 

Langevin equation, 531 
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Laplace equation, for electrostatic 
potential, 782 

for diffusion, 613 
for heat flow, 385,613 
for interfacial pressures, 112 
for porous media flow, 149 
for stream function and velocity 

potential, 127 
Laplace transform, 380,619,692 
Laplacian operator, 821,822,832 
Leibniz formula, 824,854 

for deriving equations of change, 
112,373,608 

for deriving mechanical energy 
balance, 221 

Lennard-Jones (6-12) potential, 26, 
276,527,861,864,866 

combining rules for unlike 
molecules, 527 

Levich-Koutecky-Newman equation, 
745 

Lewis number, 516 
Line source of heat, 396 
Liquid-liquid ejector, 210 
Liquid metals, 271,429 
Local transfer coefficients, 424,674 
Logarithmic, mean concentration 

difference, 745 
mean temperature difference, 424 
temperature profile, 410 
velocity profile, 160,167 

Lorentz force, 784,799 
Lorenz number, 280 
Low-order moments, use of, 756, 

761,763 
Lubrication approximation, 67 

Mach number, 352,479 
Macromixing, 665 
Macroscopic balances by 

integration of equation of 
change, 198,454,484 

d-form of, 461,744 
for angular momentum, 202,738 
for energy, 455,462,485,738 
for entropy, 484 
for internal energy, 458 
for mass, 198,727 
for mechanical energy, 203,207, 

221,456,461,739 
for momentum, 200,738 
summary of equations, 209,458, 

466,740 
Magnetic susceptibility, 784 
Magnetophoresis, 785 

Manometer oscillations, 220 
Marangoni effect 371,700,702,724 
Mass average velocity, 515,533 
Mass conservation, in continuum, 

77,583 
in macroscopic systems, 198,727 
in molecular collisions, 5 
in shell balances, 545 

Mass diffusion (see Diffusion) 
Mass flow rate, 46,51,55 
Mass flux, combined, 536,537 

convective, 535,537 
molecular (or diffusive), 515,537, 

767,860 
turbulent, 658 

Mass transfer, and chemical 
reactions, 694 

boundary-layer model for, 708 
changing interfacial area, 621 
Chilton-Colburn relation for, 682 
combined with heat transfer, 698 
correlations ,679 
creeping flow around bubble, 636 
effect of interfacial forces on, 699 
enhancement by reactions, 659 
examples of, 672,673 
falling films, 676, 677 
flow along flat plate, 681 
flow around arbitrary objects, 678 
flow around spheres, 677,681 
flow near rotating disk, 679 
gas-phase controlled, 689 
interaction of phase resistances, 

691 
liquid-phase controlled, 689 
multicomponent, 716 
penetration model for, 706 
stagnant-film model, 704 
with complex interfacial motion, 

637,641 
Mass transfer coefficients (see also 

Sherwood number), 545,672 
analytical expressions for, 676 
apparent, 675 
area averaging of, 693 
at high net mass transfer rates, 

703,709 
binary, two-phase ,687 
for drops and bubbles, 687 
for packed beds, 686 
overall, 689 
volumetric, 695 

Matched asymptotic expansions, 125 
Material derivative, 83 
Material functions (for polymers), 236 

Matrix methods for mass transport, 
71 6 

Maxwell equation for composites, 
28 1 

model of linear viscoelasticity, 245, 
246 

Maxwell-Boltzmann distribution, 38,, 
860 

Maxwell-Stefan equations, 538,567, 
581 

applications of, 775 
diffusivities in, 768,861 
generalized, 768 
in matrix form, 717 

McCabe-Thiele diagram, 747,748, 
749 

Mean free path, 24,274,525 
Mean hydraulic radius, 183,195, 

437 
Mechanical energy, d-form of 

macroscopic balance for, 461, 
641 

equation of change for, 81,340, 
341,589 

macroscopic balance for, 203,207, 
221,739 

Membrane separation, 713,761,785, 
788,791 

Memory of viscoelastic fluids, 234, 
246 

Micromixing, 665 
Migration velocity, 777 
Mixed convection, 310,445,698 
Mixing length, 163,410,659 

modified van Driest equation for, 
164,661 

Mixing of two ideal gas streams, 460 
Mixing vessel, torque on, 202 

chemical reaction in, 663 
Mobile interfaces, 637 
Mobility, 532 
Model sensitivity, 695,696,736,800 
Modified pressure, 50,84 
Modified van Driest equation, 164, 

661 
Modulus, of elasticity, 245 

storage and loss, 238 
Molar average velocity, 533,535 
Molar flux, 535,536,537 
Molecular collisions, 5 
Molecular flux, of energy, 265,286, 

588,860 
mass, 515,588,860 
momentum, 17,37,588,860 
work, 860 
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Molecular theory, for gases, 23,274, 
525,858 

for liquids, 29,279,528 
for polymers, 253,532 

Molecular velocity, 23,38,274 
Moment of inertia (tensor), 147,817 
Moments, use of lower, 756,761 
Momentum conservation, in 

continuum, 78,340,341 
in macroscopic system, 200,738 
in molecular collisions, 5 
in shell balances, 41 
relation to homogeneity of space, 

587 
Momentum flux, 13 
Momentum flux tensor (see also 

stress tensor), 13,17,24,34,37, 
588,860 

Mooney equation, 32 
Motion, equation of 

alternative form for, 113 
boundary layer, 135,387 
Boussinesq, 339 
derivation from Newton's law, 112 
Euler, 85 
for free convection, 338,589 
from Boltzmann equation, 859 
in terms of stress tensor, 80,340, 

341,587,588,845 
in terms of viscosity, 84,846 
multicomponent systems, 589 
Navier-Stokes, 84 
turbulent, 158 

Multicomponent mixtures, diffusion 
in, 538,581,716,767 

entropy flux and production in 766 
equations of change for, 588,859 
flux expressions, 590,767 
matrix methods for, 716 
thermal conductivity, 276,768 
viscosity (gases), 27 

Natural convection (see free 
convection) 

Navier-Stokes equation, 84,848 
Nernst-Einstein equation, 528 
Network theory for polymers, 253 
Neumann-Stefan problem, 401 
Newtonian fluids, 12,13,17,19 
Newton's drag law for spheres, 187, 

195 
Newton's law of cooling, 292,322 
Newton's law of viscosity, 12,245, 

843 
generalization of, 16/18 

Noether's theorem, 587 
Nonequilibrium thermodynamics, 

765 
Non-Newtonian fluids, 13,30,240, 

244,249 
heat transfer in, 400,430,431 

Normal stress coefficients, 237,239, 
251,252 

Normal stresses, 17,21,59,78,111 
in polymers, 234,251,252 

No-slip boundary condition, 42 
Nozzle, adiabatic frictionless, 749 
Nusselt number (see also heat 

transfer coefficients), 316,322, 
413,420,428,680 

Oldroyd models for polymers, 250, 
251,262 

Onsager's reciprocal relations, 765 
Ordinary diffusion (see Diffusion) 
Orifice, 215,471 
Oscillating, cup-and-bob viscometer, 

147 
cylinder, 236 
manometer, 21 9 
motion and complex viscosity, 

238,247 
motion and viscosity, 262 
motion and viscous heating, 402 
normal stresses, 239 
wall, flow near, 120,150,248 
wall temperature, 379 

Oscillatory steady state, 151,379 
Osmotic diffusion, 538 

pressure, 714,800 
Ostwald-de Waele model for 

viscosity, 241 
Overall heat transfer coefficient, 305, 

425,476 
Overall mass transfer coefficient, 689 
Overdamped system, 221,471 

Packed bed (or column), absorber 
height, 742,759 

creeping flow in, 103 
estimation of interfacial area in, 

694 
friction factor for, 189 
heat transfer coefficients for, 441 
mass transfer coefficients for, 685 
thermal conductivity of, 283 
unsteady operation, 753 

Parallel-disk, compression 
viscometer, 1 10 

viscometer, 106 

Parallel disks, radial flow between, 
108 

Parallel plates (see slit) 
Partial molar properties, 591,766 
Particle diameter, 190 
Particle trajectories, 69,195 
Pkclet number, 268,316,355,600,676 
Penetration model of mass transfer, 

560,706,712,720 
Penetration thickness, 117,375,402 
Periodic steady state, 120,151,248 
Permeability, 149 
Permselective membrane, 776 
Permutation symbol, 82,113,811 
Phase shift, 121,248 
Pipe (see tube) 
Pipe bend, thrust on, 212 
Pipeline flow, 207,464 
Pitot tube, 154,225 
Manck distribution law, 493,495 
Planck's constant, 494,867 
Plane Couette flow, 64 
Plate, oscillating, 120 
Plug flow, 259 

forced convection heat transfer, 325 
reactor, 737 

Poiseuille's law, 51,53,181,243 
Polymeric fluid, anisotropic thermal 

conductivity, 267 
elongational flow of, 251,252,257 
FENE-P dumbbell model for, 254 
linear viscoelastic properties, 244 
molecular theories for, 253 
network theories for, 253 
Nusselt numbers for, 430,431 
normal stress coefficients, 251,252 
viscosity, 241,251,252,255 
viscous heating in, 300 

Porosity, 149 
Porous medium, Darcy's law for 

flow in, 148 
mass transport in, 793 

PotentiaI energy, 334 
in energy equation, 336,340,589 
in mechanical energy equation, 81, 

340 
of interaction between molecules, 

26 
Potential flow, of fluids, 126 

of heat, 385 
Power law expression, for polymer 

flow in tubes, 232 
for polymer viscosity, 241,242, 

243,244 
for turbulent flow in tubes, 154,167 
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Power requirements for pumping, 
207 

Prandtl, boundary-layer equations, 
135,387,624 

friction factor expression, 182 
mixing length, 163,410,659 
number, 268,316,355,516,676 
number (turbulent), 410 

Pressure, ideal gas, 39,860 
modified, 50,84 
reduced, 21,272,521 
thermodynamic, 17 

Pressure diffusion, 519,590,772 
Products of vectors and tensors, 809, 

810,813,817,818,827 
Protein, centrifugation, 776,799 

purification, 761 
viewed as hydrodynamic particle, 

779 
Pseudocritical properties, 21 
Pseudo-steady-state (see Quasi- 

steady-state) 
Psychrometer, 683,711,722 

Quasi-steady-state assumption, 74, 
110,111,195,200,217,228,367, 
473,572,576,607,608,795 

Radiation, absorption and emission, 
490 

between black bodies in vacuo, 497 
between nonblack bodies, 502 
black body, 490 
effect on psychrometer, 722 
heat transfer by, 487 
shield, 503,509 
spectrum of electromagnetic, 488 
transport in absorbing media, 506 

Radius of curvature, 112 
Rate-of-climb indicator, 72 
Rate of strain tensor, 112,241 
Rayleigh number, 348,355,359,442 
Reaction enhancement of mass 

transfer, 617,642,659 
Reactor, continuous stirred tank, 737, 

760 
plug flow, 737 
start up, 752,760 

Recoil of polymers, 233 
Rectifying section of column, 747 
Reduced variables, 21,272,521 
Reflux, 747 
Relative volatility, 730 
Relaxation modulus, 246,247 

time, 245 

Reptation, 532 
Residence time distribution, 69 
Resistances, additivity of, 305,687 
Retardation time, 246 
Reverse diffusion, 538 
Reverse osmosis, 789 
Reynolds analogy, 410,659 
Reynolds decomposition 

(turbulence), 156,407,657 
Reynolds number, 98,355,676 

critical, 46,52,56,59,92,139 
Reynolds stresses, 158 

equation of change for, 176 
in ducts, 165 
in vicinity of wall, 164 

Rheometry, 231,236 
Rigid sphere model, gas diffusivity, 

526 
gas thermal conductivity, 274 
gas viscosity, 25 

Rippling of films, 46,703 
Rod climbing by polymers, 234,237 
Rolling-ball viscometer, 73 
Rotating cone pump, 71 
Rotating disk, diffusion from, 610 

for ultrafiltration, 713 
friction factor for, 194 
Sherwood number for, 679 

Rotating liquid, shape of surface of, 
93,110 

Rotating sphere, flow near, 95 
Rybczynski-Hadamard circulation, 

540,700,701 

Scale factors, 97,392 
Scale-up, 360 
Schmidt number, 420,516,600,676 
Secondary flow, in noncircular 

tubes, 155,233,234,236 
in tangential annular flow, 92 
near oscillating cylinder, 236 
near rotating sphere, 96 

Second viscosity, 18,19,82,351 
Self diffusion and self diffusivity, 

513,521 
corresponding states and, 522 
gas kinetic theory for, 526,861 
in liquids, 529 
in undiluted polymers, 532 

Semi-infinite slab, unsteady heating 
of, 375,397 

with sinusoidal wall heat flux, 
379 

with variable thermal 
conductivity, 400 

Separation factor, 730,731 
locus, 100,392 

Separation of variables, 115,376,383 
Separative capacity, 731 
Shear rate, 237 

stress, 17,60 
thinning, 239,240 
waves (effect of elasticity), 243 

Shell balance method, 40,291,543 
Sherwood number (see also Mass 

transfer coefficient), 420,675, 
676 

Shock wave, stationary, 350 
Silicon oxidation, 607 
Similarity, dynamic and geometric, 

97 
Similarity solutions (see combination 

of variables) 
Simultaneous heat and mass 

transport, 592 
Sinusoidal response method, 115, 

379, 
Slip coefficient, 66 

flow, 52,794 
Slit. Bingham flow in, 259 

flow with uniform cross flow, 110 
forced convection heat transfer, 

323,325,405 
free convection heat transfer, 316, 

326,328 
friction factor for flow in, 194 
heat transfer coefficients, 428 
laminar Newtonian flow in, 63 
polymer flow in, 243,258 
potential flow into, 130 
Taylor dispersion in, 650 
unsteady flow in, 117 

Slot, flow toard and into, 107 
Solar constant, 501 

heat penetration, 402 
Solids, steady potential flow of heat 

in, 386 
unsteady heating of, 378,379,400 

Soret coefficient, 770 
Sound, propagation of, 369 

velocity of, 279 
Source terms in energy equation, 

292,296,298,300,334,589 
Specific, internal energy, 335 

surface, 190 
Sphere, cooling by immersion in 

liquid, 379 
falling in a cylinder, 195 
flow around stationary, 58,122, 

1 44 
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flow near rotating, 95 
friction factor for, 185 
heat transfer coefficients, 424,439 
heat transfer from, 393 
Sherwood number for, 677 
unsteady heating or cooling, 368, 

377,379 
Spherical bubble, creeping flow 

around, 143 
Spherical shell, heat conduction in, 

363 
Spinning disk (see Rotating disk) 
Splitters, binary, 730,746,760 
Square duct, flow in, 106 
Squeezing flow, 110,261 
Stagnant film model for mass 

transfer, 584,704,712,719,723, 
724 

Stagnation point, 100,129,144 
temperature, 484 

Stanton number, 428 
Stefan-Boltzmann constant, 282,492, 

493,494,867 
Stefan-Boltzmann law, 492 
Stefan-Maxwell equations (see 

Maxwell-Stefan equations) 
Stokes-Einstein equation, 529 
Stokes flow (see Creeping flow) 
Stokes' law for flow around sphere, 

61,125,186 
Strain-rate tensor, 112,241 
Strain tensor (infinitesimal), 245 
Stream function, 121,127 

equations satisfied by, 123,151 
for three dimensional flow, 122,151 
in turbulent flow, 170,173 

Streamline, 122,127 
Bernoulli equation for, 86 

Stress, normal, 17,21,59,78,111, 
234,237,239 

shear, 17 
viscous, 17 

Stress relaxation, 260 
Stress tensor, combined, 37,588 

components of, 17 
molecular, 17,34,37,857 
sign conventions for, 19,588 
symmetry of, 18,82 
turbulent, 158 

Stripping section of column, 747 
Sturm-Liouville problems, 115,383 
Substantial derivative, 83 
Sulfur dioxide converter, 739 
Sun, radiant energy from, 501 

temperature of, 496 

Superficial velocity, 149,189 
Supersonic flow, 461 
Surface tension (see interfacial 

tension) 
Suspensions, viscosity of, 31 
Sweep diffusion, 609 

Tallmadge equation, 191 
Tank, draining of, 109,199,217,228 

gas discharge from, 484,485 
holding (pollution control), 728 

Tapered tube, 66,259 
Taylor, dispersion, 643,650 

series, 853 
vortices, 92 

Temperature, equation of change for, 
337,340,589,608,850 

errors in measurement, 508 
fluctuations in turbulence, 408 
reduced, 21,272,521 
stagnation, 484 

Temperature controller, 468 
Temperature distribution, annulus, 

322 
chemical reactor, 300,326,327,328 
cone-and-plate viscometer, 331 
composite wall, 303,305 
cooling fin, 307,332 
electrically heated wire, 292,295, 

329 
embedded sphere, 365 
falling film, 343 
flow around a cylinder, 356 
forced convection slit flow, 323, 

328,330 
forced convection tube flow, 310, 

328,332 
free convection annular flow, 325 
free convection slit flow, 316 
hot-wire anemometer, 327 
in boundary layers, 387,388,391 
in oscillatory flow, 402 
in solids, 375,376,379,386,397, 

398,400 
in systems with phase change, 401 
in turbulent jets, 415 
near wall in turbulent flow, 409 
nuclear fuel assembly, 296,322 
plug flows, 325 
polymer flow in slit, 323 
slit flow with viscous heating, 298, 

322,323 
sphere, 368 
tangential annular flow, 343 
tube flow, 383,384 

transpiration cooling, 344 
viscous heating, 363 

Tensor, moment of inertia, 817 
momentum flux, 17,37 
rate of deformation, 241 
strain (infinitesimal), 245 
stress, 17,37 
symmetric, 816 
unit, 817 
velocity gradient, 19 

Terminal velocity, 61 
Thermal conductivity, Bridgman's 

equation, 279 
definition, 266,768 
Eucken correction, 275,598 
experimental data, 269,270,271 
for anisotropic materials, 267,283 
for monatomic gas, 275,861 
for polyatomic gas, 276,598 
gas kinetic theory, 274,861 
of composites, 281,370 
of dense gases, 289 
of solids, 280 
pressure dependence, 272 
temperature dependence, 272 
units, 269,870 

Thermal diffusion, 519,590 
Clusius-Dickel column for, 318, 

770 
factor, 770 
ratio, 770,771 

Thermal diffusivity, 268,516 
measurement of, 395,396 

Thermal radiation, 488 
Thermocouple, 309 
Thermodynamics of irreversible 

processes, 765 
Thiele modulus, 555,566 
Tilted trough experiment, 235 
Time derivatives, 83,249 
Time smoothed, quantities (in 

turbulence), 157,407,657 
equations of change, 158,408,658 
velocity near wall, 159 

Torque, in coaxial annular system, 
91,244 

on mixing vessel, 202 
on rotating cone, 67 
on rotating disk, 107 
on rotating rod, 105 
on rotating sphere, 96,105 

Torricelli's law, 109 
Torsional oscillatory viscometer, 

146 
Transpiration cooling, 344,365,673 
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Transport properties (see also 
viscosity, thermal conductivity, 
diffusivity, thermal diffusion 
coefficient), 861,864 

Triangular duct, flow in, 105,155 
Tube, Bingham flow in, 260 

compressible flow in, 53 
flow caused by rotating disk in, 

151 
forced convection heat transfer, 

323,325,328,332,342,406 
heat transfer coefficients, 423,428, 

433 
laminar and turbulent flow in, 154 
laminar flow in, 48,69,88 
noncircular, 155 
nonisothermal flow in, 383,384, 

400,411,416 
polymer flow in, 232,242 
recoil of polymers in, 233 
start-up of flow in, 150 
tapered, 66,259 
Taylor diffusion in, 643 
turbulent flow in, 165 
velocity for turbulent flow in, 166 

Tubeless siphon, 235 
Tubular reactor, 595 
Turbulence, chemical reactions and, 

658,659,663 
free and wall, 163 
intensity of, 157 
isotropic, 165 
kinetic energy of, 176 
nonisothermal systems, 407 

Turbulent, diffusivity, 659 
flow, 41,154,165,168,175 
friction factors, 181 
heat flux, 408,410 
heat transfer coefficients, 429,435 
mass flux, 658,659 
momentum flux, 158 
Prandtl number, 410 
Schmidt number, 659 
thermal conductivity, 410 
viscosity, 162,167 

Two-bulb experiment (diffusion), 
572,654,795 

Ultracentrifuge, 772 
Ultrafiltration, 673,713,789,799 
Underdamped system, 221,471 

Value function (of Dirac), 732,761 
Van Driest equation for mixing 

length, 164,414,661 

Vector-tensor notation, 807,841 
Velocity, average molecular, 23 

correlations (in turbulence), 157 
diffusion, 535 
fluctuations (in turbulence), 156 
friction, 160 
mass average, 515,535 
migration, 777 
molar average, 534,535 
of sound, 279 
superficial, 149, 189 
time-smoothed, 157 
volume average velocity, 541 

Velocity distribution, axial annular 
flow, 53,64,65,151,174,325 

cone-and-plate viscometer, 67 
Couette flow, 64 
falling cylinder viscometer, 70 
falling film, 42,64,70,89 
flow around bubble, 143 
flow around cylinder, 128 
flow around sphere, 58,95,122, 

145 
flow in slit, 63,68,117,316 
flow into slit, 130,145 
flow near a corner, 131,139 
flow near a flat plate, 136 
flow of stratified fluids, 56 
flow through tube, 48,69,88,150, 

166 
in disc-and-tube system, 151 
in free convection, 318,347 
in jet, 168,173 
in porous medium, 148 
in shock wave, 352 
in turbulent jets, 171 
in turbulent tube flow, 166 
near a line source, 145 
near an oscillating plate, 120,150 
near wall suddenly set in motion, 

115,142 
tangential annular flow, 89,151 

Velocity gradient tensor, 19,245 
Velocity potential, 127 
Vena contracta, 215,471 
Venturi meter, 471,479 
Vertical plate free convection, 346 
View factors (in radiation), 499 
Viscoelasticity, linear, 244 

nonlinear, 249,253,262 
stress relaxation, 260 

Viscometer, capillary, 52,229 
cone-and-plate, 67,261 
Couette, 89,112 
falling cylinder, 70 

parallel-disk, 106,110,261 
rolling ball, 73 
torsional oscillatory, 146 
viscous heating in, 300 

Viscosity, Carreau equation for, 242 
complex, 238,239,247,251,252, 

260 
dilatational, 18 
elongational (or extensional), 238, 

251,252,257 
emulsion, 31 
gas kinetic theory for, 23,26,861 
kinematic, 13,268,516,871 
liquid kinetic theory for, 29 
Newton's law of, 12 
of dense gases, 289 
of polymers, 237,251,252,255 
of various fluids, 14,15 
position dependent, 47 
power law for polymers, 242 
pressure dependence, 21 
reduced, 21 
shear-rate-dependent, 239 
suspension, 21 
temperature dependence, 21 
Trouton, 238 
units for, 14,870,871 

Viscous dissipation, for flow around 
a sphere, 125 

heating, 300,321,334,363,373,402 
in mechanical energy equation, 82 
in polymer melt, 323 

Viscous losses, 295 
Viscous m'omentum flux, 37 
Viscous sublayer (in turbulence), 

159,409 
velocity distribution in, 161 

Volatility, evaporation rate and, 616 
Volume average velocity, 541 
Volumetric mass transfer 

coefficients, 695 
Von KBrmBn momentum balance, 

136 
Von KBrmBn-Prandtl velocity 

profile, 161 
Von KArmdn vortex street, 100 
Vortices, free and forced, 145 

Taylor, 92 
Vorticity, equation of change for, 

113,122,144 
tensor, 250 

Wall collision frequency, 23,39,274 
Wall effect for sphere falling in 

cylinder, 195 
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Wall suddenly set in motion, flow 
near, 115,142 

Wall turbulence, 153,159 
contrasted with free turbulence, 163 
heat transfer in, 41 1,416 
mass transfer in, 661 

Wavelength of radiation, 488 
Weber number, 98 
Wedge, flow over, 133,139 

Weissenberg rod-climbing effect, 234 Wilke-Chang diffusivity equation, 
Wenzel-Kramers-Brillouin method, 530 

404 Wire, heat conduction in, 364 
Wet and dry bulb psychrometer, 683, radiant heat loss from, 509 

711,722 Work flux, 285 
Wetted-wall column, 673 
Wiedemann-Franz-Lorenz equation, Yield stress 

280 Bingham model for fluids with, 
Wien displacement law, 495 259,260 



l *MOLECULAR FLUX EXPRESSIONS (SEE APPENDIX B.l, B.2, AND B.3) 

Momentum (p = constant, Newtonian fluid): 

m = p6 - p(Vv + (Vv)+) or T- 11 = pa- 11 - p 

Heat (pure fluid only): 

q = -kVT or q .  = -kg dxi  

Mass (for a binary mixture of A and B): 
d@A 

j~ = - P ~ A B ~ @ A  Or A = P ~ A B  dx, 

l l .CONVECTED FLUX EXPRESSIONS (SEE §§I .7,9.7,17.7) 

Momentum: 

PVV or pvpj 

Energy: 

+ $v2)v or + $vZ)vi 

Mass: 

P @ A ~  or PUAVi 

l l COMBINED FLUX EXPRESSIONS 

Momentum: 

Energy: 

e = p(U + fv2)v + q + [ n 0 v ]  

= p(ii + f ~ ) v  + + [ v v ]  
Mass: 

nA = pwAv + jA 

Note: The quantity [.rr v] is the molecular work flux (see g9.81, and n = pa + T (see 
Table 1.2-21). All fluxes obey the same sign convention: they are positive when the 
entity being transported is moving from the negative side of a surface to the positive 
side. 



***EQUATIONS OF CHANGE IN TERMS OF THE COMBINED FLUXES 

These equations are valid only for systems in which gravity is the only external 
force. More information may be found in 519.2. 

Momentum: 

a p v =  -[V-+I +pg  
d t  (Eq. 3.2-8) 

Energy: 

d A  - p ( ~ +  fv2) = -(V.e) + p(v*g) 
d t  (Eq. 11.1-6) 

Mass: 

d  -P@A = -(V nA) + rA d t  (Eq. 19.1-6) 

l l *EQUATIONS OF CHANGE (SPECIAL FORMS) 
- - 

Momentum (for Newtonian fluids with constant p and p): (53.6) 

Energy (for Newtonian fluids with constant p and k): (SB.9) 

Mass (for binary mixtures of A and B with constant pgAB): (SB.11) 

l l DIMENSIONLESS GROUPS 

(1, and vo are a characteristic length and a characteristic velocity, respectively) 

Re = &v,p/p Pr = CPp/k SC = p/p%B 

Ra = GrPr Gr = g@AT/v2 Gr, = gll:Aw,/ v 2  

Nu = hlo/k P6 = RePr PkAB = ReSc 

Sh = kcIo/9AB j, = N U / R ~ P ~ ' / ~  j, = s ~ / R ~ s c ' / ~  
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